
A Proof for Equation (7) in Section 3.2

In Section 3.2, we propose a shifting operation in eq. (7) to transform any convex function to a convex
conjugate generator function of an f -divergence. Below, we summarize the shifting operation and
prove its efficacy in proposition A.1.

Proposition A.1. Given a convex function f∗φ : domf∗φ 7→ R, applying the shifting operation below
transforms it to a convex conjugate generator function of an f -divergence,

f∗φ′(u) = f∗φ(u− δ

2
)− δ

2
, where δ = inf

u∈domf∗
φ

{f∗φ(u)− u}. (8)

Proof. As presented in Section 3.2, for an f -divergence, its convex conjugate generator function
f∗φ′(u) is i) convex, and ii) with zero gap from u, i.e., infu∈domf∗

φ′
{f∗φ′(u) − u} = 0. Below, we

prove that both these two constraints hold for the obtained f∗φ′(u).

Convexity. Since a constant shift of a convex function preserves the convexity [9], the obtained
f∗φ′(u) is convex.

Zero gap. Given δ = infu∈domf̄∗{f̄
∗(u) − u}, we denote the ũ as the value that attains the

infimum. Hence, we have f∗φ(u)− u ≥ δ for ∀u ∈ domf∗φ
. For the transformed function f∗φ′(u) =

f∗φ(u− δ
2)− δ

2 , we naturally have

f∗φ′(u)− u = f∗φ(u− δ

2
)− δ

2
− u = f∗φ(u− δ

2
)− (u− δ

2
)− δ ≥ δ − δ = 0, ∀u ∈ domf∗φ

,

and the infimum is attained at ũ+ δ
2 . This implies that the zero gap constraint infu∈domf∗

φ′
{f∗φ′(u)−

u} = 0 holds.

B Environments and Detailed Results

The environments we used for our experiments are from the OpenAI Gym [10] including the
CartPole [8] from the classic RL literature, and five complex tasks simulated with MuJoCo [32], such
as HalfCheetah, Hopper, Reacher, Walker, and Humanoid with task screenshots and version numbers
shown in Fig. 8.

Details of policy network structures. The policy network structures πθ of all the baselines and
f -GAIL are the same in all experiments, with two hidden layers of 100 units each, and tanh nonlin-
earlities in between. Note that behavior cloning (BC) employs the same structure to train a policy
network with supervised learning.

Details of reward signal network structures. The reward signal network used in GAIL, BC+GAIL,
AIRL, RKL-VIM and f -GAIL are all composed of three hidden layers of 100 units each with first
two layers activated with tanh, and the final activation layers listed in Tab. 3.

Details of f∗φ network structure in f -GAIL. For the study of the f∗ function in Sec 4.1 and the
performances of the learned policy in Sec 4.2, the f∗φ network is composed of 4 linear layers with
hidden layer dimension of 100 and ReLU activation in between. For the ablation study in Sec 4.3, we
changed the number of linear layers to be 1, 2, 4 and 7 (with 100 nodes per layer) and the number of
nodes per layer to be 25, 50, 100, and 200 (with 4 layers).

Evaluation setup. For all the experiments, the amount of environment interaction used for GAIL,
BC+GAIL, AIRL, RKL-VIM and the f -GAIL together with expert and random policy performances
in each task is shown in Tab. 4. We followed GAIL [18] to fit value functions, with the same neural
network architecture as the policy networks, and employed generalized advantage estimation [30]
with γ = 0.99 and λ = 0.95, so that the gradient variance is reduced.

12

(a) CartPole-v0 (b) HalfCheetah-v2 (c) Hopper-v2

(d) Reacher-v2 (e) Walker-v2 (f) Humanoid-v2
Figure 8: Screenshots of six physics-based control tasks [32].

Table 3: Final layer activa-
tion functions for Reward
Signal Networks.

IL methods Activation
GAIL Sigmoid(v)

BC+GAIL Sigmoid(v)
AIRL Sigmoid(v)

RKL-VIM − exp(v)

Table 4: Parameters for baselines and f -GAIL.
Task Training Number of (s, a) Expert Random policy

iterations per iteration performance performance
CartPole-v0 200 200 200±0 17± 4

HalfCheetah-v2 500 2000 4501±118 -901±49
Hopper-v2 500 2000 3593±19 8± 6
Reacher-v2 500 2000 -4.5±1.7 -93.7 ±4.8
Walker-v2 500 2000 5657±33 -2±3

Humanoid-v2 700 30000 10400±55 101±26

B.1 Detailed statistical results on Learned f∗φ function

As explained in Sec 4.1, two criteria for the input distribution to the f∗φ function govern the quality of
the learned policy πθ, namely, (i) input u centers around zero gap; (ii) input u has small standard
deviation. Now, based on Fig. 4, we analyze how much different IL methods satisfy the two criteria
in all six tasks.

• To quantify criterion (i), we denote ũ as the input value with zero gap, i.e., f∗φ(ũ)− ũ = 0, and
ū as the mean of the input u. Thus, we quantify the criterion (i) using the absolute difference
between ũ and ū, i.e., ∆u = |ũ− ū|.
• To quantify criterion (ii), we estimate the standard deviations σ of input distributions for different

IL methods in all tasks.

For both ∆u and σ, the smaller values indicate a learner policy closer to expert policy. As a result,
we examine their sum, i.e., ∆u + σ as a unifying metric to evaluate overall how the two criteria are
met. Tab. 5 shows the detailed results of ∆u, σ, and ∆u + σ. It shows that our proposed f -GAIL
learns an f∗φ function with consistently lower values on ∆u + σ, comparing to all baselines, which
indicates that the learned f∗φ function from f -GAIL can meet the two criteria better than baselines.

B.2 Detailed results on learner policies

The exact learned policy return are listed in Tab. 6. The means and standard deviations are computed
over 50 trajectories. A higher return indicates a better learned policy. All results are computed over 5
policies learned from random initializations.

Table 5: Analysis on input distributions of f∗ functions.
Task CartPole HalfCheetah Hopper Reacher Walker Humanoid

f -GAIL 0.28 0.62 0.51 0.60 0.49 0.52
RKL-VIM 1.25 0.96 1.36 2.14 4.62 2.85

GAIL 1.96 1.31 2.09 2.08 4.06 3.55

13

Table 6: Learned policy performance.
Task Datasize BC GAIL BC+GAIL AIRL RKL-VIMf -GAIL (Ours)

CartPole

1 62±13 181±9 165±14 176±7 179±7 180±9
4 81±10 191±9 183±7 133±15 185±8 200±0
7 101±27 200±0 164±22 194±2 200±0 200±0

10 178±20 199±0 187±13 200±0 200±0 200±0

HalfCheetah

4 2211±528 4047±344 4431±56 2276±65 3194±30 4481±60
11 3979±61 4274±202 4263±90 4230±473 2994±94 4457±89
18 3911±416 4377±135 4282±67 4073±605 2806±46 4461±132
25 4027±91 4340±185 4447±48 4501±42 2952±45 4445±79

Hopper

4 3129±132 1413±26 1619±240 2328±549 1200±16 2996±142
11 2491±218 1923±16 2188±257 2539±544 2513±3 3390±135
18 3276±133 2336±10 2849±224 2898±362 2969±17 3339±142
25 2868±745 2452±12 3372±79 2779±675 3001±42 3561±6

Reacher

4 -31.3±4.4 -33.0± 3.5 -29.0±4.0 -17.4±3.3 -20.7±5.2 -16.7±4.0
11 -32.9±3.1 -23.4± 3.2 -34.4±12.8 -23.7±4.3 -21.1±5.4 -12.1±3.3
18 -31.3±3.4 -22.1± 2.1 -61.8±15.7 -16.6±4.4 -20.4±3.1 -12.6±1.8
25 -10.0±3.2 -18.9± 5.0 -23.2±2.4 -11.8±2.9 -24.2±2.0 -10.6±2.6

Walker2d

4 848±206 2728±1079 267±50 1327±431 3577±594 4448±103
11 1068±328 1911±160 226±36 2466±454 3947±475 4609±22
18 888±316 2372±453 1251±378 2755±11034138±287 4290±139
25 2018±812 3816±148 3700±939 4599±504 4507±179 5148±205

Humanoid
80 5391±39187268±21016908±1577 7034±591 5772±409 9180±49

160 5713±41268994±10537003±1488 7160±559 7842±245 9280±68
240 7378±998 7430±21067294±1705 7528±273 8993±252 9130±114

14

