
We thank all reviewers for their valuable comments. We addressed your major comments as below:1

Figure 1: An illustration of high dissonance
and high vacuity based on Dirichlet distribution.

[Reviewer 2]: Q1: Provide the rationales about the choice of Dirichlet dis-2

tribution. Our proposed framework is designed to predict the subjective opinions3

about the classification of testing nodes, such that a variety of uncertainty types,4

such as vacuity and dissonance, can be quantified based on the estimated sub-5

jective opinions. As a subjective opinion can be equivalently represented by6

a Dirichlet distribution about the class probabilities (See Sections 3.1-3.2), we7

proposed a way to predict the node-level subjective opinions in the form of node-8

level Dirichlet distributions. Figure 1 illustrates the effect of Dirichlet distribution for distinguishing each uncertainty9

type from others. There are two scenarios: The left scenario has 10 observations for each of the three classes while the10

right scenario has 1 observation for each class. The left scenario has a high dissonance while the right scenario has a11

high vacuity. These two uncertainty types can be distinguished by using the estimated Dirichlet distributions (α refers12

to the Dirichlet parameters), which is not possible by using the estimated class probabilities (p).13

Q2: Clarify the significance and novelty of the contribution. The significance and novelty of our proposed work lies14

in the following unique contributions: (1) Our work is the first that developed the multi-source uncertainty quantification15

framework that estimates various types of uncertainties by taking a hybrid approach from both DL and evidence/belief16

theory domains for graph data. (2) We provided the first theoretical basis by demonstrating the mathematical proof17

that clarifies the relationships between the four important uncertainty types: vacuity, dissonance, aleatoric, and18

epistemic uncertainty. (3) We proposed the first-known graph-based Kernel Dirichlet distribution Estimation (GKDE)19

approach that estimates node-level Dirichlet distributions based on graph-structural information. We validated its20

performance via a theoretical analysis of GKDE as shown in Proposition 1 and an empirical experiment to demonstrate21

an extensive performance analysis. We proved the theoretical relationships between the four uncertainty types (the22

second contribution) via the mathematical proof and developed the GKDE approach (the third contribution) to support23

our proposed multi-source uncertainty quantification framework for graph data (the first contribution).24

[Reviewer 3]: Q1: Discuss and differentiate the different approaches for uncertainty estimation in graphs.25

Existing approaches for graph data have focused on estimating an overall predictive uncertainty for node classification26

based on the entropy of the predicted class probabilities for each test node. Some of the recent methods have explicitly27

modeled the uncertainty of graph structure in order to better predict the overall predictive uncertainty, such as the28

methods based on edge-level dropouts [DropEdge in Rong et. al, 2019], graph Gaussian processes (GPs) [13], and29

Bayesian GNNs + MMSBM (mixed membership stochastic block model) [23]. However, no prior work has explored the30

decomposition of overall uncertainty into the multiple dimensions as considered in our paper for GNNs, which require31

the prediction of second-order uncertainty information about the class probabilities based on Dirichlet distribution. Our32

proposed framework can be readily extended to support prediction of the additional uncertainty dimension on graph33

structure by integrating graph GPs or MMSBM into our proposed framework.34

Figure 2: Performance change with different
number of labeled nodes.

Q2: Investigate the performance change under varying a number of labeled35

nodes. An empirical analysis of the performance change for misclassification and36

OOD detection is shown in Fig 2. The results on the Cora and Citseer datasets37

demonstrate that our proposed method (S-BGCN-T-K) consistently outperformed38

the four competitive methods in terms of AUROC and AUPR for varying numbers39

of labeled nodes. We also observed worse performance in the AUROC and AUPR40

of all the methods under a lower number of labeled nodes. This makes sense as41

the less labels we have the higher uncertainty to train the models, resulting in42

higher the misclassification rate in overall. Q3: Clarify the additional KL term43

for theta. [5] showed that minimizing the KL term can be well approximated by44

minimizing the cross entropy (or squared error) loss function (See Appendix B.845

for detail). Therefore, we used the squared error loss function instead of the KL46

term. Q4: Compare with a (Bayesian) GCN baseline Dropout+DropEdge in47

Rong et. al, 2019. As shown in the table below, our proposed method performed better than Dropout+DropEdge on the48

Cora and Citeer datasets for misclassificaiton detection. A similar trend was observed for OOD detection.49

[Reviewer 4]: Q1: Clarify notations. (1) The semicolon in Equation 5 is a typo and should be replaced by a comma.50

(2) About the entropy term in Equation 5, ‘P ’ is missing before ‘(y|x;θ)’ and the the correct entropy term should51

be H
[
EP (θ|G)[P (y|x,θ)]

]
, referring to the entropy of expected distribution. (3) We agree with you that asymptotic52

complexity is a more meaningful metric to represent the efficiency of an algorithm, so we will use it in a revised paper.53

Dataset Model AUROC AUPR
Va. Dis. Al. Ep. En. Va. Dis. Al. Ep. En.

Cora S-BGCN-T-K 70.6 82.4 75.3 68.8 77.7 90.3 95.4 92.4 87.8 93.4
DropEdge - - 76.6 56.1 76.6 - - 93.2 85.4 93.2

Citeseer S-BGCN-T-K 65.4 74.0 67.2 60.7 70.0 79.8 85.6 82.2 75.2 83.5
DropEdge - - 71.1 51.2 71.1 - - 84.0 70.3 84.0

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy


