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Abstract

Thanks to graph neural networks (GNNs), semi-supervised node classification
has shown the state-of-the-art performance in graph data. However, GNNs have
not considered different types of uncertainties associated with class probabilities
to minimize risk of increasing misclassification under uncertainty in real life.
In this work, we propose a multi-source uncertainty framework using a GNN
that reflects various types of predictive uncertainties in both deep learning and
belief/evidence theory domains for node classification predictions. By collecting
evidence from the given labels of training nodes, the Graph-based Kernel Dirichlet
distribution Estimation (GKDE) method is designed for accurately predicting node-
level Dirichlet distributions and detecting out-of-distribution (OOD) nodes. We
validated the outperformance of our proposed model compared to the state-of-the-
art counterparts in terms of misclassification detection and OOD detection based
on six real network datasets. We found that dissonance-based detection yielded
the best results on misclassification detection while vacuity-based detection was
the best for OOD detection. To clarify the reasons behind the results, we provided
the theoretical proof that explains the relationships between different types of
uncertainties considered in this work.

1 Introduction

Inherent uncertainties derived from different root causes have realized as serious hurdles to find
effective solutions for real world problems. Critical safety concerns have been brought due to
lack of considering diverse causes of uncertainties, resulting in high risk due to misinterpretation
of uncertainties (e.g., misdetection or misclassification of an object by an autonomous vehicle).
Graph neural networks (GNNs) [12, 21]] have received tremendous attention in the data science
community. Despite their superior performance in semi-supervised node classification and regression,
they didn’t consider various types of uncertainties in the their decision process. Predictive uncertainty
estimation [[11] using Bayesian NNs (BNNs) has been explored for classification prediction and
regression in the computer vision applications, based on aleatoric uncertainty (AU) and epistemic
uncertainty (EU). AU refers to data uncertainty from statistical randomness (e.g., inherent noises in
observations) while EU indicates model uncertainty due to limited knowledge (e.g., ignorance) in
collected data. In the belief or evidence theory domain, Subjective Logic (SL) [9] considered vacuity
(or a lack of evidence or ignorance) as uncertainty in a subjective opinion. Recently other uncertainty
types, such as dissonance, consonance, vagueness, and monosonance [9], have been discussed based
on SL to measure them based on their different root causes.

We first considered multidimensional uncertainty types in both deep learning (DL) and belief and evi-
dence theory domains for node-level classification, misclassification detection, and out-of-distribution
(OOD) detection tasks. By leveraging the learning capability of GNNs and considering multi-
dimensional uncertainties, we propose a uncertainty-aware estimation framework by quantifying
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different uncertainty types associated with the predicted class probabilities. In this work, we made
the following key contributions:

e A multi-source uncertainty framework for GNNs. Our proposed framework first provides the
estimation of various types of uncertainty from both DL and evidence/belief theory domains, such
as dissonance (derived from conflicting evidence) and vacuity (derived from lack of evidence). In
addition, we designed a Graph-based Kernel Dirichlet distribution Estimation (GKDE) method to
reduce errors in quantifying predictive uncertainties.

o Theoretical analysis: Our work is the first that provides a theoretical analysis about the rela-
tionships between different types of uncertainties considered in this work. We demonstrate via a
theoretical analysis that an OOD node may have a high predictive uncertainty under GKDE.

e Comprehensive experiments for validating the performance of our proposed framework:
Based on the six real graph datasets, we compared the performance of our proposed framework
with that of other competitive counterparts. We found that the dissonance-based detection yielded
the best results in misclassification detection while vacuity-based detection best performed in OOD
detection.

Note that we use the term ‘predictive uncertainty’ in order to mean uncertainty estimated to solve
prediction problems.

2 Related Work

DL research has mainly considered aleatoric uncertainty (AU) and epistemic uncertainty (EU)
using BNNs for computer vision applications. AU consists of homoscedastic uncertainty (i.e.,
constant errors for different inputs) and heteroscedastic uncertainty (i.e., different errors for different
inputs) [4]]. A Bayesian DL framework was presented to simultaneously estimate both AU and EU in
regression (e.g., depth regression) and classification (e.g., semantic segmentation) tasks [11]]. Later,
distributional uncertainty was defined based on distributional mismatch between testing and training
data distributions [14]]. Dropout variational inference [5] was used for an approximate inference
in BNNs using epistemic uncertainty, similar to DropEdge [15]]. Other algorithms have considered
overall uncertainty in node classification [3} [13, 22]]. However, no prior work has considered
uncertainty decomposition in GNNs.

In the belief (or evidence) theory domain, uncertainty reasoning has been substantially explored, such
as Fuzzy Logic [1], Dempster-Shafer Theory (DST) [19], or Subjective Logic (SL) [8]. Belief theory
focuses on reasoning inherent uncertainty in information caused by unreliable, incomplete, deceptive,
or conflicting evidence. SL considered predictive uncertainty in subjective opinions in terms of vacuity
(i.e., a lack of evidence) and vagueness (i.e., failing in discriminating a belief state) [8]]. Recently,
other uncertainty types have been studied, such as dissonance caused by conflicting evidence[9]. In
the deep NNss, [18] proposed evidential deep learning (EDL) model, using SL to train a deterministic
NN for supervised classification in computer vision based on the sum of squared loss. However, EDL
didn’t consider a general method of estimating multidimensional uncertainty or graph structure.

3 Multidimensional Uncertainty and Subjective Logic

This section provides an overview of SL and discusses multiple types of uncertainties estimated based
on SL, called evidential uncertainty, with the measures of vacuity and dissonance. In addition, we
give a brief overview of probabilistic uncertainty, discussing the measures of aleatoric uncertainty
and epistemic uncertainty.

3.1 Subjective Logic
A multinomial opinion of a random variable y is represented by w = (b, u, a) where a domain is
Y = {1,---, K} and the additivity requirement of w is given as » , .y, by + u = 1. To be specific,
each parameter indicates,

e b: belief mass distribution over Y and b = [by, ..., bg|T;

® w: uncertainty mass representing vacuity of evidence;

e a: base rate distribution over Y and @ = [a1, ... ,ax]7.

The projected probability distribution of a multinomial opinion can be calculated as:

Ply=k)="br + axu, VkeY. (1



A multinomial opinion w defined above can be equivalently represented by a K -dimensional Dirichlet
probability density function (PDF), where the special case with K = 2 is the Beta PDF as a binomial
opinion. Let v be a strength vector over the singletons (or classes) in Y and p = [p1,- -+ ,px]T
be a probability distribution over Y. The Dirichlet PDF with p as a random vector K-dimensional
variables is defined by:

. 1 .
Dir(p|la) = Bla) l_Lcer;€ 1), )

T « .
where B(la) = 1%::5(2;;) ag > 0,and p, # 0,if oy, < 1.

The term evidence is introduced as a measure of the amount of supporting observations collected
from data that a sample should be classified into a certain class. Let e; be the evidence derived
for the class k € Y. The total strength oy, for the belief of each class k& € Y can be calculated as:
ag = e + apW, where e, > 0,VEk € Y, and W refers to a non-informative weight representing the
amount of uncertain evidence. Given the Dirichlet PDF as defined above, the expected probability
distribution over Y can be calculated as:

Qg er +apW
E[pk] = K = K . €)]
D1k WHY ek
The observed evidence in a Dirichlet PDF can be mapped to a multinomial opinion as follows:

€L w

bk) = §7 U= §7 (4)
where S = Zle oy, refers to the Dirichlet strength. Without loss of generality, we set a; = % and
the non-informative prior weight (i.e., W = K), which indicates that a;, - W = 1foreach k € Y.

3.2 Evidential Uncertainty

In [9], we discussed a number of multidimensional uncertainty dimensions of a subjective opinion
based on the formalism of SL, such as singularity, vagueness, vacuity, dissonance, consonance, and
monosonance. These uncertainty dimensions can be observed from binomial, multinomial, or hyper
opinions depending on their characteristics (e.g., the vagueness uncertainty is only observed in hyper
opinions to deal with composite beliefs). In this paper, we discuss two main uncertainty types that
can be estimated in a multinomial opinion, which are vacuity and dissonance.

The main cause of vacuity is derived from a lack of evidence or knowledge, which corresponds to the
uncertainty mass, u, of a multinomial opinion in SL as: vac(w) = u = K/, as estimated in Eq. .
This uncertainty exists because the analyst may have insufficient information or knowledge to analyze
the uncertainty. The dissonance of a multinomial opinion can be derived from the same amount of
conflicting evidence and can be estimated based on the difference between singleton belief masses
(e.g., class labels), which leads to ‘inconclusiveness’ in decision making applications. For example, a
four-state multinomial opinion is given as (b1, ba, b3, by, u, a) = (0.25,0.25,0.25,0.25, 0.0, a) based
on Eq. @), although the vacuity w is zero, a decision can not be made if there are the same amounts
of beliefs supporting respective beliefs. Given a multinomial opinion with non-zero belief masses,
the measure of dissonance can be calculated as:

K b3 biBal(b;, b;)
diss(w) = iz ; &)
(=)

where the relative mass balance between a pair of belief masses b; and b; is defined as Bal(b;, b;) =
1—|b; —b;|/(b; +b;). We note that the dissonance is measured only when the belief mass is non-zero.
If all belief masses equal to zero with vacuity being 1 (i.e., u = 1), the dissonance will be set to zero.

3.3 Probabilistic Uncertainty

For classification, the estimation of the probabilistic uncertainty relies on the design of an appropriate
Bayesian DL model with parameters 8. Given input « and dataset G, we estimate a class proba-
bility by P(y|z) = [ P(y|x;0)P(6]|G)d6, and obtain epistemic uncertainty estimated by mutual
information [2}|14]:

I(y,6|z,G) = H[Epo|0)[P(ylz; 0)]] —Epeolg) [H[P(y|z; 0)]], (6)

Epistemic Entropy Aleatoric




where H(-) is Shannon’s entropy of a probability distribution. The first term indicates entropy that
represents the total uncertainty while the second term is aleatoric that indicates data uncertainty. By
computing the difference between entropy and aleatoric uncertainties, we obtain epistemic uncertainty,
which refers to uncertainty from model parameters.

4 Relationships Between Multiple Uncertainties

We use the shorthand notations ., Ugiss,» Ualeas
Uepis, and ue, to represent vacuity, dissonance,
aleatoric, epistemic, and entropy, respectively.

To interpret multiple types of uncertainty, we show
three prediction scenarios of 3-class classification
in Figure [T} in each of which the strength parame-
ters @ = a1, ag, ag] are known. To make a predic-
tion with high confidence, the subjective multinomial
opinion, following a Dirichlet distribution, will yield
a sharp distribution on one corner of the simplex (see

u=[0.05, 0, 0.15, 0.02, 0.17]
(a) Confident Prediction

Figure [I] (a)). For a prediction with conflicting evi- »

denc.e,]callfed. a corﬁﬂlcltlng. plred1ct10n (C]P)., thfz mglt1- =[50, 50, 50] a=1,1,1]
nomial opinion shou d yield a centra dlstrlbut}on, u=1[0.02,0.98, 0.99, 0.01, 1.0] u=[1.0,0,0.75, 0.25, 1.0]
representing confidence to predict a flat categorical (b) Conflict Prediction (¢) Out-of-Distribution

distribution over class labels (see Figure[T] (b)). For  Figure 1: Multiple uncertainties of different pre-
an OOD scenario with o« = [1, 1, 1], the multinomial diction. Let u = [, Udiss, Uateas Uepiss Uen).
opinion would yield a flat distribution over the sim-

plex (Figure [I] (¢)), indicating high uncertainty due to the lack of evidence. The first technical
contribution of this work is as follows.

Theorem 1 We consider a simplified scenario, where a multinomial random variable y follows a
K-class categorical distribution: y ~ Cal(p), the class probabilities p follow a Dirichlet distribution:
p ~ Dir(a), and « refer to the Dirichlet parameters. Given a total Dirichlet strength S = Zfil ;,
for any opinion w on a multinomial random variable y, we have

1. General relations on all prediction scenarios.

(a) Uy + Udiss < 1; (b) Uy > Uepis-

2. Special relations on the OOD and the CP.

(a) For an OOD sample with a uniform prediction (i.e., « = [1,...,1]), we have
1=y = Uen > Uglea > Uepis > Udiss = 0

(b) For an in-distribution sample with a conflicting prediction (i.e., « = [aq, . . ., k] with
ap =g =+ = ag, if S — ), we have

Uep, = 1, lIM Ugiss = liM Ugreq = 1, lim u, = lim tepis =0
S—o0 S—o0 S—o0 S—o0
With Uey, > Uglea > Udiss > Uy > Uepis-

The proof of Theorem [I] can be found in Appendix A.l. As demonstrated in Theorem [I] and
Figure[I] entropy cannot distinguish OOD (see Figure [T (c)) and conflicting predictions (see Figure/[T]
(b)) because entropy is high for both cases. Similarly, neither aleatoric uncertainty nor epistemic
uncertainty can distinguish OOD from conflicting predictions. In both cases, aleatoric uncertainty
is high while epistemic uncertainty is low. On the other hand, vacuity and dissonance can clearly
distinguish OOD from a conflicting prediction. For example, OOD objects typically show high
vacuity with low dissonance while conflicting predictions exhibit low vacuity with high dissonance.
This observation is confirmed through the empirical validation via our extensive experiments in terms
of misclassification and OOD detection tasks.

S Uncertainty-Aware Semi-Supervised Learning

In this section, we describe our proposed uncertainty framework based on semi-supervised node
classification problem. It is designed to predict the subjective opinions about the classification
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Figure 2: Uncertainty Framework Overview. Subjective Bayes1an GNN (a) designed for estimating the
different types of uncertainties. The loss function includes square error (d) to reduce bias, GKDE (b) to reduce
errors in uncertainty estimation and teacher network (c) to refine class probability.

of testing nodes, such that a variety of uncertainty types, such as vacuity, dissonance, aleatoric
uncertainty, and epistemic uncertainty, can be quantified based on the estimated subjective opinions
and posterior of model parameters. As a subjective opinion can be equivalently represented by a
Dirichlet distribution about the class probabilities, we proposed a way to predict the node-level
subjective opinions in the form of node-level Dirichlet distributions. The overall description of the
framework is shown in Figure 2}

5.1 Problem Definition

Given an input graph G = (V,E, r,yr), where V. = {1,..., N} is a ground set of nodes, E C Vx V
is a ground set of edges, r = [ry,--- ,ry]7 € RV*9 is a node-level feature matrix, r; € R? is
the feature vector of node 7, y;, = {y; | ¢ € L} are the labels of the training nodes L. C V, and
yi € {1,..., K} is the class label of node i. We aim to predict: (1) the class probabilities of
the testing nodes: py\;, = {p; € [0, 1]% | i € V\ L}; and (2) the associated multidimensional
uncertainty estimates introduced by different root causes: uy\p. = {u; € [0,1]™ | i € V\ L},
where p; 1, is the probability that the class label yy; = k and m is the total number of uncertainty types.

5.2 Proposed Uncertainty Framework

Learning evidential uncertainty. As discussed in Section[3.1] evidential uncertainty can be derived
from multinomial opinions or equivalently Dirichlet distributions to model a probability distribution
for the class probabilities. Therefore, we design a Subjective GNN (S-GNN) f to form their
multinomial opinions for the node-level Dirichlet distribution Dir(p,|c;) of a given node i. Then, the
conditional probability P(p|A, r; 0) can be obtained by:

N
P(p|A,r;0) =[] _ Dir(pilev), i = fi(A,r;6), (7)

where f; is the output of S-GNN for node 4, 0 is the model parameters, and A is an adjacency matrix.
The Dirichlet probability function Dir(p,|c;) is defined by Eq. (2).

Note that S-GNN is similar to classical GNN, except that we use an activation layer (e.g., ReLU)
instead of the softmax layer (only outputs class probabilities). This ensures that S-GNN would output
non-negative values, which are taken as the parameters for the predicted Dirichlet distribution.

Learning probabilistic uncertainty. Since probabilistic uncertainty relies on a Bayesian framework,
we proposed a Subjective Bayesian GNN (S-BGNN) that adapts S-GNN to a Bayesian framework,
with the model parameters 8 following a prior distribution. The joint class probability of y can be
estimated by:

P(y|A,G) = / / P(y|p)P(p|A.r:6)P(6]G)dpd6

Q

i Z Z/P (vilp,) P(p;|A,r;0)dp;, 87 ~q(0) (8

mlzl

where P(0|G) is the posterior, estimated via dropout inference, that provides an approximate solution
of posterior ¢(0) and taking samples from the posterior distribution of models [3]]. Thanks to the



benefit of dropout inference, training a DL model directly by minimizing the cross entropy (or
square error) loss function can effectively minimize the KL-divergence between the approximated
distribution and the full posterior (i.e., KL[¢(0)||P(8]|G)]) in variational inference [5} [10]. For
interested readers, please refer to more detail in Appendix B.8.

Therefore, training S-GNN with stochastic gradient descent enables learning of an approximated
distribution of weights, which can provide good explainability of data and prevent overfitting. We
use a loss function to compute its Bayes risk with respect to the sum of squares loss ||y — p||2 by:

K
L(6) = ZZEL/ ly; = pill3 - P(p;|A,x; 0)dp; = Z@ >, ik Elpit))” + Var(pix), (9)

where y, is an one-hot vector encoding the ground-truth class with y;; = 1 and y;;, # forall k£ # j and
j is a class label. Eq. (9) aims to minimize the prediction error and variance, leading to maximizing
the classification accuracy of each training node by removing excessive misleading evidence.

5.3 Graph-based Kernel Dirichlet distribution Estimation (GKDE)

The loss function in Eq. (9) is designed to measure the
sum of squared loss based on class labels of training nodes.
However, it does not directly measure the quality of the
predicted node-level Dirichlet distributions. To address
this limitation, we proposed Graph-based Kernel Dirichlet
distribution Estimation (GKDE) to better estimate node-
level Dirichlet distributions by using graph structure in-
formation. The key idea of the GKDE is to estimate prior
Dirichlet distribution parameters for each node based on
the class labels of training nodes (see Figure[3). Then, we
use the estimated prior Dirichlet distribution in the training
process to learp the following patterns:.(i.) nodes with a Figure 3: Ilustration of GKDE. Estimate
high vacuity will l?e shgwn far from training nodes; and prior Dirichlet distribution Dir() for node
(i1) nodes with a high dissonance will be shown near the  ; (red) based on training nodes (blue) and
boundaries of classes. graph structure information.

Based on SL, let each training node represent one evidence
for its class label. Denote the contribution of evidence estimation for node j from training node ¢ by
h(yi,dij) = [h1,. .., hi, ..., hi] € [0,1]%, where h(y;, d;;) is obtained by:

0 yi # k
hi(yidij) =
(i, dig) {g(dij) yi = k,

‘node-level distance d,‘j

(10)

o2

between nodes 7 and j, and d;; means the node-level distance (a shortest path between nodes 7
and j), and o is the bandwidth parameter. The prior evidence is estimated based GKDE: é; =
> icr h(yi, di;), where LL is a set of training nodes and the prior Dirichlet distribution &; = é; + 1.
During the training process, we minimize the KL-divergence between model predictions of Dirichlet
distribution and prior distribution: min KL[Dir(ex)||Dir(é&)]. This process can prioritize the extent of
data relevance based on the estimated evidential uncertainty, which is proven effective based on the
proposition below.

da;; \ . . . . T
g(d;;) = m}ﬂ exp(—52% ) is the Gaussian kernel function used to estimate the distribution effect

Proposition 1 Given L training nodes, for any testing nodes i and j, let d; = [d;1,...,d;1] be
the vector of graph distances from nodes i to training nodes and d; = [d;1, . .., d;1] be the graph
distances from nodes j to training nodes, where d;; is the node-level distance between nodes i and l.
Ifforalll € {1,...,L}, dy > dj;, then we have

Uy, > Uy,
where 1., and 1., refer to vacuity uncertainties of nodes i and j estimated based on GKDE.

The proof for this proposition can be found in Appendix A.2. The above proposition shows that if a
testing node is too far from training nodes, the vacuity will increase, implying that an OOD node is
expected to have a high vacuity.

In addition, we designed a simple iterative knowledge distillation method [7] (i.e., Teacher Network)
to refine the node-level classification probabilities. The key idea is to train our proposed model



(Student) to imitate the outputs of a pre-train a vanilla GNN (Teacher) by adding a regularization
term of KL-divergence. This leads to solving the following optimization problem:

ming £(0) + M\ KL[Dir(c)||Dir(&)] + MoKL[P(y | A,x;G) || P(y|p)], (11)

where P is the vanilla GNN’s (Teacher) output and A; and A, are trade-off parameters.

6 Experiments

In this section, we conduct experiments on the tasks of misclassification and OOD detections to
answer the following questions for semi-supervised node classification:

Q1. Misclassification Detection: What type of uncertainty is the most promising indicator of high
confidence in node classification predictions?

Q2. OOD Detection: What type of uncertainty is a key indicator of accurate detection of OOD
nodes?

Q3. GKDE with Uncertainty Estimates: How can GKDE help enhance prediction tasks with what
types of uncertainty estimates?

Through extensive experiments, we found the following answers for the above questions:

Al. Dissonance (i.e., uncertainty due to conflicting evidence) is more effective than other uncertainty
estimates in misclassification detection.

A2. Vacuity (i.e., uncertainty due to lack of confidence) is more effective than other uncertainty
estimates in OOD detection.

A3. GKDE can indeed help improve the estimation quality of node-level Dirichlet distributions,
resulting in a higher OOD detection.

6.1 Experiment Setup

Datasets: We used six datasets, including three citation network datasets [[17] (i.e., Cora, Citeseer,
Pubmed) and three new datasets [20] (i.e., Coauthor Physics, Amazon Computer, and Amazon Photo).
We summarized the description and experimental setup of the used datasets in Appendix B.

Comparing Schemes: We conducted the extensive comparative performance analysis based on our
proposed models and several state-of-the-art competitive counterparts. We implemented all models
based on the most popular GNN model, GCN [[12]. We compared our model (S-BGCN-T-K) against:
(1) Softmax-based GCN [12] with uncertainty measured based on entropy; and (2) Drop-GCN that
adapts the Monte-Carlo Dropout [, [16] into the GCN model to learn probabilistic uncertainty;
(3) EDL-GCN that adapts the EDL model [18] with GCN to estimate evidential uncertainty; (4)
DPN-GCN that adapts the DPN [[14] method with GCN to estimate probabilistic uncertainty. We
evaluated the performance of all models considered using the area under the ROC (AUROC) curve
and area under the Precision-Recall (AUPR) curve in both experiments [6].

6.2 Results

Misclassification Detection. The misclassification detection experiment involves detecting whether
a given prediction is incorrect using an uncertainty estimate. Table [T] shows that S-BGCN-T-K
outperforms all baseline models under the AUROC and AUPR for misclassification detection. The
outperformance of dissonance-based detection is fairly impressive. This confirms that low dissonance
(a small amount of conflicting evidence) is the key to maximize the accuracy of node classification
prediction. We observe the following performance order: Dissonance > Entropy ~ Aleatoric >
Vacuity ~ Epistemic, which is aligned with our conjecture: higher dissonance with conflicting
prediction leads to higher misclassification detection. We also conducted experiments on additional
three datasets and observed similar trends of the results, as demonstrated in Appendix C.

OOD Detection. This experiment involves detecting whether an input example is out-of-distribution
(OOD) given an estimate of uncertainty. For semi-supervised node classification, we randomly
selected one to four categories as OOD categories and trained the models based on training nodes of
the other categories. Due to the space constraint, the experimental setup for the OOD detection is
detailed in Appendix B.3.

In Table 2] across six network datasets, our vacuity-based detection significantly outperformed the
other competitive methods, exceeding the performance of the epistemic uncertainty and other type of

!The source code and datasets are accessible at https:/github.com/zxj32/uncertainty-GNN
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Table 1: AUROC and AUPR for the Misclassification Detection.

AUROC AUPR
Data Model Va. Dis. AL Ep. En | Va Dis. AL Ep. En | A

S-BGCN-T-K | 70.6 824 753 688 777 | 903 954 924 878 934 | 82.0

EDL-GCN 702 815 - - 769 | 90.0 94.6 - - 93.6 | 815

Cora DPN-GCN - - 783 755 713 - - 924 920 924 | 80.8
Drop-GCN - - 739 667 769 - - 9277 90.0 936 | 813

GCN - - - - 79.6 - - - - 94.1 81.5

S-BGCN-T-K | 654 740 672 607 70.0 | 79.8 85.6 822 752 835 | 71.0

EDL-GCN 649  73.6 - - 69.6 | 792  84.6 - - 829 | 702

Citeseer DPN-GCN - - 66.0 649 655 - - 787 776  78.1 | 68.1
Drop-GCN - - 66.4  60.8  69.8 - - 823 778 837 | 709

GCN - - - 71.4 - 832 | 703

S-BGCN-T-K | 64.1 733 693 642 707 | 856 90.8 888  86.1 89.2 | 79.3

EDL-GCN 62.6  69.0 - - 672 | 84.6 889 - - 81.7 | 79.0

Pubmed DPN-GCN - - 7277 692 725 - - 878 86.8 877 | 71.1
Drop-GCN - - 673 66.1 672 - - 88.6 856 89.0 | 79.0

GCN - - - - 68.5 - - - - 89.2 | 79.0

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy

Table 2: AUROC and AUPR for the OOD Detection.

AUROC AUPR

Data Model Va. Dis. AL Ep. En | Va  Dis. AL Ep. En
SBGCN-TK | 87.6 755 855 708 848 | 784 490 753 445 73.1

Cora EDL-GCN 845 810 - 833 74.2 532 - - 71.4
DPN-GCN - - 713 789 783 - - 585 628 63.0

Drop-GCN - - 819 705 809 - - 69.7 442 672

GCN - - - - 80.7 - - - - 66.9

S-BGCN-T-K | 84.8 552 784 551 740 86.8 54.1 80.8 55.8 74.0

Citescer EDL-GCN 784 594 - - 69.1 79.8 57.3 - - 69.0
DPN-GCN - - 683 722  69.5 - - 685 721 70.3

Drop-GCN - - 723 614 706 - - 735 60.8  70.0

GCN - - - - 70.8 - - - - 70.2

S-BGCN-T-K | 746 679 71.8 592 722 69.6 529 63.6 440 565

Pubmed EDL-GCN 71.5 682 - - 70.5 65.3 53.1 - - 55.0
DPN-GCN - - 635 63.7 635 - - 50.7 539 511

Drop-GCN - - 68.7 60.8  66.7 - - 59.7  46.7 548

GCN 68.3 55.3

S-BGCN-T-K | 934 764 914 322 914 948 680 923 423 925

Amazon Photo EDL-GCN 63.4  78.1 - - 79.2 66.2 74.8 - - 81.2
DPN-GCN - - 83.6 836 836 - - 826 824 825

Drop-GCN - - 845 5877 843 - - 87.0 577 869

GCN 84.4 87.0

S-BGCN-T-K | 823 766 809 554 809 70.5 528 609 359 60.6

Amazon Computer EDL-GCN 532  70.1 - - 70.0 33.2 43.9 - - 45.7
DPN-GCN - - 716 717 717 - - 508 512 51.0

Drop-GCN - - 744 705 743 - - 50.0 46.7 498

GCN - 74.0 - - 48.7

S-BGCN-T-K | 91.3 876 89.7 618 8938 72.2 56.6  68.1 259 679

Coauthor Physics EDL-GCN 882 858 - - 87.6 67.1 51.2 - - 62.1
DPN-GCN - - 855 856 855 - - 59.8 602  59.8

Drop-GCN - - 892 784 893 - - 66.6  37.1 66.5

GCN - - - - 89.1 - - - - 64.0

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy

uncertainties. This demonstrates that vacuity-based model is more effective than other uncertainty
estimates-based counterparts in increasing OOD detection. We observed the following performance
order: Vacuity > Entropy ~ Aleatoric > Epistemic = Dissonance, which is consistent
with the theoretical results as shown in Theorem [1}

Ablation Study. We conducted additional experiments (see Table [3)) in order to demonstrate the
contributions of the key technical components, including GKDE, Teacher Network, and subjective
Bayesian framework. The key findings obtained from this experiment are: (1) GKDE can enhance
the OOD detection (i.e., 30% increase with vacuity), which is consistent with our theoretical proof
about the outperformance of GKDE in uncertainty estimation, i.e., OOD nodes have a higher vacuity
than other nodes; and (2) the Teacher Network can further improve the node classification accuracy.

6.3 Why is Epistemic Uncertainty Less Effective than Vacuity?

Although epistemic uncertainty is known to be effective to improve OOD detection [S,|11]] in computer
vision applications, our results demonstrate it is less effective than our vacuity-based approach. The
first potential reason is that epistemic uncertainty is always smaller than vacuity (From Theorem [T,
which potentially indicates that epistemic may capture less information related to OOD. Another
potential reason is that the previous success of epistemic uncertainty for OOD detection is limited to
supervised learning in computer vision applications, but its effectiveness for OOD detection was not



sufficiently validated in semi-supervised learning tasks. Recall that epistemic uncertainty (i.e., model
uncertainty) is calculated based on mutual information (see Eq. (6)). In a semi-supervised setting,
the features of unlabeled nodes are also fed to a model for training process to provide the model
with a high confidence on its output. For example, the model output P(y|A, r; #) would not change
too much even with differently sampled parameters 8, i.e., P(y|A,r;0()) ~ P(y|A,r;#1)), which
result in a low epistemic uncertainty. We also designed a semi-supervised learning experiment for
image classification and observed a consistent pattern with the results demonstrated in Appendix C.6.

Table 3: Ablation study of our proposed models: (1) S-GCN: Subjective GCN with vacuity and
dissonance estimation; (2) S-BGCN: S-GCN with Bayesian framework; (3) S-BGCN-T: S-BGCN with
a Teacher Network; (4) S-BGCN-T-K: S-BGCN-T with GKDE to improve uncertainty estimation.

Data Model AUROC (Misclassification Detection) AUPR (Misclassification Detection) Acc
Va. Dis. Al Ep. En. Va. Dis. Al Ep. En.
S-BGCN-T-K | 70.6 824 753 688 71.7 90.3 954 924 87.8 934 | 820
S-BGCN-T 708 825 753 689 778 90.4 954 926 88.0 934 | 822
S-BGCN 69.8 814 739 667 769 89.4 943 923 88.0 93.1 81.2
S-GCN 702 815 - - 76.9 90.0 94.6 - - 93.6 | 81.5
AUROC (OOD Detection) AUPR (OOD Detection)
S-BGCN-TK | 934 764 914 322 914 948 68.0 923 423 925
S-BGCN-T 640 775 799 526 798 67.0 753 82.0 537 819
S-BGCN 63.0 766 798 527 79.7 66.5 75.1 82.1 539 817
S-GCN 640 77.1 - - 79.6 67.0 74.9 - - 81.6

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy

Cora

Amazon Photo

7 Conclusion

In this work, we proposed a multi-source uncertainty framework of GNNs for semi-supervised node
classification. Our proposed framework provides an effective way of predicting node classification
and out-of-distribution detection considering multiple types of uncertainty. We leveraged various
types of uncertainty estimates from both DL and evidence/belief theory domains. Through our
extensive experiments, we found that dissonance-based detection yielded the best performance on
misclassification detection while vacuity-based detection performed the best for OOD detection,
compared to other competitive counterparts. In particular, it was noticeable that applying GKDE and
the Teacher network further enhanced the accuracy in node classification and uncertainty estimates.
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Broader Impact

In this paper, we propose a uncertainty-aware semi-supervised learning framework of GNN for
predicting multi-dimensional uncertainties for the task of semi-supervised node classification. Our
proposed framework can be applied to a wide range of applications, including computer vision,
natural language processing, recommendation systems, traffic prediction, generative models and
many more [23]. Our proposed framework can be applied to predict multiple uncertainties of different
roots for GNNGs in these applications, improving the understanding of individual decisions, as well
as the underlying models. While there will be important impacts resulting from the use of GNNs in
general, our focus in this work is on investigating the impact of using our method to predict multi-
source uncertainties for such systems. The additional benefits of this method include improvement of
safety and transparency in decision-critical applications to avoid overconfident prediction, which can
easily lead to misclassification.

We see promising research opportunities that can adopt our uncertainty framework, such as investi-
gating whether this uncertainty framework can further enhance misclassification detection or OOD
detection. To mitigate the risk from different types of uncertainties, we encourage future research to
understand the impacts of this proposed uncertainty framework to solve other real world problems.
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