
We thank all the reviewers for their detailed reviews and valuable comments. We very much appreciate the positive1

feedback and are very happy that the reviewers generally like our contribution. In what follows, we focus on the2

most significant comments raised by the reviewers; we will carefully implement all minor suggestions as well as3

improve the exposition in Section 5 as pointed out by R2 and R3. Code for experiments and proofs can be found in the4

supplementary material for reproducibility (R2). Further, we will add a clarification in the related work regarding first5

linear convergence results by Garber and Hazan 2014.6

Q1. Framework to unify and derive a subset of prior CG/FW results (Reviewer 3, 4). We highlighted some7

connections to prior CG/FW results in Sections 3, 4, Table 1 (appendix), however we will make these more explicit. We8

consider the shadow of the gradient, i.e., its directional derivative, as a descent direction. We show that (i) the continuous9

time dynamics of moving along the shadow at any point is equivalent to the continuous time dynamics of projected10

gradient descent (PGD). (ii) In PGD, a constrained movement along the gradient (e.g., − 1
L∇f(xt)) is projected back11

to the polytope. We show that the limit of infinite movement along the gradient (i.e., limw→∞−w∇f(x)) followed12

by a projection recovers the Frank-Wolfe (FW) vertex (R4: at a high level, we called this “maximal wrap” around the13

polytope), thereby establishing a novel interpretation of FW steps [Frank & Wolfe 1956]. (iii) We show the PGD iterate14

(i.e., ΠP (xt− 1
L∇f(xt))) lies on the projections curve starting from xt. (iv) Next, we show that the shadow direction is15

the best normalized (unit norm) local direction for descent in terms of the dot product with the gradient. This implies it16

is the best direction in the convex hull of all possible away directions, i.e., the set considered by [Bashiri et. al 2017]. (v)17

Pairwise-steps considered by [Jaggi & Lacoste-Julien (2015)] are the sum of FW steps and away directions, therefore,18

the best pairwise-steps could similarly be obtained using our framework. (vi) [Bashiri et. al 2017] and [Garber & Hazan19

2016] both compute the best away vertex in the minimal face containing the current iterate, whereas the shadow step20

recovers the best convex combination of such vertices aligned with the negative gradient. Therefore, these previously21

mentioned CG methods are both approximations of SHADOW-CG. (vii) Moreover, [Garber & Hazan 2014] restrict the22

FW vertex to a ball around the current iterate, thereby normalizing the norm of the descent direction. Their algorithm23

can be therefore understood as an approximation of SHADOW-WALK.24

Q2. Theoretical differences between SHADOW-CG and SHADOW-WALK (Reviewers 1, 3, 4). SHADOW-WALK25

moves along the shadow direction and traces the projection curve until a “non-boundary step” is taken. SHADOW-CG,26

on the other hand, either moves along the FW or shadow direction depending on the dual gap test (choose FW direction27
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on iteration complexity for a given fixed accuracy is better for SHADOW-WALK, since it is closer to PGD. However,29

the computational complexity for SHADOW-CG is better compared to SHADOW-WALK since FW steps are much30

cheaper to compute compared to the shadow direction and we can avoid the potentially expensive computation via the31

TRACE-routine. This is also observed in the experiments (see Q4).32

Q3. Independence of the convergence rates on geometric constants (Reviewers 1, 4). As the reviewers note, we33

prove an algebraic upper bound of O(2m) breakpoints in the projections curve, for polytopes with m facets in n34

dimensions; however computationally we see much fewer oracle calls (e.g., rarely exceeding 10 in 100 dimensions).35

Similar in nature to the PAIRWISE-FW (which is arguably one of the fastest CG variants in practice, yet lacks a more36

sophisticated analysis), we unfortunately have to resort to a highly pessimistic worst-case bound. We have talked to37

various discrete geometers and there was no consensus on what the right answer for the order of number of breakpoints38

should even be. We believe that once the projection curve leaves a facet it can never reenter, and hence we conjecture39

O(mn) breakpoints in lines 311-313 of the paper, which would significantly improve upon the O(2m) bound. Although40

our linear convergence rate depends on the the number of facet inequalities m and in fact the combinatorial structure of41

the face-lattice of the polytope, it is invariant under any deformations of the actual geometry of the polytope preserving42

the face-lattice (in contrast to vertex-facet distance and pyramidal width), e.g., Figure 4’s discussion shows pyramidal43

width can become arbitrarily small while the number of facets is invariant. We will make this distinction more precise.44

Q4. Computational differences in SHADOW-CG and SHADOW-WALK (Reviewers 1, 2, 3, 4). We provide two45

ways to compute the shadow: (i) using equation (8), i.e., dΠ
x = (ΠP (x− ε∇f(x))− x)/ε for ε sufficiently small; (ii) as46

stated in line 155 dΠ
x = arg mind{‖−∇f(x)−d‖2 : AI(x)d ≤ 0}. Hence, either way, computing the shadow reduces47

to a convex quadratic program. Note, that the cost of the shadow computation has to be non-trivial, as it was shown in48

[Garber 2020, Diakonikolas et al. 2019] that we cannot eliminate the dependence on the dimension in convergence rates49

of CG variants that solely rely on linear optimization as oracle, whereas our rates for SHADOW-WALK are independent50

of the dimension (i.e., (1− µ/L) contraction). That being said, even though computing the shadow is expensive in the51

worst case, it can be cheap for specific setups and there are many existing algorithms that provide cheap approximation52

to this oracle, e.g., DICG variants [Garber and Hazan 2016, Bashiri et. al 2017]. Our computations confirm that53

SHADOW-CG interpolates between CG variants and PGD. In particular, Figure 2 for the Video Co-Localization problem54

shows SHADOW-CG has lower iteration count than CG variants (slightly higher than PGD), while also improving on55

wall-clock time compared to PGD and SHADOW-WALK being almost as fast as CG without assuming shadow oracle56

access. Addition of FW steps in SHADOW-CG significantly reduces the total number of shadow oracle calls and number57

of times we enter TRACE-routine as demonstrated for the Lasso regression problem in Figures 10 and 13 (appendix).58


