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Abstract

Optimal Transport (OT) distances such as Wasserstein have been used in several
areas such as GANs and domain adaptation. OT, however, is very sensitive to
outliers (samples with large noise) in the data since in its objective function, every
sample, including outliers, is weighed similarly due to the marginal constraints. To
remedy this issue, robust formulations of OT with unbalanced marginal constraints
have previously been proposed. However, employing these methods in deep
learning problems such as GANs and domain adaptation is challenging due to the
instability of their dual optimization solvers. In this paper, we resolve these issues
by deriving a computationally-efficient dual form of the robust OT optimization that
is amenable to modern deep learning applications. We demonstrate the effectiveness
of our formulation in two applications of GANs and domain adaptation. Our
approach can train state-of-the-art GAN models on noisy datasets corrupted with
outlier distributions. In particular, the proposed optimization method computes
weights for training samples reflecting how difficult it is for those samples to be
generated in the model. In domain adaptation, our robust OT formulation leads to
improved accuracy compared to the standard adversarial adaptation methods. Our
code is available at https://github.com/yogeshbalaji/robustOT.

1 Introduction

Estimating distances between probability distributions lies at the heart of several problems in machine
learning and statistics. A class of distance measures that has gained immense popularity in several
machine learning applications is Optimal Transport (OT) [27]. In OT, the distance between two
probability distributions is computed as the minimum cost of transporting a source distribution to
the target distribution under some transportation cost function. Optimal transport enjoys several nice
properties including structure preservation, existence in smooth and non-smooth settings, being well
defined for discrete and continuous distributions [27], etc.

Two recent applications of OT in machine learning include generative modeling and domain adap-
tation. In Wasserstein GAN [1], a generative model is trained by minimizing the (approximate)
Wasserstein distance between real and generative distributions. In the dual form, this objective
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Figure 1: Visualizing couplings of Wasserstein computation between two distributions shown in red
and blue. In (a), we show the couplings when no outliers are present. In (b), we show the couplings
when 5% outliers are added to the data. The Wasserstein distance increases significantly indicating
high sensitivity to outliers. In (c), we show the couplings produced by the Robust Wasserstein
measure. Our formulation effectively ignores the outliers yielding a Wasserstein estimate that closely
approximates the true Wasserstein distance.

reduces to a two-player min-max game between a generator and a discriminator. Similar ideas
involving distance minimization between source and target feature distributions are common in
domain adaptation [10]. In [24, 2], Wasserstein distance is used as the choice of distance measure
for minimizing the domain gap.

One of the fundamental shortcomings of optimal transport is its sensitivity to outlier samples. By
outliers, we mean samples with large noise. In the OT optimization, to satisfy the marginal constraints
between the two input distributions, every sample is weighed equally in the feasible transportation
plans. Hence, even a few outlier samples can contribute significantly to the OT objective. This leads
to poor estimation of distributional distances when outliers are present. An example is shown in
Fig. 1, where the distances between distributions shown in red and blue are computed. In the absence
of outliers (Fig. 1(a)), proper couplings (shown in green) are obtained. However, even in the presence
of a very small fraction of outliers (as small as 5%), poor couplings arise leading to a large change in
the distance estimate (Fig. 1(b)).

The OT sensitivity to outliers is undesirable, especially when we deal with large-scale datasets where
the noise is inevitable. This sensitivity is a consequence of exactly satisfying the marginal constraints
in OT’s objective. Hence, to boost OT’s robustness against outliers, we propose to utilize recent
formulations of unbalanced optimal transport [6, 13] which relax OT’s marginal constraints. The
authors in [6, 13] provide an exact dual form for the unbalanced OT problem. However, we have
found that using this dual optimization in large-scale deep learning applications such as GANs results
in poor convergence and an unstable behaviour (see Section 3.1 and the appendix for details).

To remedy this issue, in this work, we derive a computationally efficient dual form for the unbalanced
OT optimization that is suited for practical deep learning applications. Our dual simplifies to a
weighted OT objective, with low weights assigned to outlier samples. These instance weights can
also be useful in interpreting the difficulty of input samples for learning a given task. We develop
two solvers for this dual problem based on either a discrete formulation or a continuous stochastic
relaxation. These solvers demonstrate high stability in large-scale deep learning applications.

We show that, under mild assumptions, our robust OT measure (which is similar in form to the
unbalanced OT) is upper bounded by a constant factor of the true OT distance (OT ignoring outliers)
for any outlier distribution. Hence, our robust OT can be used for effectively handling outliers. This is
visualized in Figure 1(c), where couplings obtained by robust OT effectively ignores outlier samples,
yielding a good estimate of the true OT distance. We demonstrate the effectiveness of the proposed
robust OT formulation in two large-scale deep learning applications of generative modeling and
domain adaptation. In generative modeling, we show how robust Wasserstein GANs can be trained
using state-of-the-art GAN architectures to effectively ignore outliers in the generative distrubution.
In domain adaptation, we utilize the robust OT framework for the challenging task of synthetic to
real adaptation, where our approach improves adversarial adaptation techniques by ∼ 5%.
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2 Background on Optimal Transport

Let X denote a compact metric space, and Prob(X ) denote the space of probability measures defined
on X . Given two probability distributions PX , PY ∈ Prob(X ) and a continuous cost function
c : X ×X → R, optimal transport finds the minimum cost for transporting the density PX to PY [27],
given by the following cost function

W(PX ,PY ) = min
π∈Π(PX ,PY )

∫ ∫
c(x, y)π(x, y)dxdy (1)

where Π(PX ,PY ) is set of all joint distributions (couplings) whose marginals are PX and PY ,
respectively. That is,

∫
π(x, y)dy = PX and

∫
π(x, y)dx = PY . These set of constraints enforce

that the marginals of couplings exactly match the distributions PX and PY . Hence, when the input
distributions have outliers, they are forced to have non-zero weights in couplings leading to a large
transportation cost. In practice, the dual form of the optimization (1) is often used.

Kantrovich Duality: The dual formulation of optimal transport problem [27] is given by:

min
π∈Π(PX ,PY )

∫ ∫
c(x, y)π(x, y)dxdy = max

φ∈Lip−1

∫
φ(x)dPX −

∫
φ(x)dPY . (2)

Optimization (2) is the celebrated Kantorovich-Rubinstein duality. This is a simpler optimization
problem compared to (1) since the maximization is over a class of 1-Lipschitz functions. In practice,
φ(·) function is implemented using a neural network, and the 1-Lipscitz constraint is enforced using
weight clipping [1] or a penalty on the gradients [11].

The use of optimal transport has gained popularity in machine learning [26, 24, 1], computer
vision [25, 4] and many other disciplines. Several relaxations of the OT problem have been proposed
in the literature. Two popular ones include entropy regularization [8, 3] and marginal relaxation [13,
6, 7, 9, 12]. In this work, we utilize the marginal relaxations of [13, 6] for handling outlier noise
in machine learning applications involving OT. To the best of our knowledge, ours is the first work
to demonstrate the utility of unbalanced OT in large-scale deep learning applications. Only other
paper that is similar in spirit to our work is [28]. However, [28] provides a relaxation for the Monge
unbalanced OT, which is different from the unbalanced Kantrovich problem we consider in this paper.

3 Robust Optimal Transport

Our objective is to handle outliers in deep learning applications involving OT. For this, we use relaxed
OT formulations. In this section, we first formally define the outlier model we use. Then, we discuss
the existing marginal relaxation formulations in OT and the issues that arise in deep learning when
using these formulations. We then propose a reformulation of the dual that is suited for deep learning.

Outlier Model: We consider outliers as samples with large noise. More specifically, let PX and PY
be two distributions whose Wasserstein distance we desire to compute. Let PX = αPcX + (1−α)PaX ;
i.e., the clean distribution PcX is corrupted with (1−α) fraction of noise PaX . Then, PaX is considered
an oulier distribution ifW(PcX ,PY )�W(PaX ,PY ). For an example, refer to Fig. 1(b).

3.1 Unbalanced Optimal Transport

As seen in Fig. 1, sensitivity to outliers arises due to the marginal constraints in OT. If the marginal
constraints are relaxed in a way that the transportation plan does not assign large weights to outliers,
they can effectively be ignored. [6, 13] have proposed one such relaxation using f -divergence on
marginal distributions. This formulation, called Unbalanced Optimal Transport, can be written as

Wub(PX ,PY ) = min
π∈Π(PX̃ ,PỸ )

∫
c(x, y)π(x, y)dxdy +Df (PX̃ ||PX) +Df (PỸ ||PY ) (3)

where Df is the f -divergence between distributions, defined as Df (P ||Q) =
∫
f( dPdQ )dQ. Further-

more, [13] derived a dual form for the problem. Let f be a convex lower semi-continuous function.
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Define r∗(x) := sups>0
x−f(s)

s where f ′∞ := lims→∞
f(s)
s . Then,

Wub(PX ,PY ) = max
φ,ψ

∫
φ(x)dPX +

∫
ψ(y)dPY (4)

s.t. r∗(φ(x)) + r∗(ψ(y)) ≤ c(x, y)

Computational issues using this dual form in deep learning: Training neural networks using
this dual form is challenging as it involves maximizing over two discriminator functions (φ and
ψ), with constraints connecting these functions. For χ2 divergence, we derived the GAN objective
using this dual and trained a model. However, we were unsuccessful in making the model converge
using standard SGD as it showed severe instability. Please refer to Appendix for more details. This
limits the utility of this formulation in deep learning applications. In what follows, we present a
reformulation of the dual that is scalable and suited for deep learning applications.

3.2 Our Duality

We start with a slightly different form than (3) where we keep the f -divergence relaxations of marginal
distributions as constraints:

Wrob
ρ1,ρ2(PX ,PY ) := min

PX̃ ,PỸ ∈Prob(X )
min

π∈Π(PX̃ ,PỸ )

∫ ∫
c(x, y)π(x, y)dxdy (5)

s.t. Df (PX̃ ||PX) ≤ ρ1, Df (PỸ ||PY ) ≤ ρ2.

In this formulation, we optimize over the couplings whose marginal constraints are the relaxed
distributions PX̃ and PỸ . To prevent over-relaxation of the marginals, we impose a constraint that
the f -divergence between the relaxed and the true marginals are bounded by constants ρ1 and ρ2 for
distributions PX̃ and PỸ , respectively. As seen in Fig. 1(c), this relaxation effectively ignores the
outlier distributions when (ρ1, ρ2) are chosen appropriately. We study some properties of robust OT
in the appendix. Notably, robust OT does not satisfy the triangle inequality.

Note that the Lagrangian relaxation of optimization (5) takes a similar form to that of the unbalanced
OT objective (3). Having a hard constraint on f -divergence gives us an explicit control over the
extent of the marginal relaxation which is suited for handling outliers. This subtle difference in how
the constraints are imposed leads to a dual form of our robust OT that can be computed efficiently for
deep learning applications compared to that of the unbalanced OT dual.

We consider the `2 distance as our choice of cost function in the OT formulation. In this case, the OT
distance is also called the Wasserstein distance. In that case, we have the following result:

Theorem 1. Let PX and PY be two distributions defined on a metric space. The robust Wasserstein
measure admits the following dual form

Wrob
ρ1,ρ2(PX ,PY ) = min

PX̃ ,PỸ

max
D(.)∈Lip−1

∫
D(x)dPX̃ −

∫
D(x)dPỸ (6)

s.t Df (PX̃ ||PX) ≤ ρ1, Df (PỸ ||PY ) ≤ ρ2.

Thus, we can obtain a dual form for robust OT similar to the Kantrovich-Rubinstein duality. The key
difference of this dual form compared to the unbalanced OT dual (opt. (4)) is that we optimize over a
single dual function D(.) as opposed to two dual functions in (4). This makes our formulation suited
for deep learning applications such as GANs and domain adaptation. Note that the integrals in opt. (6)
are taken with respect to the relaxed distributions PX̃ and PỸ which is a non-trivial computation.

In particular, we present two approaches for optimizing the dual problem (6):

Discrete Formulation. In practice, we observe empirical distributions P(m)
X and P(n)

Y from the
population distributions PX and PY , where m and n are sample sizes. Let {xi}mi=1, {yi}ni=1 be the
samples corresponding to the empirical distribution P(m)

X and P(m)
Y , respectively. Following [18],

we use weighted empirical distribution for the perturbed distribution PX̃ , i.e., P(m)
X (xi) = 1/m

and PX̃(xi) = wxi . Let wx = [wx1 , . . . w
x
m]. For PX̃ to be a valid pmf, wx should lie in a simplex
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(wx ∈ ∆m) i.e., wxi > 0 and
∑
i w

x
i = 1. Then, the robust Wasserstein objective can be written as

Wrob
ρ1,ρ2(PX ,PY ) = min

wx∈∆m,wy∈∆n
max

D∈Lip−1
(wx)tdx − (wy)tdy

s.t
1

m

∑
i

f(mwxi ) ≤ ρ1,
1

n

∑
i

f(nwyi ) ≤ ρ2

where dx = [D(x1),D(x2) . . .D(xm)], and dy = [D(y1),D(y2) . . .D(yn)]. Since f(.) is a
convex function, the set of constraints involving wx and wy are convex w.r.t weights. We use χ2 as
our choice of f -divergence for which f(t) = (t− 1)2/2. The optimization then becomes

Wrob
ρ1,ρ2(PX ,PY ) = min

wx∈∆m,wy∈∆n
max

D∈Lip−1
(wx)tdx − (wy)tdy (7)

s.t
∥∥∥∥wx −

1

m

∥∥∥∥
2

≤
√

2ρ1

m
,

∥∥∥∥wy −
1

n

∥∥∥∥
2

≤
√

2ρ2

n

We solve this optimization using an alternating gradient descent between w and D updates. The
above optimization is a second-order cone program with respect to weights w (for a fixed D). For a
fixed w, D is optimized using stochastic gradient descent similar to [1].

Continuous Stochastic Relaxation. In (7), weight vectors wx and wy are optimized by solving a
second order cone program. Since the dimension of weight vectors is the size of the entire dataset,
solving this optimization is expensive for large datasets. Hence, we propose a continuous stochastic
relaxation for (6). Let us assume that supports of PX̃ and PX match (satisfied in real spaces). We
make the following reparameterization: PX̃(x) = Wx(x)PX(x). For PX̃ to be a valid pdf, we
require

∫
Wx(x)dPX = 1, i.e., Ex∼PX

[Wx(x)] = 1. The constraint on f -divergence becomes
Ex∼PX

[f(Wx(x))] ≤ ρ1. Using these, the dual of robust Wasserstein measure can be written as
Wrob
ρ1,ρ2(PX ,PY ) = min

Wx,Wy

max
D∈Lip−1

Ex∼PX
[Wx(x)D(x)]− Ey∼PY

[Wy(y)D(y)] (8)

s.t Ex∼PX
[f(Wx(x))] ≤ ρ1, Ey∼PY

[f(Wy(y))] ≤ ρ2

Ex∼PX
[Wx(x)] = 1, Ey∼PY

[Wy(y)] = 1,Wx(x) ≥ 0,Wy(y) ≥ 0

Wx(.) and Wy(.) are weight functions which can be implemented using neural networks. One
crucial benefit of the above formulation is that it can be easily trained using stochastic GD.

3.3 Can robust OT handle outliers?

Theorem 2. Let PX and PY be two distributions such that PX is corrupted with γ fraction of outliers
i.e., PX = (1− γ)PcX + γPaX , where PcX is the clean distribution and PaX is the outlier distribution.
LetW(PaX ,PcX) = kW(PcX ,PY ), with k ≥ 1. Then,

Wrob
ρ,0 (PX ,PY ) ≤ max

(
1, 1 + kγ − k

√
2ργ(1− γ)

)
W(PcX ,PY ).

The above theorem states that robust OT obtains a provably robust distance estimate under our outlier
model. That is, the robust OT is upper bounded by a constant factor of the true Wasserstein distance.
This constant depends on the hyper-parameter ρ: when ρ is appropriately chosen, robust OT measure
obtains a value approximately close to the true distance. Note that we derive this result for one-sided
robust OT (Wrob

ρ,0 ), which is the robust OT measure when marginals are relaxed only for one of the
input distributions. This is the form we use for GANs and DA experiments (Section. 4).

Choosing ρ and the tightness of the bound: The constant ρ in our formulation is a hyper-
parameter that needs to be estimated. The value of ρ denotes the extent of marginal relaxation.
In applications such as GANs or domain adaptation, performance on a validation set can be used for
choosing ρ. Or when the outlier fraction γ is known, an appropriate choice of ρ is ρ = γ

2(1−γ) . More
details and experiments on tightness of our upper bound are provided in the Appendix.

4 Experiments

For all our experiments, we use one-sided robust Wasserstein (Wrob
ρ,0 ) where the marginals are relaxed

only for one of the input distributions. Please refer to Appendix for all experimental details. Code for
our experiments is available at https://github.com/yogeshbalaji/robustOT.
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Resnet DCGAN

(a) CIFAR-10 + MNIST

Resnet DCGAN

(b) CIFAR-10 + Uniform noise

Figure 2: FID scores of GAN models trained on CIFAR-10 corrupted with outlier noise. In (a),
samples from MNIST dataset are used as the outliers, while in (b), uniform noise is used. FID scores
of WGAN increase with the increase in outlier fraction, while robust WGAN maintains FID scores.

Figure 3: Visualizing samples and weight histograms. In the top panel, we show samples generated
by WGAN and robust WGAN trained on the CIFAR-10 dataset corrupted with MNIST samples as
outliers. WGAN fits both CIFAR and MNIST samples, while the robust WGAN ignores the outliers.
In the bottom panel, we visualize the weights (output of the W(.) function) for in-distribution and
outlier samples. The outlier samples are assinged low weights while in-distribution samples get large
weights.

4.1 Generative modeling

In this section, we show how our robust Wasserstein formulation can be used to train GANs that are
insensitive to outliers. The core idea is to train a GAN by minimizing the robust Wasserstein measure
(in dual form) between real and generative data distributions. Let G denote a generative model which
maps samples from random noise vectors to real data distribution. Using the one-directional version
of the dual form of robust Wasserstein measure (8), we obtain the following optimization problem

min
W,G

max
D∈Lip−1

Ex∼PX
[W(x)D(x)]− Ez[D(G(z))]

s.t Ex∼PX
[(W(x)− 1)2] ≤ 2ρ, Ex∼PX

[W(x)] = 1, W(x) ≥ 0

The first constraint is imposed using a Lagrangian term in the objective function. To impose the
second constraint, we use ReLU as the final layer of W(.) network and normalize the weights by the
sum of weight vectors in a batch. This leads to the following optimization

min
W,G

max
D∈Lip−1

Ex[W(x)D(x)]− Ez[D(G(z))] + λmax
(
Ex[(W(x)− 1)2]− 2ρ, 0

)
(9)

We set λ to a large value (typically λ = 1000) to enforce the constraint on χ2-divergence. A detailed
algorithm can be found in Appendix. Our robust Wasserstein formulation can easily be extended to
other GAN objective functions such as non-saturating loss and hinge loss, as discussed in Appendix.

Datasets with outliers: First, we train the robust Wasserstein GAN on datasets corrputed with
outlier samples. For the ease of quantitative evaluation, the outlier corrupted dataset is constructed as
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Figure 4: Visualizing samples generated on Domainnet sketch dataset. In panels (a), (b) and (c), we
show the real data, samples generated by SNGAN and robust SNGAN, respectively. Robust SNGAN
only generates images of sketches ignoring outliers. In panel (d), we visualize real samples sorted by
weights. Low weights are assigned to outliers, while sketch images get large weights.

Table 1: Quantitative evaluation of robust WGAN
on clean datasets. In each cell, the top row corre-
sponds to the Inception score and the bottom row
corresponds to the FID score.

Dataset Arch WGAN RWGAN
ρ = 0 ρ = 0.3

CIFAR-10 DCGAN 6.86 6.84 6.91
28.46 29.11 29.45

CIFAR-10 Resnet 7.49 7.35 7.36
21.73 21.98 21.57

CIFAR-100 Resnet 9.01 8.79 8.93
15.60 15.61 15.32

Table 2: Cross-domain recognition accuracy on
VISDA-17 dataset using Resnet-18 model aver-
aged over 3 runs.

Method Accuracy (in %)

Source only 44.7
Adversarial (no ent) 55.4
Robust adversarial (no ent) 62.9
Adversarial (with ent) 59.5
Robust adversarial (with ent) 63.9

follows: We artificially add outlier samples to the CIFAR-10 dataset such they occupy γ fraction of
the samples. MNIST and uniform noise are used as two choices of outlier distributions. Samples
generated by Wasserstein GAN and robust Wasserstein GAN on this dataset are shown in Fig. 3.
While Wasserstein GAN fits outliers in addition to the CIFAR samples, the robust Wasserstein GAN
effectively ignores outliers and generates samples only from the CIFAR-10 dataset.

For a quantitative evaluation, we report the FID scores of the generated samples with respect to
the clean CIFAR-10 distribution (Figure 2). Since Wasserstein GAN generates outlier samples in
addition to the CIFAR-10 samples, the FID scores get worse as the outlier fraction increases. Robust
Wasserstein GAN, on the other hand, obtains good FID even for large fraction of outliers. This trend
is consistent for both outlier distributions MNIST and uniform noise.

Next, we train our robust GAN model on a dataset where outliers are naturally present. We use Sketch
domain of DomainNet dataset [19] for this purpose. As shown in Figure 4(a), the dataset contains
many outlier samples (non-sketch images). Samples generated by spectral normalization GAN and
robust spectral normalization GAN (both using Resnet) are shown in Figure 4(b, c). We observe that
the SNGAN model generates some non-sketch images in addition to sketch images. Robust SNGAN,
on the other hand, ignores outliers and only generates samples that look like sketches.

Clean datasets: In the previous section, we demonstrated how robust Wasserstein GAN effectively
ignores outliers in the data distributions. A natural question that may arise is what would happen if
one uses the robust WGAN on a clean dataset (dataset without outliers). To understand this, we train
the robust Wasserstein GAN on CIFAR-10 and CIFAR-100 datasets. The Inception and FID scores
of generated samples are reported in Table. 1. We observe no drop in FID scores, which suggest that
no modes are dropped in the generated distribution.

Usefulness of sample weights: In the optimization of the robust GAN, each sample is assigned
a weight indicating the difficulty of that sample to be generated by the model. In this section, we
visualize the weights learnt by our robust GAN. In Figure 3, we plot the histogram of weights assigned
to in-distribution and outlier samples for robust WGAN trained on CIFAR-10 dataset corrupted with
MNIST outliers. Outliers are assigned smaller weights compared to the in-distribution samples, and
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Table 3: Adaptation accuracy on VISDA-17 using
Resnet-50 model averaged over 3 runs

Method Accuracy (in %)

Source Only 50.7
DAN [14] 53.0
RTN [16] 53.6
DANN [10] 55.0
JAN-A [17] 61.6
GTA [23] 69.5
SimNet [21] 69.6
CDAN-E [15] 70.0

O
ur

s

Adversarial (no ent) 62.9
Robust adversarial (no ent) 68.6
Adversarial (with ent) 65.5
Robust adversarial (with ent) 71.5

Table 4: Adaptation accuracy on VISDA-17 using
Resnet-101 model averaged over 3 runs

Method Accuracy (in %)

Source only 55.3
DAN [14] 61.1
DANN [10] 57.4
MCD [22] 71.9

O
ur

s

Adversarial (no ent) 65.5
Robust adversarial (no ent) 69.3
Adversarial (with ent) 69.3
Robust adversarial (with ent) 72.7

Table 5: Sensitivity Analysis of ρ
GAN exp ρ 0 0.01 0.05 0.1 0.15

CIFAR + MNIST FID 37.5 34.7 31.9 29.9 30.2

DA exp ρ 0.0 0.05 0.1 0.2 0.4

Resnet-18 Acc 59.5 62.8 63.1 63.9 63.6

there is a clear separation between their corresponding histograms. For the GAN model trained on the
Sketch dataset, we show a visualization of randomly chosen input samples sorted by their assigned
weights in Figure 4(d). We observe that non-sketch images are assigned low weights while the true
sketch images obtain larger weights. Hence, the weights learnt by our robust GAN can be a useful
indicator for assessing how difficult it is to generate a given sample.

4.2 Domain adaptation

In Unsupervised Domain Adaptation (UDA) problem, we are given a labeled source dataset and an
unlabeled target dataset. The source and target domains have a covariate shift i.e., the conditional
distribution of the data given labels differ while the marginal distribution of labels match. Due to
the covariate shift, a model trained solely on the source domain performs poorly on the target. A
conventional approach for UDA involves training classification model on the source domain while
minimizing a distributional distance between source and target feature distributions. Commonly used
distance measures include Wasserstein distance [24] and non-saturating loss [10]. For the ease of
explanation, we use Wasserstein as our choice of distance measure.

Let Ps = {(xsi , ysi )}
ns
i=1 and Pt = {(xti)}

nt
i=1 denote the source and target distributions, respectively.

Let F denote a feature network, and C denote a classifier. Then, the UDA optimization that minimizes
the robust OT distance between source and target feature distributions can be written as

min
F,C

1

ns

∑
i

Lcls(F(xi), yi) + λ

 min
w∈∆nt

max
D

1

ns

∑
i

D(F(xsi ))−
1

nt

∑
j

wjD(F(xtj))

 (10)

s.t ‖ntw − 1‖2 ≤
√

2ρnt

where w = [w1, w2 . . . wnt
]. While we describe this formulation for the Wasserstein distance, similar

ideas can be applied to other adversarial losses. For instance, by replacing the second and third terms
of (10) with binary cross entropy loss, we obtain the non-saturating objective. Note that we use the
discrete formulation of dual objective (Section 3.2) instead of the continuous one (Section 3.2). This
is because in our experiments, small batch sizes (∼ 28) were used due to GPU limitations. With
small batch sizes, continuous relaxation gives sub-optimal performance.

For experiments, we use VISDA-17 dataset [20], which is a large scale benchmark dataset for UDA.
The task is to perform 12- class classification by adapting models from synthetic to real dataset. In our
experiments, we use non-saturating loss instead of Wasserstein to enable fair comparison with other
adversarial approaches such as DANN. In addition to the adversarial alignment, we use an entropy
regularizer on target logits, which is a standard technique used in UDA [5]. The adaptation results
using Resnet-18, Resnet-50 and Resnet-101 models are shown in Tables 2, 3 and 4, respectively. Our
robust adversarial objective gives consistent performance improvement of ∼ 5% over the standard
adversarial objective in all experiments. By using a weighted adversarial loss, our approach assigns
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low weights to samples that are hard to adapt and high weights to target samples that look more similar
to source, thereby promoting improved adaptation. Also, with the use of entropy regularization, our
generic robust adversarial objective reaches performance on par with other competing approaches
that are tuned specifically for the UDA problem. This demonstrates the effectiveness of our approach.

Ablation: Sensitivity of ρ In Table. 5, we report the sensitivity of ρ for both GANs and domain
adaptation experiments. In the case of GANs, performance is relatively low only for very low values
of ρ and stable for higher values. For DA, sensititivity is low in general. For all DA experiments, we
used ρ = 0.2 without tuning it individually for each setting.

5 Conclusion

In this work, we study the robust optimal transport which is insensitive to outliers (samples with large
noise) in the data. The applications of previous formulations of robust OT are limited in practical deep
learning problems such as GANs and domain adaptation due to the instability of their optimization
solvers. In this paper, we derive a computationally efficient dual form of the robust OT objective that
is suited for deep learning applications. We demonstrate the effectiveness of the proposed method in
two applications of GANs and domain adaptation, where our approach is shown to effectively handle
outliers and achieve good performance improvements.

6 Broader Impact

The use of optimal transport (OT) distances such as the Wasserstein distance have become increasingly
popular in machine learning with several applications in generative modeling, image-to-image
translation, inpainting, domain adaptation, etc. One of the shortcomings of OT is its sensitivity to
input noise. Hence, using OT for large-scale machine learning problems can be problematic since
noise in large datasets is inevitable. Building on theoretical formulations of unbalanced OT which
suffer from computational instability in deep learning applications, we have developed an efficient
learning method that is provably robust against outliers and is amenable to complex deep learning
applications such as deep generative modeling and domain adaptation. These attributes ensure broader
impacts of this work in both theoretical and applied machine learning communities and can act as
a bridge between the two. To the best of our knowledge, this work does not lead to any negative
outcomes either in ethical or societal aspects.
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