
Supplementary Material

S1 Pseudocode

Algorithm 1 gives pseudocode for autofocusing a broad class of model-based optimization (MBO)
algorithms known as estimation of distribution algorithms (EDAs), which can be seen as performing
Monte-Carlo expectation-maximization [13]. EDAs proceed at each iteration with a sampling-based
“E-step” (Steps 1 and 2 in Algorithm 1) and a weighted maximum likelihood estimation (MLE)
“M-step” (Step 3; see [13] for more details). Different EDAs are distinguished by method-specific
monotonic transformations V (·), which determine the sample weights used in the M-step. In some
EDAs, this transformation is not explicitly defined, but rather implicitly implemented by constructing
and using a sequence of relaxed constraint sets, S(t), such that S(t) ⊇ S(t+1) ⊇ S [21, 22, 11].

Algorithm 2 gives pseudocode for autofocusing a particular EDA, Conditioning by Adaptive Sampling
(CbAS) [11], which uses such a sequence of relaxed constraint sets, as well as M-step weights that
induce an implicit trust region for the search model update. For simplicity, the algorithm is instantiated
with the design goal of maximizing the property of interest. It can easily be generalized to the goal
of achieving a specific value for the property, or handling multiple properties (see Sections S2-3 of
[11]).

Use of [.] in the pseudocode denotes an optional input argument with default values.

Algorithm 1: Autofocused model-based optimization algorithm
Input : Training data, {(xi, yi)}ni=1; oracle model class, pβ(y | x) with parameters, β,

that can be estimated with MLE; search model class, pθ(x), with parameters, θ,
that can be estimated with weighted MLE or approximations thereof; desired
constraint set, S (e.g., S = {y | y ≥ yτ .}); maximum number of iterations, T ;
number of samples to generate, m; EDA-specific monotonic transformation, V (·).

Initialization : Obtain p0(x) by fitting to {xi}ni=1 with the search model class. For the search
model, set pθ(0)(x)← p0(x). For the oracle, pβ(0)(y | x), use MLE with equally
weighted training data.

begin
for t = 1, . . . , T do

1. Sample from the current search model, x̃(t)
i ∼ pθ(t−1)(x),∀i ∈ {1, . . . ,m}.

2. vi ← V (Pβ(t−1)(y ∈ S | x̃(t)
i)),∀i ∈ {1, . . . ,m}.

3. Fit the updated search model, pθ(t)(x), using weighted MLE with the samples, {x̃(t)
i }mi=1,

and their corresponding EDA weights, {vi}mi=1.
4. Compute importance weights for the training data, wi ← pθ(t)(xi)/pθ(0)(xi), i = 1, . . . , n.
5. Retrain the oracle using the re-weighted training data,

β(t) ← argmax
β∈B

1

n

n∑
i=1

wi log pβ(yi | xi).

Output :Sequence of search models, {pθ(t)(x)}Tt=1, and sequence of samples,
{(x̃(t)

i , . . . , x̃
(t)
m)}Tt=1, from all iterations. One may use these in a number of

different ways. For example, one may sample design candidates from the final
search model, pθ(T)(x), or use the most promising candidates among
{(x̃(t)

i , . . . , x̃
(t)
m)}Tt=1, as judged by the appropriate oracle (i.e., corresponding to

the iteration at which a candidate was generated).

13

Algorithm 2: Autofocused Conditioning by Adaptive Sampling (CbAS)
Input : Training data, {(xi, yi)}ni=1; oracle model class, pβ(y | x) with parameters, β,

that can be estimated with MLE; search model class, pθ(x), with parameters, θ,
that can be estimated with weighted MLE or approximations thereof; maximum
number of iterations, T ; number of samples to generate, m; [percentile threshold,
Q = 90].

Initialization : Obtain p0(x) by fitting to {xi}ni=1 with the search model class. For the search
model, set pθ(0)(x)← p0(x). For the oracle, pβ(0)(y | x), use MLE with equally
weighted training data. Set γ0 = −∞.

begin
for t = 1, . . . , T do

1. Sample from the current search model, x̃(t)
i ∼ pθ(t−1)(x),∀i ∈ {1, . . . ,m}.

2. qt ← Q-th percentile of the oracle expectations of the samples, {µβ(x̃(t)
i)}mi=1

3. γt ← max{γt−1, qt}

4. vi ← (p0(x̃
(t)
i)/pθ(t−1)(x̃

(t)
i))Pβ(t−1)(y ≥ γt | x̃(t)

i),∀i ∈ {1, . . . ,m}

5. Fit the updated search model, pθ(t)(x), using weighted MLE with the samples, {x̃(t)
i }mi=1,

and their corresponding EDA weights, {vi}mi=1.
6. Compute importance weights for the training data, wi ← pθ(t)(xi)/pθ(0)(xi), i = 1, . . . , n.
7. Retrain the oracle using the re-weighted training data,

β(t) ← argmax
β∈B

1

n

n∑
i=1

wi log pβ(yi | xi).

Output :Sequence of search models, {pθ(t)(x)}Tt=1, and sequence of samples,
{(x̃(t)

i , . . . , x̃
(t)
m)}Tt=1, from all iterations. One may use these in a number of

different ways (see Algorithm 1).

Algorithm 3: Procedure for evaluating MBO algorithms in superconductivity experiments.
For each MBO algorithm in Tables 1, S2, S3, and S4, the reported scores were the outputs of this
procedure, averaged over 10 trials. Recall that µβ(t)(x) := Eβ(t) [y | x] denotes the expectation
of the oracle model at iteration t, while E[y | x] denotes the ground-truth expectation.

Input : Sequence of samples, {(x̃(t)
i , . . . , x̃

(t)
m)}Tt=1, from each iteration of an MBO

algorithm; their oracle expectations, {(µβ(t)(x̃
(t)
i), . . . , µβ(t)(x̃

(t)
m))}Tt=1;

[percentile threshold, Q = 80].
begin

for t = 1, . . . , T do
Compute and store qt ← Q-th percentile of the oracle expectations, {µβ(t)(x̃

(t)
i)}mi=1.

tbest ← argmaxt qt (pick the best iteration)
I ← {i ∈ {1, . . . ,m} : µβ(tbest)(x̃

(tbest)
i) ≥ qtbest} (pick best samples from best iteration)

µGT,best ← {E[y | x̃tbest
i] : i ∈ I}

µGT ← (E[y | x̃tbest
1], . . . ,E[y | x̃tbest

m])

µoracle ← (µβ(tbest)(x̃
tbest
1), . . . , µβ(tbest)(x̃

tbest
m))

PCI ← 100 · 1
|I|
∑
i∈I 1[E[y | x̃

tbest
i] > maximum label in training data)]

ρ← SPEARMAN(µGT, µoracle)
RMSE ← RMSE(µGT, µoracle)

Output :median(µGT,best),max(µGT,best), PCI, ρ,RMSE

14

S2 Proofs, derivations, and supplementary results

Proof of Proposition 1. For any distribution pθ(x), if

Epθ(x) [DKL(p(y | x) || pφ(y | x))] ≤ ε, (7)

then it holds that

Epθ(x)

[
|P (y ∈ S | x)− Pφ(y ∈ S | x)|2

]
≤ Epθ(x)

[
δ(p(y | x), pφ(y | x))2

]
(8)

≤ 1

2
Epθ(x) [DKL(p(y | x) || pφ(y | x))] (9)

≤ ε

2
. (10)

where δ(p, q) is the total variation distance between probability distributions p and q, and the second
inequality is due to Pinsker’s inequality. Finally, applying Jensen’s inequality yields

Epθ(x) [|P (y ∈ S | x)− Pφ(y ∈ S | x)|] ≤
√
ε

2
. (11)

S2.1 Derivation of the descent step to minimize the oracle gap

Here, we derive the descent step of the alternating ascent-descent algorithm described in §3.2. At
iteration t, given the search model parameters, θ(t), our goal is to update the oracle parameters
according to

β(t) = argmin
β∈B

Ep
θ(t)

(x)[DKL(p(y | x) || pβ(y | x))]. (12)

Note that

β(t) = argmin
β∈B

Ep
θ(t)

(x)

[∫
R
p(y | x) log p(y | x)dy −

∫
R
p(y | x) log pβ(y | x)dy

]
(13)

= argmax
β∈B

Ep
θ(t)

(x)

[∫
R
p(y | x) log pβ(y | x)dy

]
(14)

= argmax
β∈B

Ep
θ(t)

(x)Ep(y|x)[log pβ(y | x)]. (15)

We cannot query the ground truth, p(y | x), but we do have labeled training data, {(xi, yi)}ni=1,
where xi ∼ p0(x) and yi ∼ p(y | x = xi) by definition. We therefore leverage importance sampling,
using p0(x) as the proposal distribution, to obtain

β(t) = argmax
β∈B

Ep0(x)Ep(y|x)

[
pθ(t)(x)

p0(x)
log pβ(y | x)

]
. (16)

Finally, we instantiate an importance sampling estimate of the objective in Equation 16 with our
labeled training data, to get a practical oracle parameter update,

β(t) = argmax
β∈B

1

n

n∑
i=1

pθ(t)(xi)

p0(xi)
log pβ(yi | xi). (17)

This update is equivalent to fitting the oracle parameters, β(t), by performing weighted MLE
with the labeled training data, {(xi, yi)}ni=1, and corresponding weights, {wi}ni=1, where wi :=
pθ(t)(xi)/p0(xi).

S2.2 Variance of importance weights

The importance-sampled estimate of the log-likelihood used to retrain the oracle (Equation 17) is
unbiased, but may have high variance due to the variance of the importance weights. To assess the
reliability of the importance-sampled estimate, alongside the effective sample size described in §3.3,
one can also monitor confidence intervals on some loss of interest. Let Lβ : X × R → R denote
a pertinent loss function induced by the oracle parameters, β, (e.g., the squared error Lβ(x, y) =
(Eβ [y | x]− y)2). The following observation is due to Chebyshev’s inequality.

15

Proposition S2.1. Suppose that Lβ : X ×R→ R is a bounded loss function, such that |Lβ(x, y)| ≤
L for all x, y, and that pθ � p0. Let {(xi, yi)}ni=1 be labeled training data such that the xi ∼ p0(x)
are drawn independently and yi ∼ p(y | x = xi) for each i. For any δ ∈ (0, 1] and any n > 0, with
probability at least 1− δ it holds that∣∣∣∣∣Epθ(x)Ep(y|x)[Lβ(x, y)]−

1

n

n∑
i=1

pθ(xi)

p0(xi)
Lβ(xi, yi)

∣∣∣∣∣ ≤ L
√
d2(pθ || p0)

nδ
(18)

where d2 is the exponentiated Rényi-2 divergence, i.e., d2(pθ || p0) = Ep0(x)[(pθ(x)/p0(x))
2].

Proof. We use the following lemma to bound the variance of the importance sampling estimate of
the loss. Chebyshev’s inequality then yields the desired result.

Lemma S2.1 (Adaptation of Lemma 4.1 in Metelli et al. (2018) [50]). Under the same assumptions
as Proposition S2.1, the joint distribution pθ(x)p(y | x) is absolutely continuous with respect to the
joint distribution p0(x)p(y | x). Then for any n > 0, it holds that

Varpθ(x)p(y|x)

[
1

n

n∑
i=1

pθ(xi)

p0(xi)
Lβ(xi, yi)

]
≤ 1

n
L2d2(pθ||p0). (19)

One can use Proposition S2.1 to construct a confidence interval on, for example, the expected squared
error between the oracle and the ground-truth values with respect to pθ(x), using the labeled training
data on hand. The Rényi divergence can be estimated using, for example, the plug-in estimate
(1/n)

∑n
i=1(pθ(xi)/p0(xi))

2. While the bound, L, on Lβ may be restrictive in general, for any
given application one may be able to use domain-specific knowledge to estimate L. For example,
in designing superconducting materials with maximized critical temperature, one can use an oracle
architecture whose outputs are non-negative and at most some plausible maximum value M (in
degrees Kelvin) according to superconductivity theory; one could then take L = M2 for squared
error loss. Computing a confidence interval at each iteration of a design procedure then allows one to
monitor the error of the retrained oracle.

Monitoring such confidence intervals, or the effective sample size, is most likely to be useful for
design procedures that do not have in-built mechanisms for restricting the movement of the search
distribution away from the training distribution. Various algorithmic interventions are possible—one
could simply terminate the procedure if the error bounds, or effective sample size, surpass some
threshold, or one could decide not to retrain the oracle for that iteration. For simplicity and clarity
of exposition, we did not use any such interventions in this paper, but we mention them as potential
avenues for further improving autofocusing in practice. Note that 1) the bound in Proposition S2.1 is
only useful if the importance weight variance is finite, and 2) estimating the bound itself requires use
of the importance weights, and thus may also be susceptible to high variance. It may therefore be
advantageous to use a liberal criterion for any interventions.

CbAS naturally controls the importance weight variance. Design procedures that leverage a
trust region can naturally bound the variance of the importance weights. For instance, CbAS [11],
developed in the context of an oracle with fixed parameters, β, proposes estimating the training
distribution conditioned on S as the search model:

pθ(x) = p0(x | S) = Pβ(S | x)p0(x)/P0(S), (20)

where P0(S) =
∫
Pβ(S | x)p0(x)dx. This prescribed search model yields the following importance

weight variance.
Proposition S2.2. For pθ(x) = p0(x | S), it holds that

Varp0(x)

(
pθ(x)

p0(x)

)
=

1

P0(S)
− 1. (21)

That is, so long as S has non-neglible mass under data drawn from the training distribution, p0(x), we
have reasonable control on the variance of the importance weights. Of course, if P0(S) is too small,
this bound is not useful, but to have any hope of successful data-driven design it is only reasonable to
expect this quantity to be non-negligible. This is similar to the experimental requirement, in directed
evolution for protein design, that the initial data exhibit some “minimal functionality” with regards to
the property of interest [3].

16

Proof. The variance of the importance weights can be written as

Varp0(x)

(
p0(x | S)
p0(x)

)
= d2(p0(x | S)||p0(x))− 1, (22)

where d2(p0(x | S)||p0(x)) = Ep0(x)[(p0(x | S)/p0(x))
2] is the exponentiated Rényi-2 divergence.

Then we have

Varp0(x)

(
pθ(x)

p0(x)

)
= d2(p0(x | S)||p0(x))− 1 =

1

p0(S)
− 1, (23)

where the second equality is due to the property in Example 1 of [51].

This variance yields the following expression for the population version of the effective sample size:

n∗e :=
nEp0(x) [pθ(x)/p0(x)]

2

Ep0(x) [(pθ(x)/p0(x))2]
=

n

Ep0(x) [(pθ(x)/p0(x))2]
= nP0(S). (24)

Furthermore, CbAS proposes an iterative procedure to estimate pθ(x). At iteration t, the algo-
rithm seeks a variational approximation to p(t)(x) ∝ Pβ(S(t) | x)p0(x), where S(t) ⊇ S. Since
P0(S

(t) | x) ≥ P0(S | x), the expressions above for the importance weight variance and effective
sample size for the final search model prescribed by CbAS translate into upper and lower bounds,
respectively, on the importance weight variance and effective sample size for the distributions p(t)(x)
prescribed at each iteration.

S3 An illustrative example

S3.1 Experimental details

Ground truth and oracle. For the ground-truth function f : R → R+, we used the sum of the
densities of two Gaussian distributions, N1(5, 1) and N2(7, 0.25). For the expectation of the oracle
model, µβ(x) := Eβ [y | x], we used kernel ridge regression with a radial basis function kernel as
implemented in scikit-learn, with the default values for all hyperparameters. The variance of the
oracle model, σ2

β := Varβ [y | x], was set to the mean squared error between µβ(x) and the training
data labels, as estimated with 4-fold importance-weighted cross-validation when autofocusing [24].

MBO algorithm. We used CbAS as follows. At iteration t = 1, . . . , 100, similar to [11], we used
the relaxed constraint set S(t) = {y : y ≥ γt}where γt was the tth percentile of the oracle expectation,
µβ(x), when evaluated over x ∈ [0, 10]. At the final iteration, t = 100, the constraint set is equivalent
to the design goal of maximizing the oracle expectation, S(100) = S = {y : y ≥ maxx µβ(x)},
which is the oracle-based proxy to maximizing the ground-truth function, f(x). At each iteration, we
used numerical quadrature (scipy.integrate.quad) to compute the search model,

p(t)(x) =
Pβ(t)(y ∈ S(t) | x) p0(x)∫
X Pβ(t)(y ∈ S(t) | x) p0(x)

. (25)

Numerical integration enabled us to use CbAS without a parametric search model, which otherwise
would have been used to find a variational approximation to this distribution [11]. We also used
numerical integration to compute the value of the model-based design objective (Equation 1) achieved
by the final search model, both with and without autofocusing.

S3.2 Additional plots and discussion

For all tested settings of the variance of the training distribution, σ2
0 , and the variance of the label

noise, σ2
ε , autofocusing yielded positive improvement to the model-based design objective (Equation

1) on average over 50 trials (Figure 2). For a more comprehensive understanding of the effects of
autofocusing, here we pinpoint specific trials where autofocusing decreased the objective, compared
to a naive approach with a fixed oracle. Such trials were rare, and occurred in regimes where one

17

would not reasonably expect autofocusing to provide a benefit. In particular, as discussed in §5.1,
such regimes include when σ2

0 is too small, such that training data are unlikely to be close to the
global maximum, and when σ2

0 is too large, such that the training data already include points around
the global maximum and a fixed oracle should be suitable for successful design. Similarly, when the
label noise variance, σ2

ε , is too large, the training data are no longer informative and no procedure
should hope to perform well systematically. We now walk through each of these regimes.

When σ2
0 was small and there was no label noise, we observed a few trials where the final search

model placed less mass under the global maximum with autofocusing than without. This effect
was due to increased standard deviation of the autofocused oracle, induced by high variance of the
importance weights (Figure S1a). When σ2

0 was small and σ2
ε was extremely large, a few trials

yielded lower final objectives with autofocusing by insignificant margins; in such cases, the label
noise was overwhelming enough that the search model did not move much anyway, either with or
without autofocusing (Figure S1b). Similarly, when σ2

0 was large and there was no label noise, a few
trials yielded lower final objectives with autofocusing than without, by insignificant margins (Figure
S1c).

Interestingly, when the variances of both the training distribution and label noise were high, autofo-
cusing yielded positive improvement for all trials. In this regime, by encouraging the oracle to fit
most accurately to the points with the highest labels, autofocusing resulted in search models with
greater mass under the global maximum than the fixed-oracle approach, which was more influenced
by the extreme label noise (Figure S1d).

As discussed in §5.1, in practice it is often the case that 1) practitioners can collect reasonably infor-
mative training data for the application of interest, such that some exceptional examples are measured
(corresponding to sufficiently large σ2

0), and 2) there is always label noise, due to measurement error
(corresponding to non-zero σ2

ε). Thus, we expect many design applications in practice to fall in the
intermediate regime where autofocusing tends to yield positive improvements over a fixed-oracle
approach (Figure 2, Table 1).

S4 Designing superconductors with maximal critical temperature

S4.1 Experimental details

Pre-processing. Each of the 21, 263 materials in the superconductivity data from [44] is represented
by a vector of eighty-one real-valued features. We zero-centered and normalized each feature to have
unit variance.

Ground-truth model. To construct the model of the ground-truth expectation, E[y | x], we fit
gradient-boosted regression trees using xgboost and the same hyperparameters reported in [44],
which selected them using grid search. The one exception was that we used 200 trees instead of 750
trees, which yielded a hold-out root mean squared error (RMSE) of 9.51 compared to the hold-out
RMSE of 9.5 reported in [44]. To remove collinear features noted in [44], we also performed feature
selection by thresholding xgboost’s in-built feature weights, which quantifies how many times a
feature is used to split the data across all trees. We kept the sixty most important features according
to this score, which decreased the hold-out RMSE from 9.51 when using all the features to 9.45. The
resulting input space for design was then X = R60.

Training distribution. To construct the training distribution, we selected the 17, 015 points from
the dataset whose ground-truth expectations were below the 80th percentile (equivalent to 73.8 degrees
Kelvin, compared to the maximum of 138.3 degrees Kelvin in the full dataset). We used MLE with
these points to fit a full-rank multivariate normal, which served as the training distribution, p0(x),
from which we drew n = 17, 015 simulated training points, {xi}ni=1, for each trial. For each xi
we drew one sample, yi ∼ N (E[y | xi], 1), to obtain a noisy ground-truth label. This training
distribution produced simulated training points with a distribution of ground-truth expectations,
E[y | x], reasonably comparable to that of the points from the original dataset (Figure S2, left panel).

Oracle. For the oracle, we trained an ensemble of three neural networks to maximize log-likelihood
according to the method described in [46] (without adversarial examples). Each model in the
ensemble had the architecture Input(60) → Dense(100) → Dense(100) → Dense(100) →

18

(a) Example trial with low-variance training distribution and no label noise, (σ0, σε) = (1.6, 0).

(b) Example trial with low-variance training distribution and high label noise, (σ0, σε) = (1.6, 0.38).

(c) Example trial with high-variance training distribution and no label noise (σ0, σε) = (2.2, 0).

(d) Example trial with high-variance training distribution and high label noise (σ0, σε) = (2.2, 0.38).

Figure S1: Examples of regimes where autofocus (AF) sometimes yielded lower final objectives
than without (non-AF). Each row shows snapshots of CbAS in a different experimental regime,
from initialization (leftmost panel), to an intermediate iteration (middle panel), to the final iteration
(rightmost panel). As in Figure 1, the vertical axis represents both y values (for the oracle and ground
truth) and probability density values (of the training distribution, p0(x), and search distributions,
pθ(t)(x)). Shaded envelopes correspond to ±1 standard deviation of the oracles, σβ(t) , with the
oracle expectations, µβ(t)(x), shown as a solid line. Greyscale of training points corresponds to
their importance weights used in autofocusing. In the rightmost panels, for easy visualization of the
final search models achieved with and without AF, the stars and dotted horizontal lines indicate the
ground-truth values corresponding to the points of maximum density.

19

Figure S2: Training distribution and initial oracle for designing superconductors. Simulated training
data were generated from a training distribution, p0(x), which was a multivariate Gaussian fit to data
points with ground-truth expectations below the 80th percentile. The left panel shows histograms
of the ground-truth expectations of these original data points, and the ground-truth expectations
of simulated training data. The right panel illustrates the error of an initial oracle used in the
experiments, by plotting the ground-truth and predicted labels of 10, 000 test points drawn from the
training distribution. The RMSE here was 7.31.

Dense(100) → Dense(10) → Dense(2), with elu nonlinearities everywhere except for linear
output units. Out of the range of hidden layer numbers and sizes we tested, this architecture minimized
RMSE on held-out data. Each model was trained using Adam [52] with a learning rate of 5× 10−4

for a maximum of 2000 epochs, with a batch size of 64 and early stopping based on the log-likelihood
of a validation set. Across the 10 trials, the initial oracles had hold-out RMSEs between 6.95 and
7.40 degrees Kelvin (Figure S2, right panel).

Autofocusing. During autofocusing, each model in the oracle ensemble was retrained with the
re-weighted training data, using the same optimization hyperparameters as the initial oracle, except
early stopping was based on the re-weighted log-likelihood of the validation set. For the results in
Table 1, to help control the variance of the importance weights, we flattened the importance weights
to wαi where α = 0.2 [24] and also self-normalized them [26]. We found that autofocusing yielded
similarly widespread benefits for a wide range of values of α, including α = 1, which corresponds to
a “pure” autofocusing strategy without variance control (Table S2).

MBO algorithms. Here, we provide a brief description of the different MBO algorithms used in
the superconductivity experiments (Tables 1, S2, S3, S4, Figures S3 and S4). Wherever applicable, in
parentheses we anchor these descriptions in the notation and procedure of Algorithm 1.

• Design by Adaptive Sampling (DbAS) [11]. A basic EDA that anneals a sequence of relaxed
constraint sets, S(t), such S(t) ⊇ S(t+1) ⊇ S, to iteratively solve the oracle-based MBD
problem (Equation 2). (At iteration t, DbAS uses V (x̃

(t)
i) = Pβ(t−1)(y ∈ S(t) | x̃(t)

i).)

• Conditioning by Adaptive Sampling (CbAS) [11]. Seeks to estimate the training distribu-
tion conditioned on the desired constraint set S (Equation 20). Similar mechanistically
to DbAS, as it involves constructing a sequence of relaxed constraint sets, but also incor-
porates an implicit trust region based on the training distribution. (At iteration t, CbAS
uses V (x̃

(t)
i) = (p0(x̃

(t)
i)/pθ(t−1)(x̃

(t)
i))Pβ(t−1)(y ∈ S(t) | x̃(t)

i). See Algorithm 2; non-
autofocused CbAS excludes Steps 6 and 7.)

• Reward-Weighted Regression (RWR) [23]. An EDA used in the reinforcement
learning community. (At iteration t, RWR uses V (x̃

(t)
i) = v′i/

∑m
j=1 v

′
j , where

v′i = exp(γEβ(t−1) [y | x̃(t)
i])) and γ > 0 is a hyperparameter).

• “Feedback” Mechanism (FB) [17]. A heuristic version of CbAS, which maintains samples
from previous iterations to prevent the search model from changing too rapidly. (At Step
3 in Algorithm 1, FB uses samples from the current iteration with oracle expectations that
surpass some percentile threshold, along with a subset of promising samples from previous
iterations.)

20

Table S2: Designing superconducting materials. Same experiments and caption as Table 1, except
with α = 1 (no flattening of the importance weights to control variance). We ran six different MBO
methods, each with and without autofocusing. For each method, we extracted those samples with
oracle expectations above the 80th percentile and computed their ground-truth expectations. We
report the median and maximum of those ground-truth expectations (both in degrees K), their percent
chance of improvement (PCI, in percent) over the maximum label in the training data, as well as
the Spearman correlation (ρ) and root mean squared error (RMSE, in degrees K) between the oracle
and ground-truth expectations. Each reported score is averaged over 10 trials, where, in each trial,
a different training set was sampled from the training distribution. “Mean Diff.” is the average
difference between the score when using autofocusing compared to not. Bold values with one star
(*) and two stars (**), respectively, mean p-value < 0.05 and < 0.01 from a two-sided Wilcoxon
signed-rank test on the 10 paired score differences. For all scores but RMSE, a higher value means
autofocusing yielded better results (as indicated by the arrow ↑); for RMSE, the opposite is true (as
indicated by the arrow ↓).

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓
CbAS DbAS

Original 51.5 103.8 0.11 0.05 17.2 57.0 98.4 0.11 0.01 29.6
Autofocused 73.2 116.0 2.29 0.56 12.8 69.4 109.9 0.68 0.01 27.4
Mean Diff. 21.8** 12.2** 2.18** 0.51** -4.4** 12.4** 11.5** 0.58** 0.01 -2.2

RWR FB

Original 43.4 102.0 0.05 0.92 7.4 9.2 100.6 0.14 40.09 17.5
Autofocused 68.5 113.4 1.34 0.63 14.2 63.4 110.8 0.63 0.49 11.2
Mean Diff. 25.1** 11.5** 1.30** -0.29** 6.8** 14.2** 10.2* 0.50** 0.40** -6.3**

CEM-PI CMA-ES

Original 34.5 55.8 0.00 -0.16 148.3 42.1 69.4 0.00 0.27 27493.2
Autofocused 59.5 89.1 0.39 0.02 46.9 45.1 70.7 0.00 0.50 27944.9
Mean Diff. 25.0* 33.3* 0.39* 0.18 -101.4** 3.1 1.2 0 0.22* 451.7

• Cross-Entropy Method with Probability of Improvement (CEM-PI) [11]. A baseline EDA
that uses the cross-entropy method [21, 22] to maximize the probability of improvement, an
acquisition function commonly used in Bayesian optimization [32]. (At iteration t, CEM-PI
uses V (x̃

(t)
i) = 1[Pβ(t)(y ≥ ymax | x̃(t)

i) ≥ γt], where ymax is the maximum label observed
in the training data, and, following the cross-entropy method, γt is some percentile of the
probabilities of improvement according to the oracle, {Pβ(t)(y ≥ ymax | x̃(t)

i)}mi=1.)
• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [47]. A state-of-the-art EDA

developed for the special case of multivariate Gaussian search models. We used it to
maximize the probability of improvement according to the oracle, Pβ(t)(y ≥ ymax | x̃(t)

i).

CbAS, DbAS, FB, and CEM-PI all have hyperparameters corresponding to a percentile threshold (for
CbAS and DbAS, this is used to construct the relaxed constraint sets). We set this hyperparameter
to 90 for all these methods. For RWR, we set γ = 0.01, and for CMA-ES, we set the step size
hyperparameter to σ = 0.01.

S4.2 Additional experiments

Importance weight variance control. To see how much importance weight variance affects aut-
ofocusing, we conducted the same experiments as Table 1, except without flattening the weights
to reduce variance (Table S2). For CbAS, DbAS, RWR, FB, and CEM-PI, autofocusing without
variance control yielded statistically significant improvements to the majority of scores, though with
somewhat lesser effect sizes than in Table 1 when the weights were flattened with α = 0.2. For
CMA-ES, the only significant improvement autofocusing rendered was to the Spearman correlation
between the oracle and the ground-truth expectations. Note that CMA-ES is a state-of-the-art method
for optimizing a given objective with a multivariate Gaussian search model [47], which likely led
to liberal movement of the search model away from the training distribution and therefore high
importance weight variance.

Oracle capacity. To see how different oracle capacities affect the improvements gained from auto-
focusing, we ran the same experiments as Table 1 with two different oracle architectures. One architec-

21

(a) CbAS.

(b) DbAS.

(c) RWR.

(d) FB.

Figure S3: Designing superconducting materials. Trajectories of different MBO algorithms run
without (left) and with autofocusing (right), on one example trial used to compute Table 1. At each
iteration, we extract the samples with oracle expectations greater than the 80th percentile. For these
samples, solid lines give the median oracle (green) and ground-truth (indigo) expectations. The
shaded regions capture 70 and 95 percent of these quantities. The RMSE at each iteration is between
the oracle and ground-truth expectations of all samples. The horizontal axis is sorted by increasing
80th percentile of oracle expectations (i.e., the samples plotted at iteration 1 are from the iteration
whose 80th percentile of oracle expectations was lowest). This ordering exposes the trend of whether
the oracle expectations of samples were correlated to their ground-truth expectations. Two more
algorithms are shown in Figure S4.

22

(a) CEM-PI.

(b) CMA-ES.

Figure S4: Designing superconducting materials. Continuation of Figure S3.

ture had higher capacity than the original oracle (hidden layer sizes of (200, 200, 100, 100, 10)
compared to (100, 100, 100, 100, 10); Table S3), and one one had lower capacity (hidden
layer sizes of (100, 100, 10); Table S4).

23

Table S3: Designing superconducting materials. Same experiments and caption as Table 1, except
using an oracle architecture with hidden layers 200 → 200 → 100 → 100 → 10. We ran six
different MBO methods, each with and without autofocusing. For each method, we extracted
those samples with oracle expectations above the 80th percentile and computed their ground-truth
expectations. We report the median and maximum of those ground-truth expectations (both in degrees
K), their percent chance of improvement (PCI, in percent) over the maximum label in the training
data, as well as the Spearman correlation (ρ) and root mean squared error (RMSE, in degrees K)
between the oracle and ground-truth expectations. Each reported score is averaged over 10 trials,
where, in each trial, a different training set was sampled from the training distribution. “Mean Diff.”
is the average difference between the score when using autofocusing compared to not. Bold values
with one star (*) and two stars (**), respectively, mean p-value < 0.05 and < 0.01 from a two-sided
Wilcoxon signed-rank test on the 10 paired score differences. For all scores but RMSE, a higher
value means autofocusing yielded better results (as indicated by the arrow ↑); for RMSE, the opposite
is true (as indicated by the arrow ↓).

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓
CbAS DbAS

Original 48.3 100.8 0.05 0.03 19.6 55.3 98.6 0.025 -0.02 32.1
Autofocused 79.0 119.4 4.35 0.55 13.5 81.6 113.3 5.33 0.01 27.0
Mean Diff. 30.7** 18.6** 4.30** 0.52** -6.1** 26.4** 14.8** 5.30** 0.03 -5.1

RWR FB

Original 36.5 81.3 0.00 -0.24 55.5 47.8 101.5 0.09 0.06 18.3
Autofocused 73.4 114.8 2.05 0.72 12.7 63.5 113.1 0.58 0.58 10.7
Mean Diff. 36.9** 33.4** 2.05** 0.97** -42.8** 15.7** 11.7** 0.49** 0.51** -7.5**

CEM-PI CMA-ES

Original 48.2 58.3 0.00 0.09 271.4 39.0 63.1 0.00 0.26 6774.6
Autofocused 64.5 84.1 0.48 -0.14 61.07 53.1 79.0 0.01 0.48 10183.7
Mean Diff. 16.3 25.9* 0.48 -0.22 -210.3 14.1* 15.9* 0.01 0.23 3409.1

Table S4: Designing superconducting materials. Same experiments and caption as Table 1, except
using an oracle architecture with hidden layers 100 → 100 → 10. We ran six different MBO
methods, each with and without autofocusing. For each method, we extracted those samples with
oracle expectations above the 80th percentile and computed their ground-truth expectations. We
report the median and maximum of those ground-truth expectations (both in degrees K), their percent
chance of improvement (PCI, in percent) over the maximum label in the training data, as well as
the Spearman correlation (ρ) and root mean squared error (RMSE, in degrees K) between the oracle
and ground-truth expectations. Each reported score is averaged over 10 trials, where, in each trial,
a different training set was sampled from the training distribution. “Mean Diff.” is the average
difference between the score when using autofocusing compared to not. Bold values with one star
(*) and two stars (**), respectively, mean p-value < 0.05 and < 0.01 from a two-sided Wilcoxon
signed-rank test on the 10 paired score differences. For all scores but RMSE, a higher value means
autofocusing yielded better results (as indicated by the arrow ↑); for RMSE, the opposite is true (as
indicated by the arrow ↓).

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓

Original 0.06 46.8 98.5 -0.03 23.8 0.02 56.3 97.7 0.00 37.0
Autofocused 1.4 67.0 114.3 0.52 13.0 1.3 72.5 108.4 0.04 27.6
Mean Diff. 1.3** 20.2** 15.8** 0.55** -10.9** 1.3** 16.2** 10.7** 0.03 -9.4**

RWR FB

Original 0.00 30.9 76.8 -0.33 83.5 0.04 47.2 100.4 0.02 19.9
Autofocused 0.68 66.0 112.6 0.57 18.3 0.43 58.2 111.4 0.50 12.3
Mean Diff. 0.68** 35.1** 35.8** 0.90** -65.2** 0.40** 11.0** 11.0** 0.48** -7.6**

CEM-PI CMA-ES

Original 0.00 36.3 46.2 -0.01 382.4 0.00 36.9 62.3 0.10 9587.1
Autofocused 0.04 53.9 71.3 -0.04 210.8 0.00 43.9 80.0 0.29 40858.6
Mean Diff. 0.04 17.6 25.1* -0.03 -171.6 0 7.0* 17.7* 0.19** 31271.5**

24

	Oracle-based design
	Model-based optimization for design
	Solving model-based optimization problems
	Autofocused oracles for model-based design
	Model-based design as a game
	An alternating ascent-descent algorithm for the MBD game
	Remarks on autofocusing
	Related Work
	Experiments
	An illustrative example
	Designing superconductors with maximal critical temperature

	Discussion

	Broader Impact

	Pseudocode

	Proofs, derivations, and supplementary results
	Derivation of the descent step to minimize the oracle gap
	Variance of importance weights
	An illustrative example
	Experimental details
	Additional plots and discussion
	Designing superconductors with maximal critical temperature
	Experimental details
	Additional experiments

