
We thank all the reviewers for their insightful comments which help us to improve the article. They acknowledged1

the theoretical work and the relevance of the method developed for the ML community. In the final version, we will2

integrate the comments of form given by the reviewers (typos, notations, theorem numbering and English writing).3

1 New experimental results (R2)4
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Increasing missing data proportions on synthetic data. The figure on the top shows the5

results of our approach on the same data as in Section 5.1 with 25% (green), 50% (orange)6

and 75% (red) missing values. It shows that the more missing data there are, the more the7

convergence rate deteriorates. This was expected, as the established theoretical upper bound8

for the convergence (Th. 4) increases as p gets smaller.9

Comparison to other methods. The paper does already include a comparison with the10

theoretically-grounded competitor for linear regression with missing covariates: the EM algo-11

rithm (see Fig. 4), but contrary to our approach, EM requires a distributional assumption on the12

covariates and prevents from observations in high dimension. Moreover, the proposed strategy13

results in a practical, efficient and theoretically sound algorithm. For completeness, we ran14

comparisons on 5 UCI datasets (Boston, Concrete slump, Diabetes, Superconductivity, Wine)15

to 2-step heuristics: imputation of the covariates (by the mean or ICE1) and linear regression16

(LR) on the completed data, varying the percentage of NA. The coefficient of determination17

R2 is plotted on the Figure besides (thus higher is better), for the superconductivity dataset,18

with 60% of missing values. This is representative of other results where our method greatly19

outperforms the mean imputation and is better or in the same order of magnitude of ICE (that also does not scale well).20

2 Bibliographic addendum21

IPW. (R3) We will include the pointed references on IPW, thank you. While the motivation for reweighting may meet22

our debiasing will, we would like to point out some differences with our work: in the IPW literature, weighting is often23

used to rebalance samples with missing outcome, while we consider missing values in all the learning task covariates24

which can be in high dimension. In addition, the expression we use to debiase SGD, and more specifically its gradients25

(Eq. 4), although involving weights, is more complex than simply weighting the data.26

Missing values in deep networks. (R4) A reference to Joonyoung et al., in which they propose a heuristic to debiase27

zero-imputation in neural networks, will be added in the final version. Due to the high non-linearity of their setting, their28

debiasing trick significantly departs from ours, and their proposed algorithm comes with no guarantee of convergence.29

3 Relevance of the tackled problem and discussion (R1, R3, R4)30

Discussion on the bounded feature assumption (R1) As mentioned in the paper, the bounded features assumption31

is mostly made to ease the readability. It can be actually relaxed into a bound “in average”: more precisely only bounds32

on moments of the random variable can be required, see e.g. Section 6.1. in [1].33

Using estimators of (pj)j . (R3) The available implementation already includes the use of estimated proportions (p̂j)j34

of NA in each column, instead of the oracle ones (pj)j , and so do all the numerical experiments, always leading to35

convergent estimators. In addition, we can show that, for the estimator β̂k,p̂j built using our algorithm with (p̂j)j , we36

preserve the optimal 1/k convergence rate. More precisely, the supplementary risk w.r.t. the iterate β̄k built with the37

true (pj)j is E[R(β̂k,p̂j
)−R(β̄k)] = O(1/kp5min). A remark and the proof of this preliminary2 result will be added.38

Towards a more general MCAR setting. (R3) We indeed considered a specific MCAR setting, in which the missing-39

pattern random variables were independent. We thank R3 from raising this interesting issue: we can extend the setting40

to allow coordinates to be dependently missing. To do so, we propose a new way of constructing debiased versions41

of gradients (Lemma 1), as g̃k(β) := (W � (X̃k:X̃
T
k:))β − ykP−1X̃k: with W ∈ Rd×d, and Wij := 1/E[δkiδkj ].42

The noise structure in the SGD iterates (Lemma 2(3.)) becomes even more technical to control. Regarding practical43

implementation, the matrix W can be estimated, in particular using low-rank strategies on the missing pattern matrix.44

Impact of our work and extensions. (R3,R4) Despite the apparent simplicity of the considered setting, we tackle45

the important issue of performing large-scale Ridge regression with missing covariates (which was not resolved yet),46

using SGD, thereby handling large dimensionality and online (missing) data. This actually required a lot of technicality:47

the state-of-the-art proofs cannot be applied directly. An efficient code is also provided. SGD being a keystone block48

of ML, this paves the way of many developments to handle ubiquitous missing data (e.g., variance reduction, deep49

learning, etc.). Moreover, theoretical locks are raised, cleared up or resolved: (i) theoretical challenge of multi-pass50

ERM, (ii) computational optimality with missing data (Th. 4), (iii) information theory optimality (see Sec. 4.4, with an51

open question to establish a lower bound).52

[1] Dieuleveut, Durmus, and Bach. Bridging the gap between constant step size SGD and markov chains. Ann. Statist., 48, 2020.53

1 sklearn.impute.IterativeImputer 2 the dependency in pmin may not be optimal and the proof requires the invertibility
of the covariates’ covariance matrix H and bounded iterates.
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