Supplementary Material

A Details on experimental setups

A.1 Environments
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Figure 8: Visualization of multi-modal distribution in (a) CartPoleSwingUp, (b) Pendulum, (c)
Hopper, (d) SlimHumanoid, (e) HalfCheetah, and (f) CrippledAnt environments. We first collect
trajectory from the default environment (black colored transitions in figures) and visualize the next
states obtained by applying the same action to the same state with different environment parameters.
One can observe that transition dynamics follow multi-modal distributions.

CartPoleSwingUp. For CartPoleSwingUp environments, we use open source implementation of
CartPoleSwingUp?, which is the modified version of original CartPole environments from OpenAl
Gym [3]. The objective of CartPoleSwingUp is to swing up the pole by moving a cart and keep the
pole upright within 500 time steps. For our experiments, we modified the mass of cart and pole within
the set of {0.25,0.5,1.5,2.5} and evaluated the generalization performance in unseen environments
with a mass of {0.1,0.15,2.75,3.0}. We visualize the transitions in Figure 8a.

Pendulum. We use the Pendulum environments from the OpenAl Gym [3]. The objective of
Pendulum is to swing up the pole and keep the pole upright within 200 time steps. We modified
the length of pendulum within the set of {0.5,0.75,1.0,1.25} and evaluated the generalization
performance in unseen environments with a length of {0.25,0.375,1.5,1.75}. We visualize the
transitions in Figure 8b.

Hopper. We use the Hopper environments from MuJoCo physics engine [44]. The objective of
Hopper is to move forward as fast as possible while minimizing the action cost within 500 time steps.
We modified the mass of a hopper robot within the set of {0.5,0.75,1.0,1.25,1.5} and evaluated
the generalization performance in unseen environments with a mass of {0.25,0.375,1.75,2.0}. We
visualize the transitions in Figure 8c.

2We use implementation available at https://github.com/angelolovatto/gym-cartpole-swingup
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SlimHumanoid. We use the modified version of Humanoid environments from MuJoCo physics
engine [44]%. The objective of SlimHumanoid is to move forward as fast as possible while minimizing
the action cost within 1000 time steps. We modified the mass of a humanoid robot within the set of
{0.8,0.9,1.0,1.15,1.25} and evaluated the generalization performance in unseen environments with
amass of {0.6,0.7,1.5,1.6}. We visualize the transitions in Figure 8d.

HalfCheetah. We use the HalfCheetah environments from MuJoCo physics engine [44]. The
objective of HalfCheetah is to move forward as fast as possible while minimizing the action cost within
1000 time steps. We modified the mass of a halfcheetah robot within the set of {0.25,0.5,1.5,2.5} and
evaluated the generalization performance in unseen environments with a mass of {0.1,0.15,2.75, 3.0}.
We visualize the transitions in Figure 8e.

CrippledAnt. We use the modified version of Ant environments from MuJoCo physics engine
[44]*. The objective of CrippledAnt is to move forward as fast as possible while minimizing the action
cost within 1000 time steps. We randomly crippled one of three legs in a ant robot and evaluated
the generalization performance by crippling remaining one leg of the ant robot. We visualize the
transitions in Figure 8f.

A.2 Training

We train dynamics models for 10 iterations for all experiments. Each iteration consists of data
collection and updating model parameters. First, we collect 10 trajectories with MPC controller
from environments with varying environment parameters. For planning via MPC, we use the cross
entropy method with 200 candidate actions and 5 iterations to optimize action sequences with horizon
30. We also use N = 10 for the number of past transitions in adaptive planning (3). Then we
update the model parameters with Adam optimizer of learning rate 0.001. To effectively increase the
prediction ability of each prediction head before specialized prediction heads emerge, we train all
prediction heads independently on all environments for initial 3 iterations, instead of training each
prediction head seperately from the first iteration. Except for Pendulum environments, we update
model parameters for 50 epochs. For Pendulum environments, we update model parameters for 5
epochs due to the short horizon length of the task.

A.3 Architecture

Following Chua et al. [4], our backbone network is modeled as multi-layer perceptrons (MLPs) with
4 hidden layers of 200 units each and Swish activations. Each prediction head is modeled as Gaussian,
in which the mean and variance are parameterized by a single linear layer which takes the output
vector of the backbone network as an input. We use H = 3 for the number of prediction heads
and M = 10 for the size of trajectory segment in (2). We remark that hyperparameters H and M
are selected based on trajectory assignments, i.e., how distinctively trajectories are assigned to each
prediction head. We use an ensemble of 5 multi-headed dynamics models that are independently
trained on entire training environments and 20 particles for trajectory sampling. Note that we do not
use bootstrap models. For context-conditional dynamics model, following Lee et al. [20], a context
encoder is modeled as MLPs with 3 hidden layers that produce a 10-dimensional vector. Then, this
context vector is concatenated with the output vector of a backbone network.

A.4 Auxiliary prediction losses for context learning

Here, we provide a more detailed explanation of how we implemented various prediction losses
proposed in Lee et al. [20]. These losses are proposed to force context latent vector to be useful for
predicting both (a) forward dynamics and (b) backward dynamics. Specifically, we compute the
proposed forward and backward prediction losses by substituting log-likelihood loss for proposed
trajectory-wise oracle loss (2). In order to further remove the computational cost of optimization, we
first compute the assignments, i.e., h* for each transition, through the entire dataset and optimize the
forward and backward prediction losses with mini-batches.

3We use implementation available at https://github. com/WilsonWangTHU/mbbl
*We use implementation available at https://github.com/iclavera/learning_to_adapt
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B Learning curves
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Figure 9: The average returns of trained dynamics models on training environments. Dotted lines
indicate performance at convergence. The solid lines and shaded regions represent mean and standard
deviation, respectively, across three runs.

C Effects of multi-headed dynamics model
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Figure 10: Generalization performance of PETS and Multi-Headed PETS on unseen (a) Cart-
PoleSwingUp, (b) Pendulum, (c) Hopper, (d) SlimHumanoid, (e) HalfCheetah, and (f) CrippledAnt
environments. The solid lines and shaded regions represent mean and standard deviation, respectively,
across three runs.
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D Effects of adaptive planning
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Figure 11: Generalization performance of employing adaptive planning and non-adaptive planning
on unseen (a) CartPoleSwingUp, (b) Pendulum, (c) Hopper, (d) SlimHumanoid, (e¢) HalfCheetah,
and (f) CrippledAnt environments. The solid lines and shaded regions represent mean and standard
deviation, respectively, across three runs.

E Effects of context learning
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Figure 12: Generalization performance of trained dynamics models on unseen (a) CartPoleSwingUp,
(b) Pendulum, (c) Hopper, (d) SlimHumanoid, (¢) HalfCheetah, and (f) CrippledAnt environments.
The solid lines and shaded regions represent mean and standard deviation, respectively, across three
runs.
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F Effects of trajectory-wise loss
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Figure 13: Generalization performance of dynamics models trained with MCL and T-MCL on
unseen (a) CartPoleSwingUp, (b) Pendulum, (c) Hopper, (d) SlimHumanoid, (e) HalfCheetah, and (f)
CrippledAnt environments. The solid lines and shaded regions represent mean and standard deviation,
respectively, across three runs.

G Effects of hyperparameters

G.1 Number of prediction heads
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Figure 14: Generalization performance of dynamics models trained with MCL on unseen (a) Cart-
PoleSwingUp, (b) Pendulum, (c) Hopper, (d) SlimHumanoid, (e) HalfCheetah, and (f) CrippledAnt
environments with varying number of prediction heads. The solid lines and shaded regions represent
mean and standard deviation, respectively, across three runs.
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G.2 Horizon of trajectory-wise oracle loss
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Figure 15: Generalization performance of dynamics models trained with MCL on unseen (a) Cart-
PoleSwingUp, (b) Pendulum, (c) Hopper, (d) SlimHumanoid, (e) HalfCheetah, and (f) CrippledAnt
environments with varying horizon of trajectory-wise oracle loss. The solid lines and shaded regions

represent mean and standard deviation, respectively, across three runs.

G.3 Horizon of adaptive planning
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Figure 16: Generalization performance of dynamics models trained with MCL on unseen (a) Cart-
PoleSwingUp, (b) Pendulum, (c) Hopper, (d) SlimHumanoid, (e) HalfCheetah, and (f) CrippledAnt
environments with varying horizon of adaptive planning. The solid lines and shaded regions represent
mean and standard deviation, respectively, across three runs.
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