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Abstract

We consider the theory of regression on a manifold using reproducing kernel
Hilbert space methods. Manifold models arise in a wide variety of modern machine
learning problems, and our goal is to help understand the effectiveness of vari-
ous implicit and explicit dimensionality-reduction methods that exploit manifold
structure. Our first key contribution is to establish a novel nonasymptotic version
of the Weyl law from differential geometry. From this we are able to show that
certain spaces of smooth functions on a manifold are effectively finite-dimensional,
with a complexity that scales according to the manifold dimension rather than any
ambient data dimension. Finally, we show that given (potentially noisy) function
values taken uniformly at random over a manifold, a kernel regression estimator
(derived from the spectral decomposition of the manifold) yields minimax-optimal
error bounds that are controlled by the effective dimension.

1 Introduction

High-dimensional data is ubiquitous in modern machine learning. Examples include images (2-D
and 3-D), document texts, DNA, and neural recordings. In many cases, the number of dimensions
in the data is much larger than the number of actual data samples. Traditional statistical methods
cannot handle such cases, so researchers have turned to a variety of explicit dimensionality-reduction
techniques—which make inference more tractable—and to tools such as neural networks that of-
ten implicitly transform the data into a much lower-dimensional feature space. These techniques
inherently assume that the data have an intrinsic dimension that is much lower than that of the data’s
original representation. Our goal in this paper is to show that the difficulty of a supervised learning
problem depends only on this intrinsic dimension and not on the (potentially much larger) ambient
dimension. In particular, we consider the common assumption that the data lie on a low-dimensional
manifold embedded in Euclidean space (see [1–4] for some of the many example applications).

As an illustration of the kind of results we hope to obtain, we first consider a simple example: a
function on the circle S1 (or, equivalently, a periodic function on the real line). Specifically, suppose
that we want to estimate a function f∗ on the circle from random samples. In general, it is intractable
to estimate an arbitrary function from finitely many samples, but it becomes possible if we assume f∗

is structured. For example, f∗ may exhibit a degree of smoothness, which can be readily characterized
via the Fourier series for f∗. Specifically, recall that we can write f∗ as the Fourier series sum
f∗(x) = a0 +

∑
`≥1(a` cos(2π`x) + b` sin(2π`x)). One common notion of smoothness in signal

processing is that f∗ is bandlimited, meaning that this sum can be truncated at some largest frequency
Ω. In this case, f∗ lies in a subspace of dimension at most p(Ω) = 2bΩ/2πc + 1. We know (see,
e.g., [5, Chapter 12] or [6]) that we can recover such a function exactly, with high probability,
from n & p(Ω) log p(Ω) samples placed uniformly at random. If there is measurement noise, the
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squared L2 error due to noise scales like p(Ω)
n σ2. In higher dimensions (say, on the torus Tm), an

Ω-bandlimited function lies in a space of dimension p(Ω) = O(Ωm), and the number of random
samples required scales accordingly.

Another model for smoothness is that f∗, rather than being bandlimited, has exponentially-decaying
frequency components. For example, suppose the Fourier coefficients satisfy

∑
` e
t`2(a2` + b2`) < ∞

for some t > 0 (this is roughly equivalent to f∗ being the convolution of a Gaussian function with an
arbitrary function in L2). The space of such functions is infinite-dimensional, but any function in it
can be approximated as Ω-bandlimited to within an error of size O(e−cΩ

2t), which should enable us
to recover a close approximation to f∗ from O(p(Ω) log p(Ω)) samples.

In this paper, we provide precise analogs of these sample complexity results in the general case of a
function on an arbitrary manifold M with dimension m. As on the circle or torus, an L2 function
f(x) on a Riemannian manifold has a spectral decomposition into modes u`(x) corresponding to
vibrational frequencies ω` for all non-negative integers `; these modes are the eigenfunctions of
the Laplace-Beltrami operator on M. Our first key contribution (described in Theorem 2) is a
nonasymptotic version of the Weyl law from differential geometry: this states that, for large enough Ω,
the set Hbl

Ω of Ω-bandlimited functions on M (functions composed of modes with frequencies below
Ω) has dimension dim(Hbl

Ω ) ≤ Cm vol(M)Ωm =: p(Ω). Thus the number of degrees of freedom
scales according to the manifold dimension m rather than a larger ambient dimension.

Our second key contribution is an error bound for recovering functions on M from randomly-placed
samples using kernel regression. We show in Theorem 3 that if we take n & p(Ω) log p(Ω) samples
of f∗, we can recover any Ω-bandlimited function with error

‖f̂ − f∗‖2L2

vol(M)
.

p(Ω)

n
σ2,

which is precisely the error rate for parametric regression in a D(Ω)-dimensional space. Our results
extend further to approximately-bandlimited functions: for example, if f∗ satisfies

∑
` a

2
`e
tω2

` < ∞,
where f∗ =

∑
` a`u`, then, again with n & p(Ω) log p(Ω) samples, we get (Theorem 4)

‖f̂ − f∗‖2L2

vol(M)
.

p(Ω)

n
σ2 +O(e−cΩ

2t).

Both bounds are minimax optimal in the presence of noise.

These results follow from our Theorem 1, which is a more general result on regression in a reproducing
kernel Hilbert space. Theorems 3 and 4 adapt this result to a specific choice of kernel.

The paper is organized as follows. Sections 2 and 3 describe our framework, survey the relevant
literature, and compare it to our results. Section 4 contains our main theoretical results. The proofs
are in the appendices in the supplementary material. The key technical results are Theorem 1, which
is proved via empirical risk minimization and operator concentration inequalities, and Lemma 1 (used
to prove Theorem 2), which is proved via heat kernel comparison results on manifolds of bounded
curvature.

2 Framework and notation

2.1 Kernel regression and interpolation

Kernels provide a convenient and popular framework for nonparametric function estimation. They
allow us to treat the evaluation of a nonlinear function as a linear operator on a Hilbert space,
and they give us a computationally feasible way to estimate such a function (which is often in an
infinite-dimensional space) from a finite set of samples. Here, we review some of the key ideas that
we will need in analyzing kernel methods.

Let S be an arbitrary set, and suppose k : S × S → R is a positive definite kernel. Let H be
its associated reproducing kernel Hilbert space (RKHS), characterized by the identity f(x) =
〈f, k(·, x)〉H for all f ∈ H and x ∈ S.

Now, suppose we have X1, . . . , Xn ∈ S, f∗ ∈ H is an unknown function, and we observe Yi =
f∗(Xi) + ξi for i = 1, . . . , n, where the ξi’s represent noise. A common estimator for f∗ is the
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regularized empirical risk minimizer

f̂ = arg min
f∈H

1

n

n∑
i=1

(Yi − f(Xi))
2 + α‖f‖2H, (1)

where α ≥ 0 is a regularization parameter. The solution to the optimization problem (1) is

f̂(x) =

n∑
i=1

aik(x,Xi), (2)

where a = (a1, . . . , an) ∈ Rn is given by

a = (nαIn +K)−1Y ,

where Y = (Y1, . . . , Yn) ∈ Rn, K is the kernel matrix on X1, . . . , Xn defined by Kij = k(Xi, Xj),
and In is the n× n identity matrix.

In general, f̂ corresponds to a ridge regression estimate of f∗. The limiting case α = 0 can be recast
as the problem

f̂ = arg min
f∈H

‖f‖H s.t. Yi = f(Xi), i = 1, . . . , n.

In this case, if the Xi’s are distinct, then f̂ interpolates the measured values of f∗.

2.2 Kernel integral operator and eigenvalue decomposition

A common tool for analyzing kernel interpolation and regression, which will play a central role in
our analysis in Section 4, is the eigenvalue decomposition of a kernel’s associated integral operator.
The integral operator T is defined for functions f on S by

(T (f))(x) =

∫
S

k(x, y)f(y) dµ(y),

where µ is a measure on S. Under certain assumptions1 on S, µ, and k, T is a well-defined operator
on L2(S), is compact and positive definite with respect to the L2 inner product, and has eigenvalue
decomposition

T (f) =

∞∑
`=1

t`〈f, v`〉L2
v`, f ∈ L2(S),

where the eigenvalues {t`} are arranged in decreasing order and converge to 0, and the eigenfunctions
{v`} are an orthonormal basis for L2(S). We also have k(x, y) =

∑∞
`=1 t`v`(x)v`(y), where the

convergence is uniform and in L2.

This eigendecomposition plays an important role in characterizing the RKHS H associated with the
kernel k. Combining this expression for k with the identity 〈f, k(·, x)〉H = f(x), we can derive the
fact that, for all f, g ∈ H,

〈f, g〉H =

∞∑
`=1

〈f, v`〉L2
〈g, v`〉L2

t`
.

This implies that 〈f, g〉L2 = 〈T 1/2(f), T 1/2(g)〉H for all f, g ∈ L2(S). Thus T 1/2 is an isometry
from L2(S) to H, and so for any f ∈ H, we can write f = T 1/2(f0), where ‖f0‖L2 = ‖f‖H. This
implies that, for any p ≥ 1, the projection of f onto (span{v1, . . . , vp})⊥ has L2 norm at most√
tp+1‖f‖H. Hence the decay of the eigenvalues {t`} of T characterizes the “effective dimension”

of H in L2, which will be a fundamental building block for our analysis.

1E.g., S is a compact metric space; µ is strictly positive, finite, and Borel; and k is continuous [7].
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2.3 Spectral decomposition of a manifold and related kernels

We now turn to our specific problem of regression on a manifold, considering how an RKHS
framework can help us. The book [8] is an excellent reference for the material in this section.

A smooth, compact Riemannian manifold M (without boundary) can be analyzed via the spectral
decomposition of its Laplace-Beltrami operator ∆M (we will often call it the Laplacian for short).
This operator is defined as ∆Mf := −div(∇f). In Rm, it is simply the operator −

∑m
i=1

∂2

∂x2
i

. The
Laplacian can be diagonalized as

∆Mf =

∞∑
`=0

λ`〈f, u`〉L2
u`,

where 0 = λ0 < λ1 ≤ λ2 ≤ · · · , the sequence λ` → ∞ as ` → ∞, and {u`} is an orthonormal
basis for L2(M) (all integrals are with respect to the standard volume measure on M).

The eigenvalues {λ`} are the squared resonant frequencies of M, and the eigenfunctions {u`} are
the vibrating modes, since solutions to the wave equation ftt +∆Mf = 0 on M have the form

f(t, x) =

∞∑
`=0

(a` sin
√
λ`t+ b` cos

√
λ`t)u`(x).

The classical Weyl law (e.g., [8, p. 9]) says that, if M has dimension m, then, asymptotically,

|{` : λ` ≤ λ}| ∼ cm vol(M)λm/2

as λ → ∞, where cm = (2π)−m Vm, with Vm denoting the volume of the unit ball in Rm.

Using the spectral decomposition of the Laplacian, any number of kernels can be defined by

k(x, y) =

∞∑
`=0

g(λ`)u`(x)u`(y)

for some function g. With this construction, the integral operator of k has eigenvalue decomposition
T (f) =

∑
`≥0 g(λ`)〈f, u`〉L2

u`, hence, per Section 2.2, ‖f‖2H =
∑
`≥0〈f, u`〉2/g(λ`).

Our results could, in principle, apply to many kernels with the above form, but we will primarily
consider bandlimited kernels and the heat kernel. The bandlimited kernel with bandlimit Ω > 0 is

kblΩ (x, y) =
∑
λ`≤Ω2

u`(x)u`(y),

which is the reproducing kernel of the space of bandlimited functions on M:

Hbl
Ω =

{
f ∈ L2(M) : f ∈ span{u` : λ` ≤ Ω2}

}
with ‖f‖Hbl

Ω
= ‖f‖L2 for f ∈ Hbl

Ω . The heat kernel is a natural counterpart to the common Gaussian
radial basis function on Rm. Detailed treatments can be found in [8, 9]. We will define it for t > 0 as

kht (x, y) =

∞∑
`=0

e−λ`t/2u`(x)u`(y).

Its corresponding RKHS is

Hh
t =

{
f ∈ L2(M) : ‖f‖2Hh

t
=

∞∑
`=0

eλ`t/2〈f, u`〉2L2
< ∞

}
.

The heat kernel kht gets its name from the fact that it is the fundamental solution to the heat equation
ft +

1
2∆Mf = 0 on M. The heat kernel on Rm is kht (x, y) =

1
(2πt)m/2 e

−‖x−y‖2/2t.
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3 Related work

3.1 Dimensionality reduction and low-dimensional structure

There is an extensive literature on the use of low-dimensional manifold structure in machine learning.
Perhaps most prominently, nonlinear dimensionality-reduction techniques that exploit manifold
structure have been developed, such as [10–14]. More recently, there has been explicit inclusion of
manifold models into neural network architectures [15–18]. However, none of this research provides
nonasymptotic performance guarantees.

On the other hand, the field of high-dimensional statistics provides many theoretical guarantees
for low-dimensional data models. For example, there are extensive bodies of theory for models
such as sparsity [19, 20] and low-rank structure [21]. One can view low-dimensional manifold
models as a more powerful generalization of such structures. One interesting work that bridges
the gap between manifold models and high-dimensional statistics is [22], which is another explicit
dimensionality-reduction technique. Another similar line of work is the study of algebraic variety
models (e.g., [23]), which are also nonlinear and low-dimensional.

While the great success of the many implicit and explicit dimensionality-reducing methods provides
empirical evidence for the possibility of exploiting manifold structure, there are still very large gaps
in our theoretical understanding of when and why these methods can be effective.

3.2 Manifold regression and kernels

Regression on manifold domains has been explored in a number of previous works. The closely-
related problem of density estimation is considered in [24, 25]. Particularly relevant to our paper,
[24] uses the same bandlimited kernel and heat kernel that we highlight (and it analyzes the spectral
decomposition of these kernels via the asymptotic Weyl law). It is primarily interested in the power
of the error rate that can be obtained by assuming the function (density) of interest has a certain
number of derivatives; in particular, it shows that ‖f̂ − f∗‖2L2

. n−2s/(m+2s) if f has s bounded
derivatives. Both works, like ours, assume explicit knowledge of the manifold.

Perhaps more relevant to practical applications, [26] seeks to provide a manifold-agnostic algorithm
via local linear approximations to the data manifold; however, it is also primarily interested in
asymptotic error rates. The paper [27] examines related methods asymptotically in more detail.
Another manifold-agnostic method similar in spirit to ours is that of [28], who consider kernel
estimation with (Euclidean) Gaussian radial basis functions. They obtain the optimal n−2s/(m+2s)

rate for s-smooth regression functions; however, their assumptions are quite different from ours in
that their regression functions must have smooth extensions to (a neighborhood in) the embedding
space. Similarly, [29] obtain the optimal rate for functions that are s-smooth (in the manifold calculus,
similarly to our assumptions) using a neural-network–type architecture. However, they implicitly
assume that the manifold is C∞-embedded in Euclidean space.

In [30, 31], the authors explore Gaussian process models (which are closely related to kernel methods)
on a manifold.

The error rate ‖f̂ − f∗‖2L2
. n−2s/(m+2s) is standard (and minimax optimal) in nonparametric

statistics. However, our function model and results are quite different in nature. The regression
functions we consider are infinitely smooth, and we show that the estimation of these functions is
much like a finite-dimensional regression problem; not only do we get an n−1 error rate (as we do
when we take s → ∞ above), but the constant in front of this rate and the minimum number of
samples needed are proportional to the finite effective dimension.

Finally, we also note that the idea of using a kernel that can be expressed in terms of the spectral
decomposition of a manifold’s Laplacian also has precedent. In addition to [24], the paper [32]
suggests using such kernels for interpolation in Sobolev spaces on a manifold.

3.3 General kernel interpolation and regression

Regression is a strict superset of interpolation; interpolation typically assumes that we sample function
values exactly (i.e., there is no noise), while regression allows for (and often assumes) noise.
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There is a substantial literature on the use of a kernel for interpolation of functions in an RKHS (often,
in this literature, referred to as the “native space” of the kernel). A fairly comprehensive survey can be
found in [33]. Distinct from our work, most of this literature considers deterministic samples of the
function of interest. Given (deterministic) sample locations {X1, . . . , Xn} ⊂ S, results in this litera-
ture tend to have the form ‖f̂−f∗‖∞ ≤ g(hX)‖f∗‖H, where hX = maxx∈S mini∈{1,...,n} d(x,Xi),
and g(h) is a function that decreases to 0 as h → 0 at a rate that depends on the properties of the
kernel k (typically as a power or exponentially). Some recent work applying kernel interpolation
theory to manifolds is [34–36].

Much of the literature on (noisy) RKHS regression primarily considers the case when the eigenvalues
of the integral operator (described in Section 2.1) decay as t` . `−b. In [37–39], it is shown that the
minimax optimal error rate is ‖f∗ − f̂‖2L2

. n−b/(b+1). Many other recent papers have explored this
rate of convergence in a variety of settings [40–43]. Several of these include more general spectral
regularization algorithms, suggested by [44]. Some interesting recent extensions consider a variety
of algorithms that may be more practical for large-data situations. These include iterative methods
[45–47] and distributed algorithms [48–50].

Another set of results (which are the most similar to ours) uses a regularized effective dimension
pα =

∑
`

t`
α+t`

, where α is the regularization parameter. This is considered in [51] and greatly refined
in [52]. Variations on these results can be found in [53]. See Section 4.1 for further discussion and
comparison to our results. The earlier report [54] resembles our work in its analysis of truncated
operators. We note that in the case of power-law eigenvalue decay, these results (and ours) recover
the n−b/(b+1) error rate.

It is interesting to note that the squared error rate n−b/(b+1) can recover the standard rate for
regression of s-smooth functions on manifolds. The Sobolev space of order s is the RKHS of the
kernel

∑
`(1 + λ`)

−su`(x)u`(y). By the Weyl law, its eigenvalues decay according to t` ≈ `−2s/m;
plugging 2s/m in for b recovers the standard rate n−2s/(m+2s).

4 Main theoretical results

4.1 Dimensionality in RKHS regression

Here we present our main results for general regression and interpolation in an RKHS. Our results
also apply to the slightly more general setting of learning in an arbitrary Hilbert space (see, e.g., [52]),
but we do not explore this here. We continue to use the notation established in Sections 2.1 and 2.2,
and we further assume that µ(S) = 1 (since µ is finite, we can always obtain this by a rescaling). We
assume that the function samples we take are uniformly distributed on S:

Assumption 1. The sample locations X1, . . . , Xn are i.i.d. according to µ.

Since H is, in general, infinite-dimensional, there is typically no hope of recovering an arbitrary
f∗ ∈ H to within a small error in H-norm from a finite number of measurements. However, the
discussion in Section 2.2 suggests a more feasible goal. Since any set of functions bounded in H-norm
can be approximated within an arbitrarily small L2 error in a finite-dimensional subspace of L2, as
long as the number of measurements is proportional to this loosely-defined “effective dimension” of
H, we have hope of recovering f∗ accurately in an L2 sense.

Let p > 0 be a fixed integer dimension. Let G = span{v1, . . . , vp} ⊂ H ∩ L2(S), and let G⊥ be its
orthogonal complement in L2(S) and H. We denote by T G and T G⊥ the restrictions of T onto G
and G⊥, respectively. We make the following assumptions on the eigenvalues and eigenfunctions of
T :

Assumption 2. For some constants Kp and Rp, we have
∑p
`=1 v

2
` (x) ≤ Kp and

∑∞
`=p+1 t`v

2
` (x) ≤

Rp for almost every x ∈ S.

This says that the energy of the eigenfunctions of T is reasonably spread out over the domain
S—for the basis {v1, . . . , vp}, this is a type of incoherence assumption. If the eigenfunctions are
well-behaved, we can expect Kp ≈ p and Rp ≈ tr T G⊥ . This holds in our original example
of the Fourier series on the circle, since the sinusoid basis functions are bounded by an absolute
constant. Our “pointwise” Weyl law in Theorem 2 shows that we have similar behavior for the
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spectral decomposition of a manifold. Note that Kp in Assumption 2 is identical to the quantity K(p)
in [6], which uses similar methods to handle a much simpler problem.

Assumption 3. For some γ, γ′ ≥ 0, we have tr T
G⊥

tp+1
≤ γp and Rp

tp+1
≤ γ′Kp.

This assumption greatly simplifies the notation of our results and is always true with an appropriate
choice of γ and γ′. γ is often small when tp+1 is in the decaying “tail” of eigenvalues. If the
eigenvalues decay like t` ≈ `−b, we can take γ ≈ (b− 1)−1. Note that a similar assumption appears
in [55]. If Kp ≈ p and Rp ≈ tr T G⊥ , then γ ≈ γ′.

With these assumptions in place, we can state our main theorem for RKHS regression:
Theorem 1. Suppose Assumptions 1 to 3 hold. Let δ ∈ (0, 1). If

n ≥ (7 ∨ 3γ′)Kp log
(2 ∨ 4γ)p

δ
,

then the following hold for the kernel estimate f̂ with regularization parameter α ≥ 0:

1. If there is no noise, that is, Yi = f∗(Xi) for each i, then, with probability at least 1 − δ,
uniformly in f∗,

‖f̂ − f∗‖L2
≤ (

√
2α+ 6

√
tp+1)‖f∗‖H.

2. Now suppose that Yi = f(Xi) + ξi, where the ξi’s are i.i.d., zero-mean, sub-exponential
random variables with variance σ2 and are independent of the Xi’s. If we additionally have

n

log2 n
≥ C(1 ∨ γ′)

Kp

p

‖ξ‖2ψ1

σ2
,

where C is a universal constant, and α ≥ 54tp+1, then, with probability at least 1 − 2δ,
uniformly in f∗,

‖f̂ − f∗‖L2
≤ (

√
2α+ 6

√
tp+1)‖f∗‖H + 4

(
1 +

√
γ

8

) √
p+ 2

√
log 4/δ

√
n

σ.

Our results guarantee an L2 recovery error bounded by two terms: (1) a “bias” depending on the
next tail eigenvalue tp+1 and the regularization coefficient α, and (2) a “variance” term that behaves
similarly to the error found in p-dimensional regression. When Kp ≈ p, this result yields the
n & p log p sample complexity that we expect. If H is, in fact, p-dimensional (which our framework
can handle with t` = 0 for ` > p), this result recovers standard p-dimensional regression bounds
such as those in [6].

We assume i.i.d. noise for simplicity, but our result could easily be extended beyond this case. Note
that if the noise is Gaussian, the ratio ‖ξ‖2ψ1

/σ2 is an absolute constant.

For interpolation (α = 0) in the noiseless case, this theorem yields ‖f̂ − f∗‖L2
≤ 6

√
tp+1‖f∗‖H. In

the noisy case, the lower bound on α can be relaxed to get a result with worse constants. We obtain
qualitatively similar results whenever α & tp+1. The assumptions and results of [52] (specialized
to our setting) are comparable to Theorem 1 when we set α ≈ tp+1. However, our results have the
advantage of applying even in infinite-dimensional settings with no regularization: the regularized
effective dimension pα =

∑
`

t`
α+t`

from their work would be infinite if α = 0.

Although we do not explore it here, we note that one could generalize our approach to the case
where the sampling measure differs from that under which the L2 norm is calculated. We could
simply bound the ratio (Radon-Nikodym derivative) between the two measures, or we could perform
leverage-score sampling to mitigate the need for bounding the eigenfunctions (see, e.g., [55] for
similar ideas).

In the presence of noise, Theorem 1 is minimax optimal over the set {f ∈ H : ‖f‖H ≤ r} for any
r > 0 if p is chosen so that pnσ

2 ≈ tp+1r
2. In this case,{

f ∈ span{v1, . . . , vp} : ‖f‖L2 .

√
p

n
σ

}
⊂ {f ∈ H : ‖f‖H ≤ r},

and the minimax rate (with, say, Gaussian noise) over the left-hand set is well-known to be
√

p
nσ.
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4.2 Manifold function estimation

We now describe how we can leverage Theorem 1 to establish sample complexity bounds for
regression on a manifold. Suppose, again, that M is an m-dimensional smooth, compact Riemannian
manifold. To study the eigenvalues and eigenfunctions of the Laplacian ∆M, we consider the heat
kernel kht . Our key tool is the following fact:

Lemma 1. Let ε ∈ (0, 2/3). Suppose the sectional curvature of M is bounded above by κ. For
t ≤ 6ε

(m−1)2κ and all x ∈ M,

kht (x, x) ≤
1 + ε

(2πt)m/2
.

This is a precise quantification of the well-known asymptotic behavior of the heat kernel as t → 0
(see, e.g., [8, Section VI]). It is derived in Appendix B from a novel set of more general upper and
lower bounds for the heat kernel on a manifold of bounded curvature; we note that these may be of
independent interest.

Our nonasymptotic Weyl law is a simple consequence of Lemma 1:

Theorem 2. If M has sectional curvature bounded above by κ, and ε ∈ (0, 2/3), then, for all
x ∈ M and λ ≥ m(m−1)2κ

6ε ,

Nx(λ) :=
∑
λ`≤λ

u2
`(x) ≤

2(1 + ε)
√
m

(2π)m
Vmλm/2.

With appropriate rescaling by vol(M), this gives us a bound on the constant Kp from Section 4.1.
Since this result bounds the eigenfunctions, it is a type of “local Weyl law” (see, e.g., [56]). Integrating
this result over M gives a nonasymptotic version of the traditional Weyl law. Our bound is within the
modest factor 2(1 + ε)

√
m of the optimal asymptotic law. For simplicity, we will take ε = 1/2 in

what follows, but slightly better constants could be obtained with smaller ε.

The following result for the finite-dimensional bandlimited kernel is a straightforward consequence
of Theorems 1 and 2:

Theorem 3. Suppose the sectional curvature of M is bounded above by κ. Let Ω2 ≥ m(m−1)2κ
3 ,

and suppose f∗ ∈ Hbl
Ω . Let f̂ be the kernel regression estimate with kernel kblΩ .2

Let δ ∈ (0, 1), and suppose n ≥ 7p log 2p
δ , where

p = p(Ω) :=
3
√
mVm

(2π)m
vol(M)Ωm. (3)

Under the same noise assumptions as in Theorem 1, if n
log2 n

≥ C‖ξ‖2ψ1
/σ2, then, with probability at

least 1− 2δ, uniformly in f∗,

‖f̂ − f∗‖L2√
vol(M)

≤ 4

√
p+ 2

√
log 4/δ

√
n

σ.

To analyze the heat kernel, which has an infinite number of nonzero eigenvalues, we need the
following additional corollary of Lemma 1, which will let us bound the constant Rp from Section 4.1:

Lemma 2. For ε ∈ (0, 2/3), t ≤ 6ε
(m−1)2κ , λ ≥ m/t, and all x ∈ M,

∑
λ`≥λ

e−λ`t/2u2
`(x) ≤ e−λt/2

2(1 + ε)
√
m

(2π)m
Vmλm/2.

From this, we obtain the following result:

2The calculation of this estimate is somewhat different than usual, since the rank of the kernel matrix K is at
most the dimension of Hbl

Ω . We do not use regularization, but we use the Moore-Penrose pseudoinverse of K
instead of K−1.
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Theorem 4. Suppose the sectional curvature of M is bounded above by κ. Let t ≤ 3
(m−1)2κ , and

suppose f∗ ∈ Hh
t . Fix Ω2 ≥ m/t, and let f̂ be the kernel regression estimate of f∗ with kernel kht

and regularization parameter α ≥ 54 e
−Ω2t/2

vol(M) .

Let δ ∈ (0, 1), and suppose n ≥ 7p log 4p
δ , with p defined as in (3).

Under the same noise assumptions as in Theorem 1, if n
log2 n

≥ C‖ξ‖2ψ1
/σ2, then, with probability at

least 1− 2δ, uniformly in f∗,

‖f̂ − f∗‖L2√
vol(M)

≤

(
√
2α+ 6

√
e−Ω2t/2

vol(M)

)
‖f∗‖Hh

t
+

9

2

√
p+ 2

√
log 4/δ

√
n

σ.

These results illustrate how we can exploit the effective finite dimension of spaces of smooth functions
on manifolds in regression. This function space dimension (and hence the sample complexity of
regression) grows exponentially in the manifold dimension, rather than in the larger ambient data
dimension, if M is embedded in a higher-dimensional space. In practice, the true bandlimited or heat
kernels may be difficult to compute. It is an interesting open question whether we can obtain similar
results for manifold-agnostic algorithms (the work of [26], although it does not apply to our function
classes, is an interesting potential starting point).

As discussed in Section 4.1, our general regression result Theorem 1 is similar to prior results [51,
52], but it has the advantage of applying even without regularization in the noiseless case. However,
we note that one could obtain results in many ways comparable (minus this advantage) to Theorems 3
and 4 by plugging Theorem 2 and Lemma 2 into those previous regression results. We could not do
this with classical power-law results such as [37–39], since our eigenvalue decay is exponential rather
than power-law.

Since the (classical) Weyl law also lower bounds the complexity of spaces of bandlimited functions,
then, as discussed in Section 4.1, Theorems 3 and 4 (for the optimally chosen value of Ω) are minimax
optimal when there is noise. Furthermore, the requirement n & p log p is necessary in general: if
we consider the torus Tm, recovering arbitrary Ω-bandlimited functions requires every point on Tm

to be within distance O(1/Ω) of a sample point; considering a uniform grid on Tm and a coupon
collector argument makes it clear that n & O(Ωm log Ωm) randomly sampled points are required.

As mentioned in Section 4.1 for general kernel learning, these results could be extended to consider
nonuniform sampling over the manifold.

There are also some very interesting connections between kernel methods and neural networks. The
recent works [57, 58] show that trained multi-layer neural networks approach, in the infinite-width
limit, a kernel regression function with a “neural tangent kernel” that depends on the initialization
distribution of the weights and the network architecture. This follows literature on the connections
between Gaussian processes (closely related to kernel methods) and wide neural networks (see, e.g.,
[59, 60]). It would be very interesting to explore any potential connections between these and the
kernels considered in this paper, which are derived from a manifold’s spectral decomposition.

Broader Impact

The results in this paper further illuminate the role of low-dimensional structure in machine learning
algorithms. An improved theoretical understanding of the performance of these algorithms is
increasingly important as tools from machine learning become ever-more-widely adopted in a range
of applications with significant societal implications. Although, in general, there are well-known
ethical issues that can arise from inherent biases in the way data are sampled and presented to
regression and classification algorithms, we do not have reason to believe that the methods presented
in this paper would either enhance or diminish these issues. Our analysis is abstract and, for better or
for worse, assumes a completely neutral sampling model (uniform over a manifold).
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