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Abstract

Speech synthesis is an important practical generative modeling problem that has
seen great progress over the last few years, with likelihood-based autoregressive
neural models now outperforming traditional concatenative systems. A downside
of such autoregressive models is that they require executing tens of thousands
of sequential operations per second of generated audio, making them ill-suited
for deployment on specialized deep learning hardware. Here, we propose a new
learning method that allows us to train highly parallel models of speech, without
requiring access to an analytical likelihood function. Our approach is based on
a generalized energy distance between the distributions of the generated and real
audio. This spectral energy distance is a proper scoring rule with respect to the
distribution over magnitude-spectrograms of the generated waveform audio and
offers statistical consistency guarantees. The distance can be calculated from
minibatches without bias, and does not involve adversarial learning, yielding a
stable and consistent method for training implicit generative models. Empirically,
we achieve state-of-the-art generation quality among implicit generative models, as
judged by the recently-proposed cFDSD metric. When combining our method with
adversarial techniques, we also improve upon the recently-proposed GAN-TTS
model in terms of Mean Opinion Score as judged by trained human evaluators.

1 Introduction

Text-to-speech synthesis (TTS) has seen great advances in recent years, with neural network-based
methods now significantly outperforming traditional concatenative and statistical parametric ap-
proaches [39, 35]. While autoregressive models such as WaveNet [35] or WaveRNN [15] constitute
the current state of the art in speech synthesis, their sequential nature is often seen as a drawback.
They generate only a single sample at a time, and since audio is typically sampled at a frequency of
18kHz to 44kHz this means that tens of thousands of sequential steps are necessary for generating
a single second of audio. The sequential nature of these models makes them ill-suited for use with
modern deep learning hardware such as GPUs and TPUs that are built around parallelism.

At the same time, parallel speech generation remains challenging. Existing likelihood-based models
either rely on elaborate distillation approaches [27, 36], or require large models and long training
times [29, 22]. Recent GAN-based methods provide a promising alternative to likelihood-based
methods for TTS [3, 22]. Although they do not yet match the speech quality of autoregressive models,
they are efficient to train and employ fully-convolutional architectures, allowing for efficient parallel
generation. However, due to their reliance on adversarial training, they can be difficult to train.
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To address these limitations we propose a new training method based on the generalized energy

distance [10, 32, 33], which enables the learning of implicit density models without the use of
adversarial training or requiring a tractable likelihood. Our method minimizes a multi-resolution
spectrogram loss similar to previous works [37, 38, 9, 6], but includes an additional repulsive term

that encourages diverse samples and provides a statistical consistency guarantee. As a result, our
models enjoy stable training and rapid convergence, achieving state-of-the-art speech quality among
implicit density models.

In addition to demonstrating our proposed energy distance on the speech model of Bińkowski
et al. [3], we further propose a new model for generating audio using an efficient overlap-add
upsampling module. The new model is faster to run, while still producing high quality speech.
Finally, we show that our proposed energy distance can be combined with GAN-based learning,
further improving on either individual technique. An open source implementation of our generalized
energy distance is available at https://github.com/google-research/google-research/
tree/master/ged_tts.

2 Related work on speech synthesis

Our task of interest is synthesizing speech waveforms conditional on intermediate representations
such as linguistic and pitch features, as usually provided by a separate model in a 2-step process.
Here we briefly review the related literature on this problem.

Autoregressive models. van den Oord et al. [35] proposed WaveNet, an autoregressive model that
produces high-fidelity speech by directly generating raw waveforms from the input features. WaveNet
is trained by maximizing the likelihood of audio data conditional on the aforementioned linguistic and
pitch features. While WaveNet’s fully convolutional architecture enables efficient training on parallel
hardware, at inference time the model relies on an autoregressive sampling procedure, generating the
waveform one sample at a time. This necessitates tens of thousands of sequential steps for generating
a single second of audio, making it ill-suited for real-time production deployment. These limitations
were partially alleviated by Kalchbrenner et al. [15]. While still autoregressive, using a single-layer
recurrent neural network, weight sparsification and custom kernels, their WaveRNN model achieves
faster-than-realtime on-device synthesis.

Probability density distillation. Parallel WaveNet [36] and ClariNet [27] used a trained autoregres-
sive model such as WaveNet as a teacher network distilling its knowledge into a non-autoregressive
likelihood student model that is trained to minimize the Kullback-Liebler (KL) divergence between
student and teacher. Both approaches rely on an Inverse-Autoregressive Flow (IAF; Kingma et al.
[19]) as a student network. The IAF is structured in such a way that, given a set of latents, the
corresponding observables can be generated efficiently in parallel.

While the methods of Ping et al. [27] and van den Oord et al. [36] differ in the choice of distributions
used in their models, they both found that optimizing the KL-divergence alone was insufficient for
obtaining high-quality generations, and required careful regularization and auxiliary losses for the
student models to converge to a good solution.

Flow-based models. To avoid having to use a two-stage training pipeline required by the distillation
approaches, FloWaveNet [16] and WaveGlow [29] propose directly training a convolutional flow
model based on the architectures of RealNVP [7] and Glow [18] respectively. These models can be
trained using maximum likelihood, and approach the speech quality of WaveNet or its distillations.
However, due to the limited flexibility of their coupling layers (the building blocks used to construct
invertible models) flow-based approaches tend to require large networks. Indeed, both WaveGlow
and FloWaveNet have ⇡ 100 convolutional layers, and are slow to train [37].

Concurrently to our work Ping et al. [28] have made great progress towards reducing the size of
flow-based TTS models. Their WaveFlow model achieves high quality speech synthesis using 128
sequential steps (more than two orders of magnitude fewer than a fully autoregressive model) while
maintaining a small parameter footprint.

Implicit generative models. To date, Generative Adversarial Networks (GANs; Goodfellow et al.
[11]) are mostly applied to image generation, where they are known to produce crisp, high-quality
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images using fully convolutional architectures and relatively small models [5]. Their application to
speech synthesis may provide an alternative to probability distillation that has the potential to match
it in terms of speech quality. Three recent approaches, MelGAN [22], GAN-TTS [3] and Parallel
WaveGAN [38], made significant progress in this direction. While still not matching WaveNet or
ClariNet in speech quality, these works have proven the feasibility of solving TTS with implicit
generative models. However, due to the reliance on adversarial learning, GANs can still be difficult
to train. MelGAN and GAN-TTS rely on carefully chosen regularization and an ensemble of
discriminators to achieve stable training, and MelGAN and Parallel WaveGAN use various auxiliary
losses. This training difficulty also limits the available model choice, as only certain types of models
(e.g. with batch normalization and spectral normalization) are known to be trainable.

3 Maximum Mean Discrepancy and Energy Distance

Before we present our proposed training method in Section 4, we briefly review previous work on
learning implicit generative models, and we introduce the primitives on which our method is built.

Although GANs have recently become the dominant method for training implicit generative models
without tractable likelihood, another popular approach to learning these types of models is a class of
methods based on minimizing Maximum Mean Discrepancy (MMD), defined as

DMMD(p|q) = sup
f2H

⇥
Ex⇠p(x)[f(x)]� Ey⇠q(y)[f(y)]

⇤
, (1)

where f is a critic function which is constrained to a family of functions H [see 12], and p(x) and
q(y) are the data and model distributions respectively. When H is given by a family of neural network
discriminators, MMD becomes very similar to GANs, as explained by [2]. The main difference is
that for MMD the maximization over f 2 H is assumed to be analytically tractable, while GANs
maximize over f approximately by taking a few steps of stochastic gradient descent. The benefit of
exact optimization is that MMD methods are provably stable and consistent, unlike GANs, although
this comes at the cost of more restrictive critic families H.

Gretton et al. [12] show that exact optimization is indeed possible if H is chosen to be a reproducing
kernel Hilbert space (RKHS). In that case, there exists a kernel function k 2 H such that every critic
f 2 H can be expressed through its inner product with that kernel:

f(x) = hf, k(·,x)iH =
X

i

↵ik(x,xi). (2)

In other words, f is constrained to be a weighted sum of basis functions k(x,xi), with weights ↵.
Exact optimization over ↵ then gives the following expression for the squared MMD:

D2
MMD(p|q) = E[k(x,x0) + k(y,y0)� 2k(x,y)], (3)

where x,x0
⇠ p(x) and y,y0

⇠ q(y) are independent samples from p and q.

Since (3) only depends on expectations over q and p it can be approximated without bias using Monte
Carlo sampling. If our dataset contains N samples from p(x) and we draw M samples from our
model q(y), this gives us the following stochastic loss function [12]:

L(q) =
1

N(N � 1)

X

n 6=n0

k(xn,xn0) +
1

M(M � 1)

X

m 6=m0

k(ym,ym0)�
2

MN

NX

n=1

MX

m=1

k(xn,ym).

(4)

Loss functions of this type were used by [8, 23] and [4] to train generative models without requiring
a tractable likelihood function.

An alternative view on MMD methods is in terms of distances. As explained by Sejdinovic et al. [32],
the kernel k(·, ·) of a RKHS H induces a distance metric d(·, ·) via

d(x,y) =
1

2
(k(x,x) + k(y,y)� 2k(x,y)). (5)

Assuming that k(x,x) = k(y,y) = c with c being a constant, equation (3) can equivalently be
expressed in terms of this distance:

D2
MMD(p|q) = D2

GED(p|q) = E[2d(x,y)� d(x,x0)� d(y,y0)], (6)
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which is known as the generalized energy distance [GED; see e.g. 32, 33, 30].

In most practical applications of generative modeling, such as speech synthesis, we are interested in
learning conditional distributions q(x | c) using examples xi, ci from the data distribution p. In such
cases we usually only have access to a single example xi for each unique conditioning variable ci.
This means that we cannot evaluate the term E[d(x,x0)] in (6). However, this term only depends on
the data distribution p and not on our generative model q, so it can be dropped during training. The
training loss then becomes

LGED(q) = E[2d(x,y)� d(y,y0)], (7)

with y,y0
⇠ q(·| c) independent samples from our model, conditioned on the same features c. This

type of loss was studied by Gneiting and Raftery [10] under the name energy score. They find that
(7) is a proper scoring rule, i.e. it can lead to a statistically consistent learning method, if the distance
metric d(·, ·) is negative definite. This result is more general than the consistency results for MMD,
and also allows for the use of distances that do not correspond to reproducing kernel Hilbert spaces.
We make use of this result for deriving our proposed learning method, which we present in Section 4.

4 A generalized energy distance based on spectrograms

We require a method to learn generative models that can sample speech in a small number of parallel
steps, without needing access to a tractable likelihood function. The method we propose here achieves
this by computing a generalized energy distance, or energy score, between simulated and real data,
and minimizing this loss with respect to the parameters of our generative model. Here, we assume
that our dataset consist of N examples of speech xi, labeled by textual or linguistic features ci. Our
generative model is then a deep neural network that takes a set of Gaussian noise variables zi, and
maps those to the audio domain as yi = f✓(ci, zi), with ✓ the parameters of the neural network. This
implicitly defines a distribution q✓(y | c) of audio y conditional on features c.

Given a minibatch of M examples {xi, ci}Mi=1, we use our model to generate two independent samples
yi = f✓(ci, zi), y0

i = f✓(ci, z0i) corresponding to each input feature ci, using two independently
sampled sets of noise variables zi, z0i. We then calculate the resulting minibatch loss as

L⇤

GED(q) =
MX

i=1

2d(xi,yi)� d(yi,y
0

i), (8)

where d(·, ·) is a distance metric between samples. The minibatch loss L⇤

GED(q) is an unbiased
estimator of the energy score (7), and minimizing it will thus minimize the generalized energy
distance between our model and the distribution of training data, as discussed in Section 3.

In practice the performance of the energy score strongly depends on the choice of metric d(·, ·).
When generating high-dimensional data, it is usually impossible to model all aspects of the data
with high fidelity, while still keeping the model q✓(y |c) small enough for practical use. We thus
have to select a distance function that emphasizes those features of the generated audio that are most
important to the human ear. This is similar to how GANs impose a powerful visual inductive bias
when modeling images using convolutional neural network discriminators. Following the literature
on speech recognition [20, 1], we thus define our distance function over spectrograms sk(xi), where
a spectrogram is defined as the magnitude component of the short-time Fourier transform (STFT) of
an input waveform, |STFTk(xi)|, where k is the frame-length used in the STFT. Following Engel
et al. [9] we combine multiple such frame-lengths k into a single multi-scale spectrogram loss. Our
distance function to be used in the generalized energy distance then becomes

d(xi,xj) =
X

k2[26,...,211]

X

t

|| skt (xi)� skt (xj)||1 + ↵k|| log s
k
t (xi)� log skt (xj)||2, (9)

where we sum over a geometrically-spaced sequence of window-lengths between 64 and 2048, and
where skt (xi) denotes the t-th timeslice of the spectrogram of xi with window-length k. The weights
↵k of the L2 components of the distance are discussed in Appendix A. As we show there, the analysis
of Gneiting and Raftery [10, Theorem 5.1] can be used to show that this choice makes (8) a strictly
proper scoring rule for learning q✓(x | c) with respect to the ground-truth conditional distribution over
spectrograms, meaning that LGED(q) > LGED(p) for any q(sk(x)| c) 6= p(sk(x)| c). Minimizing this
easily computable loss, we thus obtain a stable and statistically consistent learning method.
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4.1 Why we need the repulsive term

Spectrogram-based losses are popular in the literature on audio generation. For example, the
probability distillation methods ClariNet [27] and Parallel WaveNet [36] minimize the distance
between spectrogram magnitudes of real and synthesized speech in addition to their main distillation
loss; and Pandey and Wang [26] use a spectrogram-based loss for speech enhancement. Multi-
resolution spectrogram losses like ours were used previously by Wang et al. [37] and Yamamoto et al.
[38] for speech synthesis, and by Engel et al. [9] and Dhariwal et al. [6] for music generation. The
main difference between these approaches and our generalized energy distance (Equation 9) is the
presence of a repulsive term between generated data in our training loss, �d(yi,y

0

i), in addition to
the attractive term between generated data and real data, d(xi,yi).

The presence of the repulsive term is necessary for our loss to be a proper scoring rule for learning the
conditional distribution of audio given linguistic features. Without this term, generated samples will
collapse to a single point without trying to capture the full distribution. For many purposes like speech
and music synthesis it might be argued that a single conditional sample is all that is needed, as long as
it is a good sample. Unfortunately the standard loss without the repulsive term also fails at this goal,
as shown in Figure 1. If the conditional distribution of training data is multi-modal, regression losses
without repulsive term can produce samples that lie far away from any individual mode (Figure 1a).
Even if the conditional distribution of training data is unimodal, such losses will tend to produce
samples that are atypical of training data when applied in high dimensions (Figure 1b).

(a) Samples from a two-dimensional Gaussian mixture
model with three components.

(b) Samples x from a single 100-dim Gaussian, with
||x||2 on the x-axis and

Pn
i xi/n on the y-axis.

Figure 1: Samples from models trained by minimizing the energy distance (blue) or the more
commonly used loss without repulsive term (green), and comparing to samples from the training data
(red). Samples from the energy distance trained model are representative of the data, and all sampled
points lie close to training examples. Samples from the model trained without repulsive term are not
typical of training data. A notebook to reproduce these plots is included in our github repository.

In Section 7 we perform ablation experiments to further examine the role of the repulsive term for
our specific application of speech synthesis. There, we show that this term is critical for achieving
optimal performance in practice.

5 Model and training procedure

The models we train using the loss function we derived in Section 4 consist of deep neural networks
that map noise variables to the audio domain, conditioned on linguistic features, that is yi = f✓(ci, zi).
This is similar to how conditional generator networks are usually parameterized in GANs, see
e.g. BigGAN [5] for the analogous case where images y are generated from noise z and class labels
c. For the generator network f✓ we explore 2 different choices:

Simplified GAN-TTS generator To clearly demonstrate the effect that using the generalized
energy distance has on model training, we attempt to control for other sources of variation by
using a generator architecture nearly identical to that of GAN-TTS [3]. Specifically, we use a
deep 1D convolutional residual network [13] consisting of 7 residual blocks (see Figure 3 of the
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Appendix). Compared to the generator of GAN-TTS, we simplify the model by removing the Spectral
Normalization [25] and output Batch Normalization [34], which we empirically find to be either
unnecessary or hurting model performance.

Inverse STFT architecture To experiment with the wider choice in generative models allowed
by our training method, we additionally explore a model that makes use of the Short Time Fourier
Transform (STFT) representation that is prevalent in audio processing, and which we also used to
define the energy distance we use for training. This model takes in the features and noise variables,
and produces an intermediate representation stfti = f✓(ci, zi) which we interpret as representing a
STFT of the waveform yi that is to be generated. Here, f✓ consists of a stack of standard ResNet
blocks that is applied without any upsampling, and is therefore faster to run than our simplified
GAN-TTS generator. We then linearly project stfti to the waveform space by applying an inverse
STFT transformation, thereby upsampling 120⇥ in one step. The final output of this model is thus a
raw waveform, similar to the (simplified) GAN-TTS model. Further details on this architecture are
given in Appendix D.4.

c

]
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InpXt WaYeform Spectrogram Loss
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Figure 2: Visual depiction of our training process.

Training procedure All of our models
are trained on Cloud TPUs v3 with hyper-
parameters as described in Table 5 of the
Appendix. For each training example we
generate two independent batches of au-
dio samples from our model, conditioned
on the same features, which are then used
to compute our training loss. Our model
parameters are updated using Adam [17].
Figure 2 explains this training procedure
visually.

6 Data

Our TTS models are trained on a single-speaker North American English dataset, consisting of speech
data spoken by a professional voice actor. The data consists of approximately sixty thousand utter-
ances with durations ranging approximately from 0.5 seconds to 1 minute, and their corresponding
aligned linguistic features and pitch information. Linguistic features encode phonetic and duration
information, while the pitch is given by the logarithmic fundamental frequency logF0. These fea-
tures, a total of 567, are used by our models as inputs and provide local conditioning information
for generating the raw waveform. At training time, the features are derived from and aligned with
the training audio. At test time, all features are predicted by a separate model; we thus never use
ground-truth information extracted from human speech when evaluating our models.

To account for differences in utterance duration, during training we sample training examples with
probability proportional to their length, and then uniformly sample 2 second windows and their
corresponding features from these utterances. Examples shorter than 2 seconds are filtered out,
leaving a total of 44.6 hours of speech sampled at 24 kHz. The corresponding conditioning features
are provided at 5ms intervals (200 Hz sampling frequency). The trained models are thus tasked with
converting linguistic and pitch features into raw audio, while upsampling by a factor of 120. Our
training setup is similar to that of Bińkowski et al. [3], except that we do not apply any transformations
(e.g. a µ-transform) to the waveforms.

7 Experiments

We evaluate our proposed approach to speech synthesis by training 4 different models on the data set
described in the previous section:

1. The simplified GAN-TTS generator described in Section 5, but trained by minimizing our
generalized energy distance.

2. This same model and loss, but leaving out the repulsive term �d(yi,y
0

i) as in previous
works that use spectrogram-based losses.
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3. Our inverse STFT model from Section 5 trained with the GED loss.
4. A hybrid architecture where we combine the GED loss with adversarial training using an

ensemble of unconditional discriminators. Previous works like GAN-TTS and MelGAN
use an ensemble of GAN discriminators with conditional discriminators taking in features c,
and unconditional discriminators that look only at the generated data y. We hypothesize
that our GED loss is a good substitute for the conditional part of the GAN loss, but that
using an unconditional discriminator might yet offer additional benefit.

To evaluate our generated speech, we report the (conditional) Fréchet Deep Speech Distances (FDSD
and cFDSD; Bińkowski et al. [3]) - metrics that judge the quality of synthesized audio samples based
on their distance to a reference set. These distances are conceptually similar to the FID (Fréchet
Inception Distance; Heusel et al. [14]) commonly used for evaluating GANs of natural images, but
differ in that they (i) are computed on the activations of the Deep Speech 2 [1] speech recognition
model in place of the activations of the Inception network [34] used in FID; and (ii) are computed for
samples with conditioning features that match the reference set in the case of the conditional FDSD
(cFDSD). We closely followed Bińkowski et al. [3] in our implementation of the FDSD metrics,
but note several differences between the two implementations in Appendix E.1. We report these
metrics on both the training data as well as a larger validation set. In addition, we also evaluate
the quality of the synthesized audio using the Mean Opinion Score (MOS) computed from ratings
assigned by trained human evaluators. These samples are generated on an independent set of 1000
out-of-distribution sentences for which no ground-truth data is available.

We compare our models against a careful re-implementation of GAN-TTS [3], built with help from
the authors. Results are reported in Table 1 and include links to samples from each of our models.

Table 1: Mean Opinion Score (MOS) and (conditional) Fréchet Deep Speech Distances [3] (FDSD
and cFDSD respectively) for prior work and the proposed approach. Models trained by minimizing
our spectral generalized energy distance are indicated with GED. Our proposed generator using
inverse STFT upsampling is marked iSTFT. For FDSD and cFDSD we report training scores for
comparison to the numbers in Bińkowski et al. [3], as well as scores on the validation set. We
truncate the sampling distribution of latents when generating from our models, as previously done in
BigGAN [5]; we find this to give a slight boost in performance.

TRAIN TRAIN VALID VALID AUDIO
MODEL MOS FDSD CFDSD FDSD CFDSD SAMPLES

Natural speech 4.41± 0.06 0.143 0.156

Autoregressive models

WAVENET [15] 4.51† ± 0.08
WAVERNN [15] 4.48† ± 0.07

Parallel models

MELGAN [22] 3.72†

PARALLEL WAVEGAN [38] 4.06†

GAN-TTS [3] 4.21† ± 0.05 0.184 0.060

Our models

GAN-TTS re-implementation 4.16± 0.06 0.163 0.053 0.193 0.077 [Link]
GED same generator 4.03± 0.06 0.151 0.020 0.164 0.038 [Link]
GED no repulsive term 3.00± 0.07 0.145 0.023 0.171 0.048 [Link]
GED + iSTFT generator 4.10± 0.06 0.138 0.020 0.164 0.037 [Link]
GED + unconditional GAN 4.25± 0.06 0.147 0.030 0.169 0.040 [Link]

† Mean Opinion Scores reported by other works are included for reference, but may not be directly comparable
due to differences in the data, in the composition of human evaluators, or in the evaluation instructions.

7.1 Discussion

Spectral energy distance for TTS We studied the effect that switching from adversarial training
to training with the spectral energy distance has on the resulting models. To minimize the sources
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of variation we used a generator architecture similar to that of the GAN-TTS (see Section 5 and
Appendix 4). Table 1 shows that in terms of the cFDSD scores models trained with the GED loss
improve by ⇡ 2⇥ on the previously published adversarial model, GAN-TTS, suggesting that they
are better at capturing the underlying conditional waveform distributions. We verified that this
improvement is not due to overfitting by re-training the models on a smaller dataset (38.6 hours) and
re-computing these metrics on a larger validation set (5.8 hours). We note, however, that the improved
cFDSD scores did not transfer to higher subjective speech quality. In fact GED-only samples achieve
lower MOS than the adversarial baseline, and empirically we found that FDSD metrics are most
informative when comparing different versions of the same architecture and training setup, but not
across different models or training procedures.

In two ablation studies (see Appendix B and C) of the components of our spectral energy loss we
confirmed that the GED’s repulsive term and the use of multiple scales in the spectral distance
function are important for model performance. Moreover, a comparison between the results for
GED and GED no repulsive term in Table 1 shows a significant decrease in MOS scores when the
repulsive term is not present; and qualitatively, in the absence of the repulsive term, the generated
speech sounds metallic. Since using spectrogram-based losses without the repulsive term is standard
practice, we feel that comparison against this baseline is most informative in forecasting how useful
the proposed techniques will be for the wider community.

Combining GED and adversarial training The GED loss provides a strong signal for learning
the conditional (local) waveform distribution given the linguistic features, but unlike GANs it does not
explicitly emphasize accurately capturing the marginal distribution of speech. Empirically, we find
that our GED-trained models can sometimes generate audio that, while perfectly audible and closely
matching the original speech in timing and intonation, might still sound somewhat robotic. This
suggests that these models might still benefit from the addition of an adversarial loss that specifically
emphasizes matching the marginal distribution of speech. To test this, we trained the GAN-TTS
architecture with its conditional discriminators replaced by a single GED loss. The resulting model
(GED + unconditional GAN in Table 1) improves on the GED-only model as well as on GAN-TTS,
achieving the best-in-class MOS of 4.25± 0.06.

Choice of network architectures Encouraged by the stable training of our models with GED, we
explored alternative architectures for speech synthesis, like our iSTFT generator (see Section 5 and
Appendix D.4) that generates the coefficients of a Fourier basis and uses them within the inverse
STFT transform to produce the final waveform. We find (GED + iSTFT generator in Table 1) that
this architecture achieves the best training and validation (c)FDSD scores of the models we tried.
In addition, it trains the fastest of our models, reaching optimal cFDSD in as little as 10 thousand
parameter updates, with the per-update running time being about half that of the GAN-TTS generator.
Unfortunately, this model did not significantly improve upon our results with the simplified GAN-TTS
generator in terms of MOS. We tried using the iSTFT architecture in combination with adversarial
learning but did not manage to get it to train in a stable way. This supports our belief that the spectral
energy distance proposed in this work has the potential to enable the use of a much wider class of
network architectures in generative modeling applications, and the design of novel architectures
meeting the needs of specific applications (e.g. on-device efficiency).

Train/test performance and overfitting Our models trained on the generalized energy distance
are able to very quickly obtain good cFDSD scores after just 10 to 20 thousand parameter updates.
When trained longer without any regularization, validation performance starts to deteriorate after that
point. Unregularized, our models are able to produce samples on the training set that are very hard to
distinguish from the data. We are actively working on developing new regularization techniques that
more effectively translate this capacity into test set performance as measured by MOS.

8 Conclusion

We proposed a new generalized energy distance for training generative models of speech without
requiring a closed form expression for the data likelihood. Our spectral energy distance is a proper
scoring rule with respect to the distribution over spectrograms of the generated waveform audio.
The distance can be calculated from minibatches without bias, and does not require adversarial
learning, yielding a stable and consistent method for training implicit generative models. Empirical
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results show that our proposed method is competitive with the state of the art in this model class, and
improves on it when combined with adversarial learning.

Our proposed spectral energy distance is closely related to other recent work in audio synthesis [37,
38, 9, 6], in that it is based on calculating distances between spectrograms, but we believe it is the
first to include a repulsive term between generated samples, and thus the first proper scoring rule of
this type. We empirically verified that this is important for obtaining optimal generation quality in our
case. Applying our scoring rule to the applications of these other works may offer similar benefits.

With the model and learning method we propose here, we take a step towards closing the performance
gap between autoregressive and parallel generative models of speech. With further modeling effort
and careful implementation, we hope that our method will be used to enable faster and higher quality
generation of audio in live text-to-speech as well as other practical applications.

Broader impact

The primary contributions of this paper introduce methodological innovations that improve the
automated generation of speech audio from text. Positive aspects of automated text to speech could
include improved accessibility for blind and elderly people or others who have poor eyesight. TTS is
a cornerstone of assistive technology and e.g. is already used in the classroom to aid children with
developmental disorders with reading comprehension. Although it is not within the scope of this
work, automated TTS could be re-purposed to mimic a specific individual towards benevolent goals
(e.g. to comfort someone with the voice of a loved one) or nefarious goals (e.g. to fake someone’s
voice without their permission).
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