
Appendix A A proper scoring rule for speech synthesis

A loss function or scoring rule L(q,x) measures how well a model distribution q fits data x drawn
from a distribution p. Such a scoring rule is called proper if its expectation is minimized when q = p.
If the minimum is also unique, the scoring rule is called strictly proper. In the large data limit, a
strictly proper scoring rule can uniquely identify the distribution p, which means that it can be used
as the basis of a statistically consistent learning method.

In Section 4 we propose learning implicit generative models of speech by minimizing the generalized

energy score [10] given by
LGED(q,xi) = Eyi,y
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where d is a distance function over training examples xi and generated samples yi,y
0

i, both of which
can be conditioned on a set of features ci.

In choosing d(), we follow the analysis of Gneiting and Raftery [10, Theorem 5.1, Example 5.7],
who study the family of distance functions of the form d(xi,xj) = ||xi �xj ||

�
↵ and prove that this

choice makes (10) a proper scoring rule for learning p(x) if ↵ 2 (0, 2] and � 2 (0,↵]. This includes
the special cases of L1 and L2 distance, the latter of which they show leads to a strictly proper scoring
rule.

Given the restrictions set out by this analysis, and building on the domain-specific work of Engel
et al. [9], we arrived at the following multi-scale spectrogram loss as our choice for d:
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where we sum over a geometrically-spaced sequence of STFT window-lengths between 64 and 2048,
and where skt (xi) denotes the t-th timeslice of the spectrogram of xi with window-length k.

Rather than having a single scoring rule (10) combined with a multi-scale distance d(), we can
equivalently rewrite our loss function as a sum over multiple scoring rules, each having a more simple
distance function:
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Here, each of the individual Lk,t
1 (q,xi) and Lk,t

2 (q,xi) terms is a proper scoring rule since it uses a
L1 or L2 distance with respect to (the log of) the spectrogram slice skt (xi). Furthermore, the sum of
multiple proper scoring rules is itself a proper scoring rule, and it is strictly proper as long as at least
one of the elements in the sum is strictly proper. This means that our combined loss LGED(q,xi) is
indeed a strictly proper scoring rule with respect to p(skt ). It follows that it is also a proper scoring
rule for p(x | c), but not necessarily a strictly proper one, since x may have long-range dependencies
that cannot be identified from single spectrogram slices skt . We also experimented with adding such
longer range terms to our training loss but found no additional empirical benefit.

We experimented with various weights ↵k for the L2 term in (11), and found ↵k =
p
k/2 to work

well. This choice approximately equalizes the influence of all the different L1 and L2 terms on the
gradient with respect to our generator parameters ✓. Dropping the L2 terms by setting ↵k = 0 only
gave us slightly worse results, and could be used as a simpler alternative.

For the calculation of the spectrograms sk(xi) we obtained slightly better sounding results when
mapping raw STFT outputs to the mel-frequency-scale, but with slightly worse results in terms of
cFDSD. All reported results are with mel-scale spectrograms.

Appendix B Ablation study on the spectral energy distance

We carried out an ablation study, in which we systematically varied aspects of the spectral energy
distance proposed in Section 4 while using the architecture described in Section 5. The results of
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these ablations are presented in Table 2. We note that at a high level we observe that any deviation
from the proposed spectral energy distance leads to higher (worse) values of the validation (c)FDSD
metrics, and discuss specific ablation experiments below.

Compared to the Baseline GED model, the same model without the repulsive term (“Generalised
energy distance: disabled” in Table 2) not only gets worse FDSD scores, but also significantly reduces
quality of the synthesized speech (see Section 7), suggesting that this part of the loss is crucial for the
models ability to accurately capture the underlying conditional waveform distributions.

We compute spectrograms using an overcomplete basis of sinusoids. An exploration of the effect of
this oversampling (“DCT / DST overcompleteness” in Table 2) shows that the FDSD metric values
stops improving beyond the use of an 8⇥ overcomplete basis. Another benefit of an overcomplete
basis that is not captured by Table 2 is faster convergence of models with a more overcomplete basis;
but this improvement too tapered off once the basis was at least 8⇥ overcomplete.

Finally, we explored the importance of using a multiple spectrogram scales in the GED loss (“Window
sizes” in Table 2) by training models that each used only a single window size k for its spectrograms.
Our results show that individually all of the constituent window sizes yield worse results than when
they are combined in a single loss, suggesting that use of multiple spectrogram scales is an important
aspect of the proposed spectral energy distance.

Table 2: Validation FDSD metric values for experiments comparing the proposed model and its
variants. The ablation experiments only ran for 200⇥ 103 training steps and not until convergence.

VALID VALID
STUDY VARIANT FDSD CFDSD

Baseline GED 0.163 0.040

Generalized energy distance disabled 0.170 0.047

DCT / DST overcompleteness 1x 0.165 0.042
2x 0.165 0.041
4x 0.168 0.041

16x 0.163 0.041

Window sizes 64 0.195 0.087
128 0.168 0.046
256 0.166 0.043
512 0.174 0.048

1024 0.182 0.064
2048 0.202 0.093

Appendix C Ablation study combining GED and GANs

On the suggestion of the reviewers we performed an additional ablation study to more carefully
examine the interaction of an adversarial loss with our proposed GED loss. Table 3 shows cFDSD
and MOS results for all combinations of 1) using a repulsive term or not, 2) using a multi-scale or
single-scale spectrogram loss, and 3) using an unconditional GAN loss or not. These experiments
ran for the full 106 training steps, and include MOS scores as well as cFDSD scores, making them
complimentary to the ablation study shown in Table 2.

The results in Table 3 confirm that including the repulsive term in the spectral energy distance always
improves over the naive spectrogram loss in terms of MOS. Furthermore, we find that adding the
adversarial loss is generally helpful, and that the multi-scale loss outperforms the single-scale loss.

Finally, we also ran an experiment combining our GED loss with GAN-TTS, with the conditional
discriminators of GAN-TTS included. This experiment can be compared against the results in the
main paper that only include unconditional discriminators when combining GED and GAN. As
Table 4 shows, the combination of full GAN-TTS and GED performs about equally well as our
proposed combination of GED and unconditional GAN. Both outperform the baseline of GAN-TTS
without GED loss.
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Table 3: Results for all combinations of (1) repulsive term (r) yes/no, (2) multi-scale (m) or single
window size (256/512) or no spectrogram loss, (3) unconditional GAN loss (G) yes/no. Note that
these ablations sampled the cFDSD validation set uniformly, where we used length-weighted sampling
for the main paper and Table 4 below.

model! r+m+G r+m r+256+G r+512+G r+256 r+512
cFDSD! 0.033 0.033 0.344 0.063 0.035 0.034
MOS! 4.25± 0.06 4.06± 0.06 3.67± 0.07 3.96± 0.059 3.44± 0.07 2.89± 0.09
model! m+G m 256+G 512+G 256 512
cFDSD! 0.039 0.039 0.200 0.047 0.040 0.038
MOS! 4.12± 0.06 3.00± 0.07 2.86± 0.07 3.82± 0.06 2.33± 0.06 2.48± 0.06

Table 4: Results for combining our proposed GED loss with full GAN-TTS, including the conditional
discriminators, and comparing against GED + unconditional GAN, and GAN-TTS.

model! GED + full GAN-TTS GED + uncond. GAN GAN-TTS only
cFDSD! 0.041 0.040 0.077
MOS! 4.24± 0.05 4.25± 0.06 4.16± 0.06

Appendix D Training and architecture details

D.1 Spectral distance

In practice, when computing the STFT spectrograms necessary for the spectral GED loss (9), we
found that the training was more stable when spectrograms ski and skj were computed with Hann
windowing, 50% overlap and using an overcomplete Fourier basis. This is equivalent to transforming
the windows of length k using the Discrete Cosine and Discrete Sine (DCT and DST) with basis
functions cos( 2⇡k ·

i
m ) and sin( 2⇡k ·

i
m ) to obtain the real and imaginary parts of the STFT, where

m is an integer oversampling multiplier and i = 0, . . . , mk
2 + 1. For m = 1 this is equivalent to the

standard Fourier transform, and we used m = 8 in our experiments. Importantly, we observed that
using an ⇥8 overcomplete basis did not significantly slow down training on modern deep learning
hardware.

D.2 Training details

Unless otherwise specified, all models were trained with the same hyper-parameters (see Table 5) on
Cloud TPUs v3 with 128-way data parallelism and cross-replica Batch Normalization. Furthermore,
unless otherwise specified, no additional regularization was used, i.e. the spectral energy distance was
minimized directly. A single experiment took between 2 and 4 days to complete 106 training steps.

GED + unconditional GAN used GAN-TTS hyper-parameters from Table 6, but with the generator
learning rate set to 1⇥ 10�4. The weight of the GED loss was set to 3.

GED + iSTFT generator used the Adamax [17] optimizer with �1 = 0.9, �2 = 0.9999, learning rate
10�3 with a linear warmup over 12000 steps, EMA decay rate of 0.99998 and early stopping to avoid
overfitting.

D.3 Simplified GAN-TTS generator

To convincingly demonstrate the usefulness of the generalized energy distance for learning implicit
generative models of speech, we sought to compare it to GAN-TTS, a state-of-the-art adversarial
TTS model. To this end in our core experiments we used an architecture that is nearly identical to
that of the GAN-TTS generator, but is further simplified as described in Section 5 and as depicted in
Figure 3.
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Table 5: Default hyper-parameters.

HYPER-PARAMETER VALUE

Optimizer Adam [17]
Adam �1 0.9
Adam �2 0.999
Adam ✏ 10�8

Learning rate 3⇥ 10�4

Learning rate schedule Linear warmup over 6000 steps
Initialization: shortcut convolutions Zeros
Initialization: conditional Batch Normalization Zeros
Initialization: rest Orthogonal [31]
EMA decay rate 0.9999
Batch Normalization ✏ 10�4

Batch size 1024
Training steps 106

D.4 Inverse STFT generator

SWeP CRQY
VL]e: 1, cK: 2048,

bLaV: TUXe

c

12[ ReVNeW
2048->512->2048

IQYeUVe STFT

E[SRQeQWiaO ScaOiQg

y

]

FORZeU CRQY
VL]e: 1, cK: 240

Figure 5: iSTFT model.

Our inverse STFT generator takes in linguistic features c at a frequency
of 1 feature vector per 120 timesteps (a chunk). A 1D convolution with
kernel size 1 is used to project the features to a 2048 dimensional vector
per chunk, which is then fed into a stack of 12 bottleneck ResNet blocks
[13].

Each of the ResNet blocks consists of a kernel size 1 convolution to
512 channels, 2 convolutions of kernel size 5 at 512 channels, followed
by projection to 2048 channels again. In-between the convolutions we
use conditional batch normalization as also used in GAN-TTS and as
described in Section E.

Finally we project down to 240 dimensions per chunk. Of these dimen-
sions, one is used to exponentially scale the remaining 239 features. These
remaining features are then interpreted as the non-redundant elements of
an STFT with window size 240 and frame step 120, and are projected
to the waveform space using a linear inverse STFT transformation. The
model stack is visualized in Figure 5.

Appendix E GAN-TTS baseline

We re-implemented the GAN-TTS model from Bińkowski et al. [3] for use as a baseline in our
experiments. While attempting to reproduce the original implementation as closely as possible by
following the description provided in [3], we observed that our implementation of the model (i)
would not match the reported FDSD scores (reaching an cFDSD of ⇡ 2.5 instead of the reported
0.06); and (ii) would diverge during training. To alleviate these discrepancies, we found it necessary
to deviate from the architecture and training procedure described in Bińkowski et al. [3] in several
ways detailed below. Our modified implementation reaches cFDSD of 0.056 and trains stably.

No µ-transform. We found that the use of a µ-transform with 16-bit encoding (µ = 216 � 1)
was the single largest factor responsible for low-quality samples in our initial implementation of
GAN-TTS. With the µ-transform enabled (i.e. generating and discriminating transformed audio), our
GAN-TTS baseline converged very slowly and would only reach cFDSD of ⇡ 2.5 (see Figure 6).
Disabling the µ-transform was necessary for reaching competitive sample quality (0.056 cFDSD and
4.16 MOS). We also observed that the use of µ-transform made training more unstable.

Generator architecture. We re-used most of the original generator architecture described in
Bińkowski et al. [3], but empirically found that (i) adding a batch normalization followed by a
non-linearity before the flower convolution; and (ii) switching from a kernel size 3 to a kernel size 1
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(b) Generator residual block (GBlock).
Figure 3: The proposed generative model (a) resembles the GAN-TTS generator and consists of 7
GBlocks (b) that use convolutional layers of increasing dilation rates, nearest-neighbour upsampling
and conditional Batch Normalization. The number of channels is changed only in the block’s first
and shortcut convolutions; and the latter is only present if the block reduces the number of channels.
The residual blocks follow the same upsampling pattern as GAN-TTS.

convolution; both led to more stable training with default settings. Addition of the former is inspired
by the BigGAN architecture [5] that GAN-TTS is based on; and the latter relies on an interpretation
of the first convolution as an embedding layer for the sparse conditioning linguistic features. These
differences are reflected in the generator architecture in Figure 4a.

Discriminator architecture. Empirically we found that it was necessary to introduce more changes
to the discriminator architecture. Specifically, the following alterations were made (see also Figure 4b
and Figure 4c):

• The mean-pooling along time and channel axes of the output of the final DBlock was replaced
by a non-linearity, followed by sum-pooling along the time axis and a dense linear projection
to obtain a scalar output. Like the addition of batch normalization and non-linearity before
the generator output, this change is inspired by the BigGAN architecture.

• Instead of a single random slice of the input waveforms, each discriminator sampled two

random slices (x1, c1) and (x2, c2), and produced independent outputs d1 and d2 for each
of them. These outputs were later averaged to produce discriminators final output d.
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Figure 4: Architectures used in our implementation of GAN-TTS. Generator (a) makes use of a
smaller kernel size 1 convolution in the stem embedding linguistic features c and GBlocks identical
to those in Figure 3. Discriminator (b) replaces mean-pooling with an additional non-linearity,
sum-pooling and a final projection layer to obtain the scalars d1,2 for each of the two random slices
it samples. The random slice block takes aligned random crops (same for every example in the
minibatch) x1,2 and c1,2 of the waveform x and conditioning features c, and the outputs for each of
the two slices are averaged to obtain the final output d = 1

2 (d1 + d2). Example architecture is shown
for a conditional discriminator with window size 3600, but the same changes are applied to other
window sizes and unconditional discriminators. The modified (conditional) DBlock (c) re-orders the
first non-linearity and downsampling blocks.

• Inspired by the open source implementation of BigGAN1, the structure of the first DBlock
of each discriminator was altered to not include the first non-linearity. The architecture was
surprisingly sensitive to this detail.

• Finally, the structure of the DBlocks was modified by (i) switching the order of the downsam-
pling and non-linearity operations; and (ii) by reducing the dilation of the second convolution
to 1 when the time dimension of the block is less or equal to 16.

Hyper-parameters. We recap all hyper-parameters used in our re-implementation of GAN-TTS
in Table 6. As in the original publication, the GAN-TTS baseline was trained on a Cloud TPUs v3
with 128-way data parallelism and cross-replica Batch Normalization; training a single model took
approximately 48 hours.

Training curves for our implementation of GAN-TTS, and how they compare to a similar (simplified)
generator trained with the GED loss is shown in Figure 6.

1See https://github.com/ajbrock/BigGAN-PyTorch

17

https://github.com/ajbrock/BigGAN-PyTorch


Figure 6: GAN-TTS baseline (our implementation) with and without µ-transform; and GED
convergence speed and training stability.

Table 6: Hyper-parameters used in our implementation of the GAN-TTS baseline.

HYPER-PARAMETER VALUE

Optimizer Adam [17]
Adam �1 0
Adam �2 0.999
Adam ✏ 10�6

Generator learning rate 5⇥ 10�5

Discriminator learning rate 10�4

Learning rate schedule Linear warmup over 6000 steps
Loss Hinge [24]
Initialization Orthogonal [31]
Generator EMA decay rate 0.9999
Batch Normalization ✏ 10�4

Batch Normalization momentum 0.99
Spectral Normalization ✏ 10�4

Batch size 1024
Training steps 106

E.1 Fréchet Deep Speech Distances

At the time of writing no open source implementation of the Fréchet Deep Speech Distance (FDSD)
metrics [3] was available. We thus resorted to re-implementating these metrics based on the informa-
tion provided in the original publication. While striving to reproduce the original implementation as
closely as possible, we deviated from it in at least two aspects, as discussed below.

Following the notation of Bińkowski et al. [3], let a 2 R48000 be a vector representing two seconds
of (synthesized) waveform at 24 kHz; DS(a) 2 R1600 be the sought representation that will be used
for computing the (conditional) FDSD; and fk! : Rk!

7! Rd
k
2 e⇥1600 be a function that takes (a part

of) the waveform a and passes it through the pre-trained Deep Speech 2 (DS2) network [1, 21] to
obtain the necessary activations. The representation DS(a) used for computing the Fréchet distance
is then obtained by averaging the outputs of f across time.

1. Equation (4) in Appendix B.1 of Bińkowski et al. [3] implies that the necessary activations
were obtained independently for windows of the waveform a with window size ! = 480
and step !

2 = 240 (20ms and 10ms at 24kHz respectively), resulting 199 activation vectors
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of size 1600 each, which were then averaged to obtain the representation DS(a). Doing so
would not make any use of the DS2 bi-directional GRU layers, as their inputs would have
time dimensionality of 1 - a single frame of the STFT with frame length ! and step !

2 . So
instead we used the entire audio fragment a (200 STFT frames) at once to obtain activations
f48000(a) 2 R100⇥1600 that were averaged along the time axis to obtain DS(a).

2. Bińkowski et al. [3] proposed using activations from the node labeled
ForwardPass/ds2_encoder/Reshape_2 in the graph of a pre-trained DS2 net-
work to obtain activations fk!. This graph node belongs to the training pass of the model,
and uses 6 layers with 0.5 dropout probability (one after each of the 5 GRU layers, and then
again after the last fully-connected layer of the encoder network), resulting very sparse
activations. To make better use of the learned representations, we instead used the graph
node labeled ForwardPass_1/ds2_encoder/Reshape_2, which implements the test
time behaviour of the same network and produces dense activations.

The rest of the implementation followed Bińkowski et al. [3]. Namely, FDSD were estimated using
10000 samples from the training data, matching the conditioning signals between the two sets in the
case of conditional FDSD (cFDSD).

We tested our implementation by computing the FDSD for natural speech - the only quantity from
Bińkowski et al. [3] that can be reproduced without access to a trained generator, and found that
despite the implementation differences it agrees surprisingly well with the previously reported number
(ours: 0.143 vs. Bińkowski et al. [3]: 0.161). We also considered implementations of the FDSD that
did not deviate from the original description (i.e. using dropout and/or obtaining activations for each
window independently), but found that they had worse agreement with the previously reported natural
speech FDSD.

Without access to the original implementation it is impossible to tell whether there are other differ-
ences between the two FDSD implementations, or whether the described differences are actually
there - the two implementations agree unexpectedly well on natural speech FDSD despite significant
discrepancies in how they extract representations from the pre-trained model.

We hope that the difficulties we faced reproducing these results will prompt the research community
to open-source evaluation metrics early on, even in cases when the models themselves cannot be
made publicly available. We provide our implementation of FDSD in our github repository at
https://github.com/google-research/google-research/tree/master/ged_tts.

Appendix F Mean Opinion Scores

Each evaluator, a native North American English speaker paid to perform the task was asked to rate
the subjective naturalness of a sentence on a 1-5 (Bad-Excellent) Likert scale. Mean Opinion Scores
(MOS) were obtained by summarizing as mean and standard deviation the 1000 audio sample ratings
produced by at least 80 different human evaluators per test. The resulting scores are comparable
between between the models trained in this work, but may not be directly comparable with previous
work due to differences in composition of human evaluators and the evaluation instructions given to
them.

Appendix G Linguistic features

As in [3, 15, 35, 36], synthesized speech was conditioned on local linguistic features and pitch
information predicted from text using separate models; and ground truth linguistic features and pitch
were used during training.
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