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Abstract

Positive-unlabeled (PU) learning trains a binary classifier using only positive and
unlabeled data. A common simplifying assumption is that the positive data is
representative of the target positive class. This assumption rarely holds in practice
due to temporal drift, domain shift, and/or adversarial manipulation. This paper
shows that PU learning is possible even with arbitrarily non-representative positive
data given unlabeled data from the source and target distributions. Our key insight
is that only the negative class’s distribution need be fixed. We integrate this into two
statistically consistent methods to address arbitrary positive bias — one approach
combines negative-unlabeled learning with unlabeled-unlabeled learning while
the other uses a novel, recursive risk estimator. Experimental results demonstrate
our methods’ effectiveness across numerous real-world datasets and forms of posi-
tive bias, including disjoint positive class-conditional supports. Additionally, we
propose a general, simplified approach to address PU risk estimation overfitting.

1 Introduction

Positive-negative (PN) learning (i.e., ordinary supervised classification) trains a binary classifier using
positive and negative labeled datasets. In practice, good labeled data are often unavailable for one
class. High negative-class diversity may make constructing a representative labeled set prohibitively
difficult [1], or negative data may not be systematically recorded in some domains [2]].

Positive-unlabeled (PU) learning addresses this problem by constructing classifiers using only
labeled-positive and unlabeled data. PU learning has been applied to numerous real-world domains
including: opinion spam detection [3]], disease-gene identification [4], land-cover classification [5]],
and protein similarity prediction [6]. The related task of negative-unlabeled (NU) learning is
functionally identical to PU learning but with labeled data drawn from the negative class.

Most PU learning methods assume the labeled set is selected completely at random (SCAR) from
the target distribution [11 16, [7, 18, 9, [10} [L1]. External factors like temporal drift, domain shift, and
adversarial concept drift often cause the labeled-positive and target distributions to diverge.

Biased-positive, unlabeled (bPU) learning algorithms relax SCAR by modeling sample selection bias
for the labeled data [[12}[13] or a covariate shift between the training and target distributions [14].

This paper generalizes bPU learning to the more challenging arbitrary-positive, unlabeled (aPU)
learning setting, where the labeled (positive) data may be arbitrarily different from the target
distribution’s positive class. Solving this problem would eliminate the need to spend time and money
labeling new data whenever the positive class drifts.
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Devoid of some assumption, aPU learning is impossible [6]]. As a first step to address aPU learning,
our key insight is that given a labeled-positive set and two unlabeled sets as proposed by Sakai and
Shimizu [14], aPU learning is possible when all negative examples are generated from a single
distribution. The labeled and target-positive distributions’ supports (sets of examples with non-zero
probability) may even be disjoint. Many real-world PU learning tasks feature a shifting positive class
but (largely) fixed negative class including:

1. Land-Cover Classification: Cross-border land-cover datasets often do not exist due to
differing national technological standards or insufficient financial resources by one coun-
try [[LS]. This limits research into natural processes at broad geographic scales. However,
cross-border geographic terrains often follow a similar distribution differing primarily in
man-made objects (e.g., roads) due to local construction materials and regulations [S].

2. Adversarial aPU Learning: Malicious adversaries (email spammers, malware authors)
rapidly adapt their attacks to bypass automated detection. The benign class changes much
more slowly but may be too diverse to construct a representative labeled set [3 16, |17, [18]].

Our paper’s four primary contributions are enumerated below. Note that most experiments and all
proofs are in the supplemental materials.

1. We propose abs-PU — a simplified, statistically consistent approach to correct general PU risk
estimation overfitting. Our aPU methods leverage abs-PU to streamline their optimization.

2. We address our aPU learning task via a two-step formulation; the first step applies standard
PU learning and the second uses unlabeled-unlabeled (UU) learning.

3. We separately propose PURR — a novel, recursive, consistent aPU risk estimator.

4. We evaluate our methods on a wide range of benchmarks, demonstrating our algorithms’
effectiveness over the state of the art in PU and bPU learning. Our empirical evaluation
includes an adversarial aPU learning case study using public spam email datasets.

2 Ordinary Positive-Unlabeled Learning

We begin with an overview of PU learning without distributional shifts, including definitions and nota-
tion. Consider two random variables, covariate X € R? and label Y € {+1}, with joint distribution
p(x,y). Marginal distribution p,(x) is composed from the positive prior 7 := p(Y =+1), positive
class-conditional p,(z) := p(x|Y =+1), and negative class-conditional p,(z) = p(z|Y =—1).

Risk Let g : R? — R be an arbitrary decision function parameterized by ¢, and let ¢ : R — R be

the loss function. Risk R(g) = E(x y)~p(a,y) [((Y 9(X))] quantifies g’s expected loss over p(z,y).
It decomposes via the product rule to R(g) =m R (9)+(1 — 7) R, (g), where the labeled risk is

R (9) = Extpp (o) [(59(X))] (1)
for predicted label § € {£1} and D € {p,n,u} denoting the positive class-conditional, negative
class-conditional or marginal distribution respectively, as defined above.

Since p(x,y) is unknown, empirical risk is used in practice. We consider the case-control sce-
nario [19] where each dataset is i.i.d. sampled from its associated distribution. PN learning has two
labeled datasets: positive set X, := {z?}?, "% p,(2) and negative set X, == {22}, "**'py(x). These are
used to calculate empirical labeled risks R (g) = L 3717, £(g(2?)) and R, (g) = = Yo, £(—g(a})).

We denote the empirical positive-negative risk ! '
Rex(9) = w7 (9) + (1= )Ry (9). @)

PU learning cannot directly estimate R;? (g) since there is no negative (labeled) data (i.e., X, = 0).
Let X, == {z} ?;11‘551‘1;“(95) be an unlabeled set with empirical labeled risk R (g) = ni S U(gg(xy)).

du Plessis et al. [20] make a foundational contribution that,
(1—mR(9) = R{(g9) — mRy(9). 3)

Their unbiased PU (uPU) risk estimator is therefore Ruwu(g) = 7Ry (9) + Ry (9) — 7R, (g). Kiryo
et al. [8] observe that highly expressive models (e.g., neural networks) often overfit &}, causing uPU

to estimate that R, (g) — wﬁp_ (9) <O.



Since negative-valued risk is impossible, [Kiryo et al.'s non-negative PU (nnPU) risk estimator ignores
negative estimates of risk via a max term:

Runpu(9) = 7R} (9) + max{0, By (9) — nRy (9)}. 4)
When |Kiryo et alls customized empirical risk minimization (ERM) framework detects
overfitting (i.e., R, (9) — 7R, (g9) <0), their framework “defits” ¢ using negated gradient
—Vo(Ry (9) — wl?ip’ (9)), where hyperparameter v € (0, 1] attenuates the learning rate to throttle
“defitting.” Observe that positive-labeled risk, }SL;’ (g9), is excluded from nnPU’s negated gradient.

3 Simplifying Non-Negativity Correction

Rather than enforcing the non-negative risk constraint with two combined techniques (a max term
and “defitting”) like Kiryo et al.l we propose a simpler approach, inspired by Lagrange multipliers,
that directly puts the non-negativity constraint into the risk estimator. Our absolute-value correction,

(1 —m)RI(g) = |RI(g) — mRE(g)]. )

replaces nnPU’s max with absolute value to prevent the optimizer overfitting an implausible risk
estimate by explicitly penalizing those risk estimates for being negative. This penalty “defits” the
learner automatically, eliminating the need for hyperparameter v and nnPU’s custom ERM algorithm.

Theorem 1. Let g : R? — R be an arbitrary decision function and let £ : R — R be aloss function
bounde w.r.t. g then RY(qg) is a consistent estimator of RY(g).

We integrate absolute value correction into our abs-PU risk estimator,
Ruspu(g) =717 (9) + [ Ry (9) = 7Ey (9)]. ©)

which by Theoremis consistent like nnPU. When R (g) — wﬁp‘ (g) < 0, abs-PU’s update gradient,
Ve;(wlj?p+ (9) — Ry (9) + wﬁ; (9)), includes ﬁ;r (9). Hence, abs-PU spends comparatively more time
optimizing the positive-labeled risk than nnPU. Also, by penalizing implausible risk, abs-PU estimates
validation performance (i.e., risk) differently than nnPU.

Empirically we observed that abs-PU yields models of similar or slightly better accuracy than nnPU
albeit with a simpler, more efficient optimization. The following builds on abs-PU with a full
comparison to nnPU in supplemental Section [E.6

4 Arbitrary-Positive, Unlabeled Learning

Arbitrary-positive unlabeled (aPU) learning — the focus of this work — is one of three problem
settings proposed by Sakai and Shimizu [[14]. We generalize their original definition below.

Consider two joint distributions: train py(x,y) and test pe(z,y). Notation pyp(z) where
D € {p, n, u} refers to the training positive class-conditional, negative class-conditional, and marginal
distributions respectively. p..p(2) denotes the corresponding test distributions.

No assumption is made about the label’s conditional probability, i.e., py(y|z) and p(y|z), nor about
positive class-conditionals py.p(2) and pep (). We only assume a fixed negative class-conditional

pn(x) = ptr—n(-r) = Pte-n (l‘) @)

Both the train and test positive-class priors, 7, and 7 respectively, are treated as known throughout
this work. In practice, they may be known a priori through domain-specific knowledge. Techniques
also exist to estimate them from data [2] 21}, 22| 23]. Theorem [Z_f] in the supplemental materials
provides an algorithm to estimate 7 by training an additional classifier.

As shown in Figure the available datasets are: labeled (positive) set Xpi'fif’ pup(z) as well as unla-
beled sets Xy = {z:}7 4 "% pyy(2) and Xiew = {17 '~ pey () with their empirical risks defined
as before. An optimal classifier minimizes the test risk/expected 108S: E(x,v)~pe(a,y) (Y 9(X))].

"Each theorem’s definition of “bounded” loss appears in the associated proof. See the supplemental materials.



Step #2
wUU/aPNU (g)
B

(a) Example aPU dataset (b) Weighting Xg_u (c) Final classifier g
using 6 (z) yields X,

Figure 1: Two-step aPU learning. Fig.|lalshows a toy aPU dataset with ([]) representing a labeled
positive example, () an unlabeled train sample, and () an unlabeled test sample. Borders surround
each set for clarity. After learning probabilistic classifier ¢ in Step #1, Fig.[Ib]visualizes 6’s predicted
negative-posterior probability using marker ([ size. Fig.[Ic|shows the final decision boundary with ()
and (B) representing X, examples classified negative and positive respectively.

4.1 Relating aPU Learning and Covariate Shift Adaptation Methods

Covariate shift [24] is a common technique to address differences between py(x, y) and pe (2, y).
Unlike aPU learning, covariate shift restrictively assumes a consistent input-output relation, i.e.,

Pu(y|2) = pee(y|z). Define the importance function as w(x) = % When p(y|x) is fixed, it is

easy to show that w(z)py(z, y) = pe(z,y).

Sakai and Shimizu [14] exploit this relationship in their PUc risk estimator. w(z) is approximated
via direct density-ratio estimation [25]] — specifically the RuLSIF algorithm [26] over X}, and X .
Their PUc risk adds importance weighting to uPU, with the labeled risks still estimated from A;,
and Aj;.,. |Sakar and Shimizufs formulation specifies linear-in-parameter models to enforce convexity.
They improve tractability via a simplified version of du Plessis et al. [1]]’s surrogate squared loss for /.

Selection bias bPU methods [12} [13]] need the positive-labeled data to meet specific conditions that
arbitrary-positive data will not satisfy making a comparison to those methods infeasible. PUc serves
as the primary baseline here since as a covariate shift bPU method, it places no requirements on the
positive data beyond that the training distribution’s support be a superset of the target positive class.

4.2 Comparing Variations of the aPU Learning Problem

Sakai and Shimizu [14] show that PU learning with a fixed positive class and arbitrary negative shift
is much simpler than aPU learning. In fact, provided a positive-labeled set and two unlabeled sets as
above, they show that arbitrary negative shift is trivially equivalent to ordinary PU learning over X,
and X, (since &, being drawn from pie., () renders X, unnecessary). When both the positive and
negative classes shift arbitrarily, learning is impossible without additional data and/or assumptions.
aPU learning’s complexity sits between these two extremes.

5 aPU Learning via Unlabeled-Unlabeled Learning

To build an intuition for solving the aPU learning problem, consider the ideal case where a perfect
classifier correctly labels Xi.,. Let Xy be Xy’ negative examples. X, is SCAR w.r.t. pyp ()
and by Eq. (7)’s assumption also p., (). Multiple options exist to then train the second classifier, g,
e.g., NU learning with &}, and Xi..,,.

A perfect classifier is unrealistic. Is there an alternative? Our key insight is that by weighting A},
(similar to covariate shift’s importance function) it can be transformed into a representative negative
set. From there, we consider two methods to fit the second classifier g: one a variant of NU learning
we call weighted-unlabeled, unlabeled (wUU) learning and the other a semi-supervised method we
call arbitrary-positive, negative, unlabeled (aPNU) learning. We refer to the complete algorithms as
PU2wUU and PU2aPNU, respectively.



Algorithm 1 Two-step unlabeled-unlabeled aPU learning

Input: Labeled-positive set &}, and unlabeled sets Xy, Xeu
Output: g’s model parameters 6

1: Train probabilistic classifier 6 using A, and &,y

2: Use ¢ to transform A}, into surrogate negative set /'?n
3: Train final classifier, g, using ERM with Ryyu(g) or Rapnu(9)

Figure [I] visualizes our two-step approach, with a formal presentation in Algorithm[I} Below is a
detailed description and theoretical analysis.

Step #1: Create Surrogate Negative Set X, from X,

This step’s goal is to learn the training distribution’s negative class-posterior, py (Y =—1|z). We
achieve this by training PU probabilistic classifier 5 : R — [0, 1] using A} and Xy In principle,
any probabilistic PU method can be used; we focused on ERM-based PU methods so the logistic loss
served as surrogate, £. Sigmoid activation is applied to the model’s output to bound its range to (0, 1).
Theorem 2. Let g : R? — R be an arbitrary decision function and £ : R — R>0 be a loss function

bounded w.r.t. g. Let § € {+1} be a predicted label. Define Xy., = {x;}}1'~ plru( ), and restrict
7w € [0,1). Define RY,(g) == D D %ﬁ(z)) Let & : R? — [0, 1] be in hypothesis set 3.
When () = po(Y =—1|2), RY.(g) is an unbiased estimator of RY(g). When the concept class of
Sfunctions that defines p(Y =—1|x) is probably approxlmately correct (PAC) learnable by some
PAC-learning algorithm A that selects 6 € 3, then RL. «(9) is a consistent estimator of R (g).

From Theorem [2] we see that soft weighting each unlabeled instance in Xy, by & yields a surrogate
negative set X, that can be used to estimate the train/test negative labeled risk. We form X, transduc-
tively, but inductive learning is an option. Since X}, contains positive examples, & may overfit and
memorize random positive example variation. This is usually detectable via an implausible validation
loss given T, 1y, and ny.y. Care should be shown to tune &’s capacity and regularization.

Supplemental Section proposes and empirically evaluates two additional methods to construct X,.
While these other methods are not statistically consistent, they may outperform soft weighting.

What if X}, is not SCAR? Our aPU learning setting, detailed in Section E}, specifies that A,
is representative of Xj.,’s positive examples. In scenarios where &} is biased w.r.t. &y, any

bPU method (e.g., [12}[13]) can be used in step #1 to (hard) label A}, thereby constructing X,.

Step #2: Train the Test Distribution Classifier g

Negative-unlabeled (NU) learning is functlonally the same as PU learmng Sakai et al. [27] formalize

an unbiased NU risk estimator, Rxu(g) = |R{ (9) — (1 — )R ()| + ( 1 — )Ry (g) (defined here
with our absolute-value correction). Our welghted-unlabeled unlabele P (wUU) estimator,
Ryuulg) = [REu(9) = (1= mo) Riul9)] + (1 = mo) Brao). ®)

modifies |Sakai et al.s definition to use X, and Xi.,. Observe that R,uy(g) uses only data that was
originally unlabeled. When R, (g) is consistent, wUU is also consistent just like nnPU/abs-PU.

Risk Estimation with Positive Data Reuse When p.,(x)’s and pe.p(x)’s supports intersect,
X}, may contain useful information about the target distribution given limited data. In such settings, a

semi-supervised approach leveraging X}, surrogate X,, and X, may perform better than wUU.

Sakai et al. [27] propose the PNU risk estimator, Rexu(g) := (1 — p)Rex(g) + pRxu(g), where hy-
perparameter p € (0, 1) weights the PN and NU estimators. Our arbitrary-positive, negative, unla-
beled (aPNU) risk estimator in Eq. (9) modifies PNU to use X, and our absolute-value correction.

Ranu(g) = (1= p)me Ry (9) + (1 = me) Ru(9) + p| Ribu(9) — (1 = me) Bifu(9) ©)

2“Unlabeled-unlabeled learning” denotes the two unlabeled sets and is different from UU learning in [28}29].



If p = 0, aPNU ignores the test distribution (i.e., Xj.,) entirely. If p = 1, aPNU is simply wUU.
When a large positive shift is expected (e.g., by domain-specific knowledge), &, is of limited value
so set p closer to 1. For small expected positive shifts, set p closer to 0. A midpoint value of p = 0.5
empirically performed well when no knowledge about the positive shift was assumed.

ERM Framework Both R,uu(g) and R.enu(g) integrate into a standard ERM framework since they
use our absolute-value correction. For completeness, supplemental materials Section [C.1] details their
custom ERM algorithm if Kiryo et al. [8]’s non-negativity correction is used instead.

Heterogeneous Classifiers Two-step learners enable different learner architectures in each step
(e.g., random forest for step #1 and a neural network for step #2). Our experiments leverage this
flexibility where ¢’s neural network may have fewer hidden layers or different hyperparameters
than g in step #2.

6 Positive-Unlabeled Recursive Risk Estimation

Two-step methods — both ours and PUc — solve a challenging problem by decomposing it into
sequential (easier) subproblems. Serial decision making’s disadvantage is that earlier errors propagate
and can be amplified when subsequent decisions are made on top of those errors.

Can our aPU problem setting be learned in a single Jjoint method? Sakai and Shimizu! leave it as an
open question. We show in this section the answer is yes. To understand why this is possible, it helps
to simplify our perspective of unbiased PU and NU learning. When estimating a labeled risk, Ry (9)
(where D € {p,n}), the ideal case is to use SCAR data from class-conditional distribution pp( ).
When such labeled data is unavailable, the risk decomposes via the simple linear transformation,

(1 - a)R%(9) = Ri(g) — aR%(g) (10)

where A = n and B = p for PU learning or vice versa for NU learning. « is the positive (negative)
prior for PU (NU) learning.

In standard PU and NU learning, either ﬁf{l (g) or ﬁ% (g) can always be estimated from labeled data.
If that were not true, can this decomposition be applied recursively (i.e., nested)? The answer is again
yes. Below we apply recursive risk decomposition to our aPU learning task.

Applying Recursive Risk to aPU learning

Our positive-unlabeled recursive risk (PURR) estimator quantifies our aPU setting’s empirical risk
and integrates into a standard ERM framework. PURR’s top-level definition is simply the test risk:

Reurr(9) = me R,y (9) + (1 — me) R (9)- (1)

Since only unlabeled data is drawn from the test distribution, both terms in Eq. @ require risk
decomposition. First, for RL (g ) we consider its more general form RY. »(g) below since RE 2(g) will
be needed as well. Using Eq. (7)’s assumption, RZ.,(g) can be estimated directly from the training
distribution. Combining Eq. (3) with absolute-value correction, we see that

1

1—7Ttr

ﬁtZJAe—n (g) = ﬁg—n (g) =

Ru(g) = mellyl9)]: (12)

Next, Rﬁ_p(g), as a positive risk, undergoes NU decomposition so (with absolute-value correction):
ﬂ-teRttp ‘Rteu (1 - ﬂ-te)Rtt—n(g)" (13)

Eq. (T2) with §j = 41 substitutes for R;.,(g) in Eq. (T3) yielding Reurr (g)’s complete definition:

R;u (g) - WtrR;p(g)
1 — 7y

Riu(9) — meRiy (9)
1 — 7y '

EPURR(Q) = Al-‘e—-u(g) — (1 —me) (14)

+ (1 - 7th)

Bl.(9) Bia(9)

me R, (9)



Theorem 3. Fix decision function g € G. If £ is bounded over g(z)’s image and RZ,H(gL Eﬁ;p(g) >0
Sor g € {£1}, then Reurr (9) is a consistent estimator. Reur(g) is a biased estimator unless for all
Kiea ™ Pua(), Xiew = Peu(), and X% pey() it holds that Pr[RE,(g) — (1 — me)RY,(g) < 0] =0
and Pr[R,(g) — (1 — me) Bia(g) < 0] = 0.

Optimization PURR with absolute-value correction integrates into a standard ERM framework. If
non-negativity is used instead, PURR’s optimization scheme becomes significantly more complicated
as it must consider four candidate gradients per update; see suppl. Section [C.2] for more details.

7 Experimental Results

We empirically studied the effectiveness of our methods — PURR, PU2wUU, and PU2aPNU - using
synthetic and real-world data Limited space allows us to discuss only two experiment sets here.
Suppl. Section [E|details experiments on: synthetic data, 10 LIBSVM datasets [30] under a totally
different positive-bias condition, and a study of our methods’ robustness to negative-class shift.

7.1 Experimental Setup

Supplemental Section [D]enumerates our complete experimental setup with a brief summary below.

Baselines PUc [14] with a linear-in-parameter model and Gaussian kernel basis is the primary
baselineﬂ Ordinary nnPU is the performance floor. To ensure the strongest baseline, we separately
trained nnPU with unlabeled set X, as well as with the combined A&}, U X, (using the true,
composite prior) and report each experiment’s best performing configuration, denoted nnPU*. PN-test
(trained on labeled &}, ) provides a reference for the performance ceiling. All methods saw identical
training/test data splits and where applicable used the same initial weights.

Datasets Sectionconsiders the MNIST [31], CIFAR10 [32]], and 20 Newsgroups [33]] datasets
with binary classes formed by partitioning each dataset’s labels. Section uses two different
TREC [34] spam email datasets to demonstrate our methods’ performance under real-world adversar-
ial concept drift. Further details on all datasets are in the supplemental materials.

Learner Architecture We focus on training neural networks (NNs) via stochastic optimization
(i.e., AdamW [35]] with AMSGrad [36]). Probabilistic classifier, &, used our abs-PU risk estimator
with logistic loss. All other learners used sigmoid loss for ¢. Since PUc is limited to linear models
with Gaussian kernels, we limited our NNs to at most three fully-connected layers of 300 neurons.
For MNIST, our NNs were trained from scratch. Pretrained deep networks encoded the CIFAR10,
20 Newsgroups, and TREC spam datasets into static representations all learners used. Specifically,
the 20 Newsgroups documents and TREC emails were encoded into 9,216 dimensional vectors
using ELMo [37]]. This encoding scheme was used by Hsieh et al. [L1] and is based on [38]].
DenseNet-121 [39] encoded each CIFAR10 image into a 1,024 dimensional vector.

Hyperparameters Our only individually tuned hyperparameters are learning rate and weight decay.
We assume the worst case of no a priori knowledge about the positive shift so midpoint value p = 0.5
was used. PUc’s hyperparameters were tuned via importance-weighted cross validation [40]. For the
complete hyperparameter details, see supplemental materials Section [D.8]

7.2 Partially and Fully Disjoint Positive Class-Conditional Supports

Here we replicate scenarios where positive subclasses exist only in the test distribution (e.g., adver-
sarial zero-day attacks). These experiments are modeled after Hsieh et al. [[11]]’s experiments for
positive, unlabeled, biased-negative (PUbN) learning.

Table [T]lists the experiments’ positive train/test and negative class definitions. Datasets are sampled
u.a.r. from their constituent sublabels. Each dataset has four experimental conditions (ordered by row
number): (1) Pyyin = Py, 1.€., N0 bias, (2 & 3 resp.) partially disjoint positive supports without and
with prior shift, and (4) disjoint positive class definitions. 7 equals Py ’s true prior w.r.t. Peg LI N.

30ur implementation is publicly available at: https://github.com/ZaydH/arbitrary_pu,
*The PUc implementation was provided by Sakai and Shimizu [14] via personal correspondence.
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Table 1: Mean inductive misclassification rate (%) over 100 trials for MNIST, 20 Newsgroups, &
CIFAR10 for different positive & negative class definitions. Bold denotes a shifted task’s best perform-
ing method. For all shifted tasks, our three methods — denoted with T — statistically outperformed PUc
and nnPU* based on a paired t-test (p < 0.01). Each dataset’s first three experiments have identical
negative (N) & positive-test (Pg) class definitions. Positive train (Py.i,) specified as “Pg”” denotes
no bias. Additional shifted tasks (with result standard deviations) are in the supplemental materials.
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Figure 2: Mean inductive misclassification rate over 100 trials on the MNIST, 20 News., CIFAR10,
& TREC spam datasets for our methods & baselines. Each numbered plot (i.e., 2—4) corresponds to
one experimental shift task in Table E Spam classification experiments are detailed in Section B

By default 7, = 7; in the prior shift and disjoint support experiments (rows 3 and 4), 7, equals
Pirain’s true prior w.r.t. Pyin LI N.

Analysis Results are shown in Table [I|and Figure 2} On unshifted data (row 1 for each dataset),
baselines PUc and nnPU* slightly outperformed our methods, which shows that PUc’s architecture
is sufficiently expressive. In contrast, on shiffed data (rows 2—4 for each dataset), our methods’
performance generally improved while both PUc’s and nnPU*’s performance always degraded. This
performance divergence demonstrates our methods’ algorithmic advantage. In fact for all shifted
tasks, our methods always outperformed PUc and nnPU* according to a paired t-test (p < 0.01). For
partially disjoint positive supports (rows 2 and 3 for each dataset), PU2aPNU was the top performer
for five of six setups (PURR was top on the other). This pattern reversed for fully disjoint supports
(row 4) where PU2aPNU always lagged PU2wUU; this is expected as explained in Section 3]

Reducing 7 always improved our algorithms’ performance and degraded PUc’s. A smaller prior
enables easier identification of X} ,’s negative examples and in turn a more accurate estimation of
Xle-u’s negative risk. In contrast, importance weighting is most accurate in the absence of bias (see
row 1 for each dataset). Any shift increases density estimation’s (and by extension PUc’s) inaccuracy.



Table 2: Mean inductive misclassification rate (%) over 100 trials for spam adversarial drift. Our
methods — PURR, PU2wUU, and PU2aPNU - outperformed PUc & nnPU* based on a 1% paired
t-test. Each result’s standard deviation appears in supplemental Table@

Train Set Test Set Two-Step (PU2) Baselines Ref.

T Tte

Pos. Neg. Pos. Neg. PURR aPNU wUU PUc nnPU* PN
04 05 26.5 26.9 25.1 352 40.9 1T

05 0.5 27.5 28.6 251 346 40.5 0.6

06 0.5 30.8 33.0 29.3 385 41.1 1

2005 2005 2007 2007 -
Spam Ham Spam Ham

nnPU* outperformed both PUc and our methods when there was no bias. This is expected. If an
algorithm searches for non-existent phenomena, any additional patterns found will not generalize.

7.3 Case Study: Arbitrary Adversarial Concept Drift

PU learning has been applied to multiple adversarial domains including opinion spam [3, 116, |17, [18]].
We use spam classification as a vehicle to test our methods in an adversarial setting by considering
two different TREC email spam datasets — training on TRECO0S5 and evaluating on TRECO7. Spam —
the positive class — evolves quickly over time, but the two datasets’ ham emails are also quite different:
TRECOS relies on Enron emails while TRECO7 contains mostly emails from a university server.
Thus, this represents a more challenging, realistic setting where Eq. (7)’s assumption does not hold.

Table 2 and Figure 2] show that our methods outperformed PUc and nnPU* according to a 1% paired
t-test across three training priors (7). PU2wUU was the top-performer as & accurately labeled Xy,
yielding a strong surrogate negative set. PU2aPNU performed slightly worse than PU2wUU as the
significant adversarial concept drift greatly limited A},’s value. Overall, these experiments show that
our aPU setting arises in real-world domains. All of our methods handled large positive shifts better
than prior work, even in realistic cases where the negative class also shifts.

7.4 Discussion

Our two-step methods assume asymptotic consistency for &, in step #1, but finite training data
ensures a non-consistent evaluation setting. Nonetheless, either PU2aPNU or PU2wUU was the top
performer in all but one experiment in this sectionE] Supplemental Section includes additional
experiments where we further stress our two-step methods by forcing 6 away from our posterior
estimate. Even under those deleterious step #1 conditions, our two-step learners are robust.

Conventional wisdom suggests that joint method PURR should outperform pipeline approaches. This
intuition breaks down in our case because PURR, with its three risk decompositions, is strictly harder
to optimize than wUU, aPNU, abs-PU, and nnPU — all of which have a single decomposition. This
harder optimization can lead to worse accuracy compared to the two-step methods, especially on
easier problems (e.g., MNIST), where each step can be solved accurately on its own.

For completeness, suppl. Section [E.5|compares our methods to bPU selection bias method PUSB [13].
Our algorithms generally outperformed PUSB on data specifically tuned for their method even after
accounting for the differing unlabeled sets. Those experiments indicate that PUSB’s underlying
assumption entails only a small data shift and further point to potential PUSB learning brittleness.

8 Conclusions

We examined arbitrary-positive, unlabeled (aPU) learning, where the labeled-positive and target-
positive distributions may be arbitrarily different. A (nearly) fixed negative class-distribution allows
us to train accurate classifiers without any labeled data from the target distribution (i.e., disjoint
positive supports). Empirical results on real-world data above and in the supplementals show that our
methods are still robust in the realistic case of some negative shift. Future work seeks a less restrictive
yet statistically-sound replacement assumption of a fixed negative class-conditional distribution.

>Supplemental Sections and enumerate multiple empirical setups where PURR is the top performer.



9 Broader Impact

The algorithms proposed in this work are general and could be applied to many different applications.
Forecasting the broader impact of work like this is challenging and generally inaccurate. With that
caveat, we discuss potential impacts based on possible applications.

The case study on email spam suggests that our methods may be useful in adversarial domains, such
as the detection of fraud, malware, network intrusion, distributed denial of service (DDoS) attacks,
and many types of spam. In these settings, one class (e.g., spam) evolves quickly as attackers try to
evade detection. For many of these domains, improved classifiers would benefit society by reducing
spam and fraud. However, for domains such as facial recognition, improved robustness could lead to
reduced privacy and other societal harms. See Albert et al. [41] for an extensive discussion of the
politics of adversarial machine learning.

In other domains, such as epidemiological analysis and land-cover classification, our work may lead
to new or better models by reducing the need for labeled data and relaxing the SCAR assumption. As
detailed in Section[I} only recently has the PU SCAR barrier been broken [12, [131[14]. aPU learning
pushes PU learning’s positive-shift boundary to a new extreme. We hope this paper will enable
PU learning to be applied in domains where existing bPU\PU methods are impractical. This could
also benefit society if used responsibly, with experts performing proper model validation and vetting
risks. Careful model validation is especially important when labeled data is limited and biased.
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