
Learning from Positive and Unlabeled Data
with Arbitrary Positive Shift

Supplemental Materials

A Nomenclature

Table 3: aPU nomenclature reference

PN Positive-negative learning, i.e., ordinary supervised classification
PU Positive-unlabeled learning
NU Negative-unlabeled learning
uPU Unbiased Positive-Unlabeled risk estimator from [20]. See Section 2
nnPU Non-negative Positive-Unlabeled risk estimator from [8]. See Section 2
abs-PU Our Absolute-value Positive-Unlabeled risk estimator. See Section 3
bPU Biased-positive, unlabeled learning where the labeled-positive set is not representative of the target

positive class. bPU algorithm categories include sample selection bias [12, 13] and covariate shift
methods [14]

aPU Proposed in this work, arbitrary-positive, unlabeled learning generalizes bPU learning where the positive
training data may be arbitrarily different from the target application’s positive-class distribution

PUc Positive-Unlabeled Covariate shift algorithm from [14]. See Section 4.1
PU2wUU Our Positive-Unlabeled to Weighted Unlabeled-Unlabeled (two-step) aPU learner. See Section 5
PU2aPNU Our Positive-Unlabeled to Arbitrary-Positive, Negative, Unlabeled (two-step) aPU learner. See Section 5
PURR Our Positive-Unlabeled Recursive Risk (one-step) aPU estimator. See Section 6
abs-PU Our Absolute-value Positive-Unlabeled risk estimator. See Section 3
nnPU* Version of nnPU used as an empirical baseline. nnPU* considers two classifiers – one trained withXte-u as

the unlabeled set and the other trained with Xtr-u ∪ Xte-u as the unlabeled set – and reports whichever
configuration performed better. See Section 7

abs-PU* Baseline equivalent of nnPU* except risk estimator R̂abs-PU(g) is used instead of R̂nnPU(g). See Sec-
tion E.6.2

X Covariate where X ∈ Rd
Y Dependent random variable, i.e., label, where Y ∈ {±1}
ŷ Predicted label ŷ ∈ {±1}
g Decision function, g : Rd → R
θ Parameter(s) of decision function g
G Real-valued decision function hypothesis class, i.e., g ∈ G
` Loss function, ` : R→ R≥0
pT (x, y) Joint distribution, where T ∈ {tr, te} for train and test resp.
πT Positive-class prior probability, πT := pT (Y =+1) where T ∈ {tr, te} for train & test resp.
pT -p(x) Positive class-conditional pT -p(x) := pT (x|Y =+1) where T ∈ {tr, te} for train & test resp.
pT -n(x) Negative class-conditional pT -n(x) := pT (x|Y =−1) where T ∈ {tr, te} for train & test resp.
pT -u(x) Marginal distribution where pT -u(x) := pT (x) where T ∈ {tr, te} for train and test resp.
Xp Labeled (positive) dataset, i.e., Xp

i.i.d.∼ ptr-p(x)

Xtr-u Unlabeled dataset sampled from the training marginal distribution, i.e., Xtr-u
i.i.d.∼ ptr-u(x)

Xte-u Unlabeled dataset sampled from the test marginal distribution, i.e., Xte-u
i.i.d.∼ pte-u(x)

σ̂ Probabilistic classifier, σ̂ : Rd → [0, 1] that approximates ptr(Y =−1|x)

Σ̂ Function class containing σ̂
Xn Labeled negative dataset. In PU learning, Xn = ∅
X̃n Surrogate negative set formed by reweighting Xtr-u by σ̂
R(g) Risk, i.e., expected loss, for decision function g and loss `, i.e., R(g) := E(X,Y)∼p(x,y)[`(Y g(X))]

R̂(g) Empirical estimate of risk R(g)

A1

Table 3: aPU nomenclature reference (continued)

R̂ŷD(g) Empirical risk when predicting label ŷ ∈ {±1} on data sampled from some distribution, pD(x). See
Section 2

R̈ŷn (g) Labeled negative risk with absolute-value correction. See Eq. (5) in Section 3
R̃ŷn-u(g) Surrogate negative risk formed by weighting unlabeled set Xtr-u by probabilistic classifier σ̂

where R̃ŷn-u(g) := 1
ntr-u

∑
xi∈Xtr-u

σ̂(xi)`(ŷg(xi))
1−πtr

w(x) Covariate shift importance function based on density-ratio estimation where w(x) := pte-u(x)
ptr-u(x)

np Size of the labeled (positive) dataset, i.e., np := |Xp|
ntr-u Size of the unlabeled training dataset, i.e., ntr-u := |Xtr-u|
nte-u Size of the unlabeled test dataset, i.e., nte-u := |Xte-u|
nTest Size of the inductive test set
A Learning or optimization algorithm
η Learning rate hyperparameter, η > 0
λ Weight decay hyperparameter, λ ≥ 0
γ Non-negative gradient attenuator hyperparameter γ ∈ (0, 1]. This hyperparameter is ignored when

absolute-value correction is used.
N (µ, Im) Multivariate Gaussian (normal) distribution with mean µ and m-dimensional identity covariance. See

Section E.1
[a]+ := max{0, a}. See Section C.2
bae Rounds a ∈ R to the nearest integer. See Section E.7

B Proofs

B.1 Proof of Theorem 1

Proof. Mild assumptions are made about the behavior of the loss and decision functions; the following conditions
match those assumed by Kiryo et al. [8]. Define loss function ` as bounded over some class of real-valued functions G
(where g ∈ G) when the following conditions both hold:

1. ∃Cg > 0 such that supg∈G‖g‖∞ ≤ Cg

2. ∃C` > 0 such that sup|t|≤Cg
maxŷ∈{±1} `(ŷt) ≤ C` .

du Plessis et al. [20] show that
(1− π)Rŷn (g) = Rŷu (g)− πRŷp (g). (15)

Consider the labeled negative-valued risk estimator with absolute-value correction

R̈ŷn (g) =
∣∣∣R̂ŷn (g)

∣∣∣. (16)

An estimator, θ̂n, over n samples is consistent w.r.t. parameter θ if for all ε > 0 it holds that

lim
n→∞

Pr
[∣∣∣θ̂n − θ∣∣∣ ≥ ε] = 0.

Let estimator Ŷ =
∑k
i=1 βiθ̂(i) be the weighted sum of k consistent estimators with each constant βi 6= 0. Let ε > 0

be an arbitrary positive constant. If each θ̂(i) converges to within ε
k|βi| > 0 of θ(i) ≥ 0, then Ŷ converges to within ε of∑k

i=1 βiθ(i). Therefore, to prove the consistency of R̈ŷn (g) in Eq. (16), it is sufficient to show that each of its individual
terms is consistent.

Both R̂ŷp (g) and R̂ŷu (g) are empirically estimated directly from a training data set. Let D ∈ {p, u} and XD
i.i.d.∼ pD(x).

For each (independent) X ∼ pD(x), `(ŷg(X)) is an unbiased estimate of RŷD(g). In addition, `(ŷg(X)) < C` <∞
implies that Var(`(ŷg(X))) <∞. By Chebyshev’s Inequality, R̂ŷD(g) is consistent as

lim
|X |→∞

Pr

[∣∣∣∣∣ 1

|X |
∑
xi∈X

(
`(ŷg(xi))

)
−RŷD(g)

∣∣∣∣∣ ≥ ε
]
<

Var(`(ŷg(X)))

|X |ε2
= 0.

A2

Since R̂ŷn (g) is the weighted sum of consistent estimators, it is consistent as n = min{np, nu} → ∞.

To show R̈ŷn (g) is consistent, it suffices to show that

lim
n→∞

Pr
[∣∣∣R̈ŷn (g)−Rŷn (g)

∣∣∣ ≥ ε] = 0.

Because R̂ŷn (g) is consistent, then as n →∞ it holds that R̂ŷn (g)− ε ≤ Rŷn (g) ≤ R̂ŷn (g) + ε. When
R̂ŷn (g) ≥ Rŷn (g) ≥ 0, then R̈ŷn (g) = R̂ŷn (g) (i.e., absolute value has no effect) so

0 ≤ R̈ŷn (g)−Rŷn (g) ≤ ε.

Consider the alternate possibility where R̂ŷn (g) < Rŷn (g). If R̂ŷn (g) ≥ 0 or Rŷn (g) = 0, then absolute-value correction
again has no effect on the estimation error (i.e., remains ≤ε). Lastly, when R̂ŷn (g) < 0 and Rŷn (g) > 0, the estimation
error strictly decreases as

errR̂ =
∣∣∣R̂ŷn (g)−Rŷn (g)

∣∣∣
= −R̂ŷn (g) +Rŷn (g) Since R̂ŷn (g) < 0 and Rŷn (g) > 0

=
∣∣∣R̂ŷn (g)

∣∣∣+Rŷn (g) Again since R̂ŷn (g) < 0

= R̈ŷn (g) +Rŷn (g) < ε

so
errR̈ =

∣∣∣∣∣∣R̂ŷn (g)
∣∣∣−Rŷn (g)

∣∣∣
=:
∣∣∣R̈ŷn (g)−Rŷn (g)

∣∣∣
< R̈ŷn (g) +Rŷn (g) < ε Since R̂ŷn (g) < 0 and Rŷn (g) > 0. (17)

The above shows that as n →∞, it always holds that
∣∣∣R̈ŷn (g)−Rŷn (g)

∣∣∣ ≤ ε for arbitrary ε > 0 making R̈ŷn (g) consistent.

B.2 Proof of Theorem 2

Proof. Consider first the case that σ̂(x) = ptr(Y =−1|x):

E
Xtr-u

i.i.d.∼ptr-u(x)

[
R̃ŷn-u(g)

]
= E

Xtr-u
i.i.d.∼ptr-u(x)

[
1

ntr-u

∑
Xi∈Xtr-u

`(ŷg(Xi))σ̂(Xi)

1− πtr

]

=
1

ntr-u

ntr-u∑
i=1

EX∼ptr-u(x)

[
`(ŷg(X))σ̂(X)

1− πtr

]
Linearity of expectation

= EX∼ptr-u(x)

[
`(ŷg(X))σ̂(X)

1− πtr

]
= EX∼ptr-u(x)

[
`(ŷg(X))ptr(Y =−1|X)

ptr(Y =−1)

]
=

∫
x

`(ŷg(x))
ptr(Y =−1|x)ptr-u(x)

ptr(Y =−1)

= EX∼ptr-n(x)[`(ŷg(X))] Bayes’ Rule

=: Rŷtr-n(g),

satisfying the definition of unbiased.

Next we consider whether R̃ŷn-u(g) is a consistent estimator of Rŷn (g). For the complete definition of PAC learnability
that we use here, see [42]. We provide a brief sketch of the definition below.

We assume that true posterior distribution, ptr(Y =−1|x) is in some concept class C of functions — i.e., concepts —
mapping Rd to [0, 1]. Let σ̂S ∈ Σ̂ be the hypothesis selected by learning algorithm A after being provided a training
sample S of size n = min {np, ntr-u}.6 Consider the realizable setting so C’s PAC learnability entails that for all

6No restrictions are placed on A other than its existence and that selected hypothesis σ̂S satisfies Eq. (18).

A3

ε, δ > 0, there exists an n′ such that for all n > n′,

Pr

[
EX∼ptr-u(x)[|σ̂S(X)− ptr(Y = −1|X)|] > ε

]
< δ. (18)

Therefore, as n →∞, σ̂’s expected (absolute) error w.r.t. ptr(Y =−1|x) decreases to 0 making R̃ŷn-u(g) asymptotically
unbiased. To demonstrate consistency, it is necessary to show that for all ε > 0:

lim
n→∞

Pr
[∣∣∣R̃ŷn-u(g)−Rŷtr-n(g)

∣∣∣ > ε
]

= 0.

Let sup|t|≤‖g‖∞ `(ŷt) ≤ C`, where ‖g‖∞ is the Chebyshev norm of g for x ∈ Rd. Bounding the
loss’s magnitude bounds the variance when estimating the surrogate negative risk of X ∼ ptr-u(x) such
that 1

(1−πtr)2
Var(σ̂(X)`(ŷg(X))) ≤ Cvar where Cvar ∈ R≥0 and πtr ∈ [0, 1).

Since R̃ŷn-u(g) is asymptotically unbiased, then from Chebyshev’s inequality for ε > 0:

lim
n→∞

Pr
[∣∣∣R̃ŷn-u(g)−Rŷtr-n(g)

∣∣∣ ≥ ε] ≤ Var(R̃ŷn-u(g))

ε2

=
1

(1− πtr)2ε2

ntr-u∑
i=1

Var
(
σ̂(X)`(ŷg(X))

ntr-u

)
Linearity of independent r.v. var.

≤ ntr-uCvar

n2tr-uε2

= 0 L’Hôpital’s Rule.

B.3 Proof Regarding Estimating πte

We are not aware of an existing technique to directly estimate the test distribution’s positive prior πte given only Xp, Xtr-u,
and Xte-u. We propose the following that uses an additional classifier.

Theorem 4. Define Xu := {xi}nu
i=1

i.i.d.∼ pu(x). Let Xn = {xi ∈ Xu : Qi = 1} be a set where Qi is a Bernoulli random
variable with probability of success qi = p(Y = −1|xi). Then Xn is a SCAR sample w.r.t. negative class-conditional
distribution pn(x) = p(x|Y =−1).

Proof. By Bayes’ Rule

pn(x) ∝ p(Y =−1|x)pu(x)

Each xi ∈ Xu is sampled from pu(x). By including xi in Xn only if Qi = 1, then xi’s effective sampling probability
is p(Y = −1|xi)p(x). Bayes’ Rule includes prior inverse 1

1−π , where π = p(Y =+1); this constant scalar can be
ignored since it does not change whether Xn is unbiased, i.e., it does not affect relative probability.

Commentary Theorem 4 states the property generally, but consider it over aPU’s training distribution. Probabilistic
classifier σ̂ is used as a surrogate for ptr(Y =−1|x). Rather than soft weighting the samples like in Theorem 2’s
proof, sample inclusion in the negative set is a hard “in-or-out” decision. This does not change the sample’s statistical
properties, but it allows us to create an unweighted negative set, we denote Xtr-n.

By Eq. (7)’s assumption, Xtr-n is representative of samples from the negative class-conditional distribution
pn(x) = ptr-n(x) = pte-n(x). Given a representative labeled set from the test distribution, well-known positive-unlabeled
prior estimation techniques [21, 22] can be used without modification using Xtr-n and Xte-u. Be aware that these PU prior
estimation methods would return the negative-class’s prior, pte(Y =−1), while our risk estimators use the positive
class’s prior, πte = 1− pte(Y =−1).

We provide empirical results regarding the effect of inaccurate prior estimation’s in Section E.9.

A4

B.4 Proof of Theorem 3

The definition of “bounded loss” is identical to the proof of Theorem 1.

Proof. Consider first whether PURR is unbiased. du Plessis et al. [20] observe that the negative labeled risk can be
found via decomposition where

(1− π)Rŷn (g) = Rŷu (g)− πRŷp (g). (19)
The positive labeled risk similarly decomposes as

πRŷp (g) = Rŷu (g)− (1− π)Rŷn (g). (20)

Applying these decompositions along with Eq. (7)’s assumption yields an unbiased version of PURR:

R̂uPURR(g) = R̂+
te-u(g)− (1− πte)

R̂+
tr-u(g)− πtrR̂

+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)︸ ︷︷ ︸
πteR̂

+
te-p(g)

+(1− πte)
R̂−tr-u(g)− πtrR̂

−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

. (21)

Since ∀t`(t) ≥ 0, it always holds that labeled risk RŷD(g) ≥ 0. When using risk decomposition (i.e., Eqs. (19) and (20))
to empirically estimate a labeled risk, it can occur that R̂ŷD(g) < 0. Absolute-value correction addresses these obviously
implausible risk estimates. The unrolled definition of the PURR risk estimator with absolute-value correction is:

R̂PURR(g) =

∣∣∣∣∣ R̂+
te-u(g)− (1− πte)

∣∣∣∣ R̂+
tr-u(g)− πtrR̂

+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)

∣∣∣∣
︸ ︷︷ ︸

πteR̂
+
te-p(g)

∣∣∣∣∣+ (1− πte)

∣∣∣∣∣ R̂−tr-u(g)− πtrR̂
−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

∣∣∣∣∣. (22)

Clearly, R̂PURR(g) ≥ R̂uPURR(g). For R̂PURR(g) to be unbiased, equality must strictly hold. This only occurs if the
absolute-value is never needed, i.e., has probability 0 of occurring.

Next consider whether PURR is consistent. Theorem 1 showed that R̈ŷn (g) is consistent. Following the same logic in
Theorem 1’s proof, it is straightforward to see that when performing decomposition on Rŷp (g), R̈ŷp (g) is also consistent.

It follows by induction that PURR (and any similarly-defined recursive risk estimator) is consistent. Theorem 1 shows
the consistency of the base case where both composite terms (e.g., Rŷu (g) and RŷB(g) in Eq. (10)) were estimated
directly from training data. By induction, it is again straightforward from Theorem 1 that any decomposed term
(e.g., RŷA(g) in Eq. (10)) formed from the sum of consistent estimators must be itself consistent.

Theorem 1 further demonstrated that applying absolute-value correction does not affect the consistency of a risk
estimator. Therefore, any recursive risk estimator with absolute-value correction is consistent. PURR’s consistency is
just a single, specific example of this general property.

C Non-Negativity Correction Empirical Risk Minimization Algorithms

Kiryo et al. [8]’s non-negativity correction algorithm uses the max{0, ·} term to ensure a plausible risk estimate.
Unlike our simpler absolute-value correction described in Section 3, Kiryo et al.’s non-negativity correction requires a
custom empirical risk minimization (ERM) procedure. This section presents the custom ERM algorithms required if
non-negativity correction is used for our two-step methods and PURR.

C.1 Two-Step, Non-Negativity ERM Algorithm

The weighted-unlabeled, unlabeled (wUU) risk estimator with non-negativity correction is defined as:

R̂nn-wUU(g) := max
{

0, R̂+
te-u(g)− (1− πte)R̃

+
n-u(g)

}
+ (1− πte)R̃

−
n-u(g). (23)

The arbitrary-positive, negative, unlabeled (aPNU) risk estimator with non-negativity correction is similarly defined as:

R̂nn-aPNU(g) := (1− ρ)πteR
+
p (g) + (1− πte)R̃

−
n-u(g) + ρmax

{
0, R+

te-u(g)− (1− πte)R̃
+
n-u(g)

}
. (24)

A5

Like their counterparts with absolute-value correction, both R̂nn-wUU(g) and R̂nn-aPNU(g) are consistent estimators.

Algorithm 2 shows the custom ERM framework for R̂nn-wUU(g) and R̂nn-aPNU(g) with integrated “defitting.”
The algorithm learns parameters θ for decision function g. The non-negativity correction occurs whenever
R̂+

te-u(g)− (1− πte)R̃
+
n-u(g) < 0 (see line 7). The basic algorithm is heavily influenced by the stochastic optimization

algorithm proposed by Kiryo et al. [8].

Algorithm 2 wUU and aPNU with non-negativity correction custom ERM procedure

Input: Datasets (Xp, X̃n,Xte-u), hyperparameters (γ, η) and risk estimator R̂TS(g) ∈ {R̂nn-wUU(g), R̂nn-aPNU(g)}
Output: Decision function g’s parameters θ

1: Select SGD-like optimization algorithm A
2: while Stopping criteria not met do
3: Shuffle (Xp, X̃n,Xte-u) into N batches
4: for each minibatch (X (i)

p , X̃ (i)
n ,X (i)

te-u) do
5: if R̂+

te-u(g)− (1− πte)R̃
+
n-u(g) < 0 then

6: Set gradient −∇θ
(
R̂+

te-u(g)− (1− πte)R̃
+
n-u(g)

)
7: Update θ by A with attenuated learning rate γη
8: else
9: Set gradient ∇θR̂TS(g)

10: Update θ by A with default learning rate η
11: return θ minimizing validation loss

Algorithm 2 terminates after a fixed epoch count (see Table 9 for the number of epochs used for each dataset). Although
not shown in Algorithm 2, the validation loss is measured at the end of each epoch. The algorithm returns the model
parameters with the lowest validation loss.

C.2 PURR Non-Negativity ERM Algorithm

For readability and compactness, let [a]+ := max{0, a}. PURR with non-negativity correction is defined as

R̂nn-PURR(g) :=

[
R̂+

te-u(g)− (1− πte)

[
R̂+

tr-u(g)− πtrR̂
+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)

]
+︸ ︷︷ ︸

πteR̂
+
te-p(g)

]
+

+ (1− πte)

[
R̂−tr-u(g)− πtrR̂

−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

]
+

. (25)

Like R̂PURR(g) from Section 6, R̂nn-PURR(g) is a consistent estimator.

When a risk estimator only has a single term that can be negative (like nnPU, R̂nn-wUU(g), and R̂nn-aPNU(g)), the custom
non-negativity ERM framework is relatively straightforward as shown in Algorithm 2. However, R̂nn-PURR(g) has three
non-negativity corrections — one of which is nested inside another non-negativity correction.

Algorithm 3 details R̂nn-PURR(g)’s custom ERM procedure with learning rate η. Each non-negativity correction is
individually checked with the ordering critical. The optimizer minimizes risk on positive set Xp by both decreasing
R̂+

p (g) and increasing R̂−p (g). In contrast, each unlabeled example’s minimizing risk is uncertain. This creates explicit
tension and uncertainty for the optimizer. This enforced trade-off over the best unlabeled risk commonly delays or
counteracts unlabeled set overfitting. As such, overfitting is most likely with labeled (positive) data. When that occurs,
R̂−tr-p(g) increases significantly making R̂−te-n(g) most likely to be negative so its non-negativity is checked first (line 5).
Nested term R̂+

te-n(g) receives second highest priority since whenever its value is implausible, any term depending on it,
e.g., R̂+

te-p(g), is meaningless. By elimination, R̂+
te-p(g) has lowest priority.

Algorithm 3 applies non-negativity correction by negating risk R̂ŷA(g)’s gradient (see Eq. (10)). This addresses overfitting
by “defitting” g. A large negative gradient can push g into a poor parameter space so hyperparameter γ ∈ (0, 1] limits
the amount of correction by attenuating gradient magnitude.

A6

Algorithm 3 PURR with non-negativity correction custom ERM procedure
Input: Datasets (Xp,Xtr-u,Xte-u) & hyperparameters (γ, η)
Output: Decision function g’s parameters θ

1: Select SGD-like optimization algorithm A
2: while Stopping criteria not met do
3: Shuffle (Xp,Xtr-u,Xte-u) into N batches
4: for each minibatch (X (i)

p ,X (i)
tr-u ,X

(i)
te-u) do

5: if R̂−te-n(g) < 0 then
6: Use A to update θ with −γη∇θR̂−te-n(g)

7: else if R̂+
te-n(g) < 0 then

8: Use A to update θ with −γη∇θR̂+
te-n(g)

9: else if R̂+
te-p(g) < 0 then

10: Use A to update θ with −γη∇θR̂+
te-p(g)

11: else
12: Use A to update θ with η∇θR̂nn-PURR(g)
13: return θ minimizing validation loss

D Detailed Experimental Setup

This section details the experimental setup used to collect the results in Sections 7 and E.

D.1 Reproducing our Experiments

Our implementation is written and tested in Python 3.6.5 and 3.7.1 using the PyTorch [43] neural network framework
versions 1.3.1 and 1.4. The source code is available at: https://github.com/ZaydH/arbitrary_pu. The repository includes
file requirements.txt that details Python package dependency information.

To run the program, invoke:

python driver.py ConfigFile

where ConfigFile is a yaml-format text file specifying the experimental setup. Repository folder “src/configs”
contains the configuration files for the experiments in Sections 7, E.1, and E.4. Prior probability shifts can be made by
modifying the configuration files (see yaml fields train_prior and test_prior).

Datasets Our program automatically retrieves all necessary data. Synthetic data is generated by the program itself.
Otherwise the dataset is downloaded automatically from the web. If you have trouble downloading any datasets, please
verify that your network/firewall ports are properly configured.

D.2 Class Definitions

D.2.1 Partially and Fully Disjoint Positive Distribution Supports

Section 7.2’s experimental setups are very similar to Hsieh et al. [11]’s experiments for positive, unlabeled, biased-
negative learning. We even follow Hsieh et al.’s label partitions. The basic rationale motivating the splits are:

• MNIST: Odd (positive class) vs. even (negative class) digits. Each digit’s frequency in the original dataset is
approximately 0.1 making each class’s target prior 5 ∗ 0.1 = 0.5.

• 20 Newsgroups: As its name suggests, the 20 Newsgroups dataset consists of 20 disjoint labels. Categories
are formed by partitioning those 20 labels into 7 groups based on the corresponding text documents’ general
theme. Our classes are formed by splitting the categories into two disjoint sets. Specifically, the positive-test
class consists of documents with labels 0 to 10 in the original dataset. The negative class is comprised of
documents whose labels in the original dataset are 11-19. This split’s actual positive prior probability is
approximately 0.56.7

7We used the latest version of the 20 Newsgroups dataset with duplicates and cross-posts removed.

A7

https://github.com/ZaydH/arbitrary_pu

• CIFAR10: Inanimate objects (positive class) vs. animals (negative class). CIFAR10 is a multiclass dataset
with ten labels. Each label is equally common in the training and test set, i.e., has prior 0.1. Since CIFAR10’s
positive-test class has exactly four labels (e.g., plane, automobile, truck, and ship), the positive-test prior
is 4 ∗ 0.1 = 0.4.

For this experiment set, the distribution shift between train and test is premised on new subclasses emerging in the test
distribution (e.g., due to novel adversarial attacks or systematic failure to collect data on a positive subpopulation in the
original dataset).

D.2.2 TREC Spam Classification

As noted previously, PU learning has been applied to multiple adversarial domains including opinion spam [3, 16, 17, 18].
We use spam classification as a vehicle for testing our method in an adversarial domain.

Clearly, email spam classification is not a scenario where PU learning would generally be applied. Labeled data for both
classes is generally plentiful (especially at the corporate level), and for most modern email systems, spam classification
is a solved problem. For our purposes, spam email provides a good avenue for demonstrating our methods’ performance
in an adversarial setting for multiple reasons, including:

• The positive class (i.e., spam) evolves significantly faster than the negative class (i.e., not spam or “ham”).

• Our fixed negative class-conditional distribution assumption (i.e., Eq. (7)) will not explicitly hold. This more
closely represents what will be encountered “in-the-wild.”

• Public spam/ham datasets exist eliminating the need to use our own proprietary adversarial learning dataset.

• Email dates provide a realistic criteria for partitioning the training and test datasets.

To be clear, what we propose here is not intended as a plausible, deployable spam classifier. Rather, we show that our
methods apply to real-world adversarial domains.

Dataset Construction The Text REtrieval Conference (TREC) is organized annually be the United States’ National
Institute of Standards and Technology (NIST) to support information retrieval research [34]. In 2005, 2006, and 2007,
TREC arranged annual spam classifier competitions where they released corpuses of spam and ham (i.e., not spam)
emails.

As detailed in Table 5, the training set consisted of the TREC 2005 (TREC05) email dataset8 while the test set was the
TREC 2007 (TREC07) email dataset9. Basic statistics for the two datasets appear in Table 4.

The two sets of emails come from different domains. TREC05’s ham emails derive largely from the Enron dataset. In
contrast, TREC07’s emails were received by a particular server between April and July 2007. Many of the ham emails
were received by the University of Waterloo where the datasets were curated.

Due to the extended time required to encode all emails using the ELMo embedder (see Section D.7), we consider the
first 10,000 emails from each dataset as defined by the dataset’s full/index file.

Table 4: TREC05 & TREC07 dataset statistics
TREC05 TREC07

Dataset Size 92,189 75,419
Approx. % Spam ~57% ~66%

D.2.3 Identical Positive Supports with Bias

Table 6 defines the positive and negative classes for the 10 LIBSVM datasets used in Section E.4. Label “+1” always
corresponded to the positive class. In two-class (binary) datasets, the other label was the negative class. For multiclass
datasets (e.g., connect4), whichever other class had the most examples was used as the negative class.

8The raw TREC05 emails can be downloaded from https://plg.uwaterloo.ca/~gvcormac/treccorpus/.
9The raw TREC07 emails can be downloaded from https://plg.uwaterloo.ca/~gvcormac/treccorpus07/.

A8

https://trec.nist.gov/data/spam.html
https://plg.uwaterloo.ca/~gvcormac/treccorpus/
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/

Table 5: TREC spam email classification datasets
Class Definition

Pos. Train TREC05 Spam
Neg. Train TREC05 Ham
Pos. Test TREC07 Spam
Neg. Test TREC07 Ham

Table 6: Positive & negative class definitions for the LIBSVM datasets in Section E.4

Dataset d
Pos.
Class

Neg.
Class

banana 2 +1 2
cod-rna 8 +1 –1
susy 18 +1 0
ijcnn1 22 +1 –1
covtype.b 54 +1 2
phishing 68 +1 0
a9a 123 +1 –1
connect4 126 +1 –1
w8a 300 +1 –1
epsilon 2,000 +1 –1

D.3 bPU Selection Bias Invariance of Order

Section E.5’s experiments follow the invariance of order assumption as proposed and implemented by Kato et al. [13].
Their original experiments considered the MNIST dataset. For completeness, we expand our comparison to their
method to also include the MNIST variants, FashionMNIST [44] and KMNIST [45]. Like MNIST, both FashionMNIST
and KMNIST are multiclass datasets consisting of 10 disjoint labels. As described in Section D.2.1, binary classes are
formed by partitioning the original set of labels.

As before, MNIST splits the labels between odds (positive class) and evens (negative class). For consistency, we used
the same odd/even label partition for FashionMNIST and KMNIST. Note that such a partitioning lacks a corresponding
semantic meaning for those two datasets.

D.4 Training, Validation, and Test Set Sizes

Table 7 lists the default size of each dataset’s positive (Xp), unlabeled train (Xtr-u), unlabeled test (Xte-u), and inductive
test sets. All LIBSVM datasets (e.g., susy, a9a, etc. in Section E.4) used the dataset sizes defined by Sakai and Shimizu
[14]. The separate validation set – made up of only positive and unlabeled examples – was one-fifth Table 7’s training
set sizes. Each learner observed identical dataset splits in each trial.

Special inductive test set sizes were needed for two of Section 7.2’s disjoint positive-support experiments. To understand
why, consider the MNIST disjoint-support experiment (i.e., the fourth MNIST row in Table 1) where the negative
class (N) is comprised of labels {0, 2} and the positive-test class (Ptest) is composed of labels {5, 7}. Each label has
approximately 1,000 examples in the dedicated test set meaning there are approximately 4,000 total test examples
between the negative and positive classes. However, MNIST’s default inductive test set size (nTest) is 5,000 (see
Table 7). Rather than duplicating test set examples, we reduced MNIST’s nTest to 1,500 for the disjoint positive-support
experiments only. 20 Newsgroups has the same issue so its disjoint-positive support nTest was also reduced as specified
in Table 8. To be clear, for all other datasets and experimental setups in Sections 7.2, 7.3, E.1, and E.4, Table 7 applies.

MNIST, 20 Newsgroups, and CIFAR10 have predefined test sets, which we exclusively used to collect the inductive
results. They were not used for training or validation. Only some LIBSVM datasets have dedicated test sets, and for
those that do, Sakai and Shimizu [14] do not specify whether the test set was held out in their experiments. When
applicable, we merge the LIBSVM train and test datasets together as if there was only a single monolithic training
set. Xp, Xtr-u, Xte-u and the inductive test set are independently sampled at random from this monolithic set without
replacement.

A9

Table 7: Each dataset’s default training set sizes. LIBSVM denotes all datasets downloaded directly from [30] and used
in Section E.4. All quantities in the table do not include the validation set.

Dataset np ntr-u nte-u nTest

MNIST 1,000 5,000 5,000 5,000
20 Newsgroups 500 2,500 2,500 5,000
CIFAR10 1,000 5,000 5,000 3,000
TREC Spam 500 1,250 1,250 1,000
Synthetic 1,000 1,000 1,000 N/A
LIBSVM 250 583 583 2,000
FashionMNIST 833 ← See Sec. E.5 → 5,000
KMNIST 833 ← See Sec. E.5 → 5,000

Table 8: Smaller MNIST and 20 Newsgroups inductive test set sizes, i.e., nTest, used in the disjoint-support experiments.
Dataset nTest

MNIST 3,000
20 Newsgroups 1,500

Since the PUc formulation is convex, Sakai and Shimizu train their final model on the combined training and validation
set.

D.5 CIFAR10 Image Representation

Each CIFAR10 [32] image is 32 pixels by 32 pixels with three (RGB) color channels (3,072 dimensions total). PUc
specifies a convex model so it cannot be used to train (non-convex) deep convolutional networks directly. To ensure
a meaningful comparison, we leveraged the DenseNet-121 deep convolutional network architecture pretrained on
1.2 million images from ImageNet [39]. The network’s (linear) classification layer was removed, and the experiments
used the 1,024-dimension feature vector output by DenseNet’s convolutional backbone.

D.6 20 Newsgroups Document Representation

The 20 Newsgroups dataset is a collection of internet discussion board posts. The original dataset consisted of 20,000
documents [33]; it was pruned to 18,828 documents in 2007 after removal of duplicates and cross-posts [46]. This latest
dataset has a predefined split of 11,314 train and 7,532 test documents. Similar to CIFAR10, we use transfer learning to
create a richer representation of each document.

Classic word embedding models like GloVe and Word2Vec yield token representations that are independent of context.
Proposed by Peters et al. [37], ELMo (embeddings for language models) enhances classic word embeddings by making
the token representations context dependent. We use ELMo to encode each 20 Newsgroup document as described
below.

ELMo’s embedder consists of three sequential layers — first a character convolutional neural network (CNN) provides
subword information and improves unknown word robustness. The CNN’s output is then fed into a two-layer,
bidirectional LSTM. The output from each of ELMo’s layers is a 1,024-dimension vector. For a token stream
of length m, the output of ELMo’s embedder would be a tensor of size 〈#Layers× dlayer × #Tokens〉 — in this
case 〈3× 1024×m〉.
Like Hsieh et al. [11] who used this encoding scheme for positive, unlabeled, biased-negative (PUbN) (PUbN) learning,
we used Rücklé et al. [38]’s sentence representation encoding scheme, which takes the minimum, maximum, and
average value along each ELMo layer’s output dimension. The dimension of the resulting document encoding is:

|{max,min, avg}| · #Layers · dlayer = 3 · 3 · 1024 = 9, 216.

When documents are encoded serially, each document implicitly contains information about all preceding docu-
ments. Put simply, the order documents are processed affects each document’s final encoding. For consistency, all
20 Newsgroups experiments used a single identical encoding for all learners.

A10

The Allen Institute for Artificial Intelligence has published multiple pretrained ELMo models. We used the ELMo
model trained on a 5.5 billion token corpus — 1.9 billion from Wikipedia and 3.6 billion from a news crawl. We chose
this version because ELMo’s developers report that it was the best performing.

D.7 TREC Email Representation

The TREC05 and TREC07 emails are encoded using the ELMo embedder identical to 20 Newsgroups. See Section D.6
above for the details.

D.8 Models and Hyperparameters

This section reviews the experiments’ hyperparameter methodology.

As specified by its authors, PUc’s hyperparameters were tuned via importance-weighted cross validation (IWCV) [40].
PUc’s author-supplied implementation includes a built-in hyperparameter tuning architecture that we used without
modification.

Our hyperparameters and best-epoch weights were selected using the validation loss (using the associated risk es-
timation) on a validation set. Our experiments’ hyperparameters can be grouped into two categories. First, some
hyperparameters (e.g., number of epochs) apply to most/all learners (excluding PUc). The second category’s hyperpa-
rameters are individualized to each learner and were used for all of that learner’s experiments on the corresponding
dataset.

Table 9 enumerates the general hyperparameter settings that applied to most/all learners. Batch sizes were selected
based on the dataset sizes (see Tables 7 and 8) while the epoch count was determined after monitoring the typical time
required for the best validation loss to stop (meaningfully) changing. A grid search was used to select each dataset’s
layer count; we specifically searched set {1, 2, 3} for g and {0, 1, 2} for σ̂. With the exception of the output layer,
each linear layer used ReLU activation and batch normalization [47]. The selected layer count minimized the median
validation loss across all learners.

Tables 10, 11, and 12 enumerate the final hyperparameter settings for our models, nnPU, and the positive-negative
(PN) learners respectively. The selected hyperparameter setting had the best average validation loss across
10 independent trials. We also used a grid search for these parameters. The search space was: learning rate
η ∈ {10−5, 10−4, 10−3}, weight decay λ ∈ {10−4, 10−3, 5 · 10−3, 10−2, 10−1}, and (where applicable) gradient at-
tenuator γ ∈ {0.1, 0.5, 1.0}10.

By monitoring the (implausible) validation loss during Step #1, we observed overfitting when using the rich ELMo repre-
sentations for the 20 Newsgroups and TREC email datasets. To address this, we added a dropout layer (with probability
p = 0.5) before the input to each linear (i.e., fully-connected) layer. It is uncommon to use dropout even on the input
dimension. However, we deliberately made this choice to still allow dropout even if we use a strictly linear-in-parameter
model. Dropout was not used for any other dataset.

10Hyperparameter γ only applies when using Kiryo et al. [8]’s non-negativity correction. γ is not considered by our absolute-value
correction.

A11

Table 9: General hyperparameter settings

Dataset #Epoch Layer Count Batch Size Dropout?
g(x) σ̂(x) g(x) σ̂(x) PNte

MNIST 200 3 1 5,000 5,000 4,000
20 Newsgroups 200 1 1 5,000 2,500 2,000 X
CIFAR10 200 2 1 10,000 2,500 1,500
TREC Spam 200 1 0 1,000 1,000 1,000 X
Synthetic 100 N/A N/A 2,000 750 500
banana 500 3 2 500 750 500
cod-rna 500 2 1 500 750 500
susy 500 2 2 500 750 500
ijcnn1 500 2 2 500 750 500
covtype.b 500 3 1 500 750 500
phishing 500 2 2 500 750 500
a9a 500 2 2 500 750 500
connect4 500 2 1 500 750 500
w8a 500 2 1 500 750 500
epsilon 500 1 0 500 750 500
FashionMNIST 200 3 1 ←− See Section E.5 −→
KMNIST 200 3 1 ←− See Section E.5 −→

Table 10: Dataset-specific hyperparameter settings for our aPU learners. Hyperparameter γ∗ only applies when using
Kiryo et al. [8]’s non-negativity correction instead of our absolute-value correction.

Dataset PURR σ̂ aPNU wUU

η λ γ∗ η λ γ∗ η λ γ∗ η λ γ∗

MNIST 1E−3 1E−3 1 1E−3 5E−3 1 1E−3 1E−3 1 1E−4 5E−3 1
20 Newsgroups 1E−4 1E−4 0.5 1E−3 5E−3 1 1E−4 1E−4 0.5 1E−4 1E−4 0.5
CIFAR10 1E−3 1E−3 1 1E−3 5E−3 1 1E−3 1E−4 0.5 1E−3 1E−2 0.5
TREC Spam 1E−3 1E−2 1 1E−3 1E−1 1 1E−3 1E−3 0.5 1E−3 1E−2 0.5
Synthetic 1E−2 0 1 1E−2 0 1 1E−2 0 1 1E−2 0 1
banana 1E−4 1E−3 0.1 1E−4 5E−3 1 1E−5 1E−3 0.5 1E−3 1E−3 0.1
cod_rna 1E−4 1E−3 0.5 1E−3 1E−4 1 1E−3 1E−3 0.1 1E−4 1E−3 0.5
susy 1E−5 1E−2 0.5 1E−4 5E−3 1 1E−5 1E−3 0.1 1E−5 1E−4 0.5
ijcnn1 1E−4 1E−3 0.5 1E−4 5E−3 1 1E−4 1E−2 0.5 1E−4 1E−2 0.5
covtype.b 1E−5 1E−3 1 1E−3 1E−4 1 1E−5 1E−3 0.1 1E−4 1E−3 1
phishing 1E−5 1E−3 0.5 1E−3 1E−4 1 1E−5 1E−3 0.5 1E−5 1E−3 0.5
a9a 1E−5 1E−4 1 1E−4 5E−3 1 1E−5 1E−4 0.5 1E−4 1E−3 0.5
connect4 1E−4 1E−3 0.5 1E−3 1E−4 1 1E−4 1E−4 0.5 1E−3 1E−2 0.5
w8a 1E−5 1E−4 0.5 1E−3 1E−4 1 1E−5 1E−3 0.5 1E−5 1E−2 0.5
epsilon 1E−5 1E−2 0.1 1E−3 1E−4 1 1E−5 1E−2 0.1 1E−4 1E−2 0.1
FashionMNIST 1E−3 1E−3 1 1E−3 5E−3 1 1E−3 1E−3 1 1E−4 5E−3 1
KMNIST 1E−3 1E−3 1 1E−3 5E−3 1 1E−3 1E−3 1 1E−4 5E−3 1

A12

Table 11: Dataset-specific hyperparameter settings for nnPU.

Dataset nnPUte∪ tr nnPUte

η λ γ η λ γ

MNIST 1E−3 1E−3 0.5 1E−3 1E−3 0.5
20 Newsgroups 1E−3 1E−3 0.5 1E−3 1E−2 0.5
CIFAR10 1E−4 1E−3 0.1 1E−4 1E−3 0.1
TREC Spam 1E−3 1E−2 0.1 1E−3 1E−2 0.1
Synthetic 1E−2 0 1 1E−2 0 1
banana 1E−3 1E−3 1 1E−4 1E−3 0.5
cod_rna 1E−3 1E−3 0.5 1E−3 1E−3 0.5
susy 1E−5 1E−2 0.1 1E−3 1E−3 0.5
ijcnn1 1E−3 1E−2 0.5 1E−3 1E−3 0.5
covtype.b 1E−3 1E−2 0.5 1E−3 1E−2 0.5
phishing 1E−3 1E−2 0.5 1E−3 1E−2 0.5
a9a 1E−3 1E−2 1 1E−3 1E−3 0.5
connect4 1E−3 1E−3 0.1 1E−3 1E−4 1
w8a 1E−3 1E−3 0.5 1E−3 1E−3 0.5
epsilon 1E−3 1E−3 0.5 1E−3 1E−3 0.5
FashionMNIST 1E−3 1E−3 0.5 1E−3 1E−3 0.5
KMNIST 1E−3 1E−3 0.5 1E−3 1E−3 0.5

Table 12: Dataset-specific hyperparameter settings for the positive-negative (PN) learners

Dataset PNte PNtr

η λ η λ

MNIST 1E−3 1E−3 1E−3 1E−3
20 Newsgroups 1E−3 1E−3 1E−3 1E−2
CIFAR10 1E−4 1E−3 1E−3 1E−2
TREC Spam 1E−3 1E−2 1E−3 1E−2
Synthetic 1E−2 0 1E−2 0
banana 1E−4 1E−2 1E−4 1E−3
cod_rna 1E−3 1E−4 1E−3 1E−4
susy 1E−4 1E−2 1E−5 1E−2
ijcnn1 1E−3 1E−3 1E−3 1E−2
covtype.b 1E−3 1E−2 1E−3 1E−2
phishing 1E−3 1E−3 1E−3 1E−2
a9a 1E−5 1E−2 1E−3 1E−3
connect4 1E−3 1E−2 1E−3 1E−3
w8a 1E−4 1E−4 1E−4 1E−3
epsilon 1E−4 1E−3 1E−3 1E−3
FashionMNIST 1E−3 1E−3 1E−3 1E−3
KMNIST 1E−3 1E−3 1E−3 1E−3

A13

E Additional Experimental Results

This section includes experiments we consider insightful but for which there was insufficient space to include in the
paper’s main body. With the exception of the synthetic data experiments (see Section E.1) which focus on visually
illustrative examples to build intuitions, performance evaluation is based on the inductive misclassification rate since it
approximates the expected zero-one loss for an unseen example.

E.1 Illustration using Synthetic Data

This section uses synthetic data to visualize scenarios where our algorithms succeed in spite of challenging conditions.

For simplicity, σ̂ and g are linear-in-parameter models optimized by L-BFGS. PUc also trains a linear-in-parameter
models without Gaussian kernels. Since all methods use the same classifier architecture, our methods’ performance
advantage comes solely from algorithmic design.

Synthetic data were generated from multivariate Gaussians N (µ, I2) with different means µ and identity covariance I2.
In all experiments, the positive-test and negative class-conditional distributions were

pte-p(x) =
1

2
N
([
−2 −1

]
, I2
)
+

1

2
N
([
−2 1

]
, I2
)

pn(x) =
1

2
N
([

2 −1
]
, I2
)
+

1

2
N
([

2 1
]
, I2
)
.

πte = πtr = 0.5 makes the ideal test decision boundary x1 = 0. The datasets in Figure 3 vary only in the positive-train
class-conditional distribution, denoted ptr-(·)-p(x) where “·” is subfigure a to c.

Figure 3a’s positive-train class-conditional distribution is

ptr-(a)-p(x) =
1

2
N
([

6 −1
]
, I2
)
+

1

2
N
([

6 1
]
, I2
)
, (26)

making the training distribution’s optimal separator linear. PUc performed poorly on this setup for two reasons:
covariate shift’s assumption ptr(y|x) = pte(y|x) does not hold, and the positive-train supports are functionally disjoint
so importance function w(x) is practically unbounded. Our methods all performed well, even PU2aPNU where
inclusion of Xp’s risk had minimal impact since for most good boundaries, Xp’s risk was an inconsequential penalty.

Figure 3b adds to ptr-(a)-p(x) a third Gaussian where

ptr-(b)-p(x) =
2

3
ptr-(a)-p(x) +

1

3
N
([
−6 0

]
, I2
)
, (27)

so the training distribution’s optimal separator is non-linear. PUc performs poorly for the same reasons described above.
The new centroid does not meaningfully affect PURR. The most important takeaway is that linear σ̂’s inability to
partition Xtr-u has limited impact on PU2wUU and PU2aPNU; Xtr-u’s misclassified examples act as a fixed penalty that
only slightly offsets the two-step decision boundaries.

Figure 3c uses the worst-case positive-train class-conditional, i.e., ptr-(c)-p(x) = pn(x), making positive (labeled) data
statistically identical to the (train and test) negative class-conditional distribution. Its training marginal ptr-u(x) is not
separable – linearly or otherwise. Unlike PUc, our methods learned correct boundaries, which shows their robustness.

−4 0 4 8
−4

−2

0

2

4

x1

x
2

(a) Approx. linearly separableXtr-u

−8 −4 0 4 8
−4

−2

0

2

4

x1

(b) Non-linearly separable Xtr-u

−4 −2 0 2 4
−4

−2

0

2

4

x1

(c) ptr-(c)-p(x) = pn(x)

Xp Ideal
Xtr-u Pos. PURR (ours)
Xtr-u Neg. PU2aPNU (ours)
Xte-u Pos. PU2wUU (ours)
Xte-u Neg. PUc

Figure 3: Predicted linear decision boundaries for three synthetic datasets (np = ntr-u = nte-u = 1, 000). Our three methods
– PURR, PU2aPNU, and PU2wUU – are robust to non-linear & non-existent training class boundaries, but PUc fails in
all three cases. Ideal boundary: x1 = 0.

A14

E.2 Expanded MNIST, 20 Newsgroups, and CIFAR10 Experiment Set

Table 13 is an expanded version of Section 7.2’s Table 1. We provide these additional results to give the reader further
evidence of our methods’ superior performance.

In this section, each of the three datasets (i.e., MNIST, 20 Newsgroups, and CIFAR10) now has two positive-
training (Ptrain) class configurations that are partially disjoint from the positive-test (Ptest) class. For each such
configuration, Table 13 contains three experiments (in order):

1. πtr < πte

2. πtr = πte

3. πtr > πte

It is easier to directly compare the effects of increasing/decreasing πtr when the magnitude of the training prior
increase and decrease are equivalent (e.g., for MNIST πte = 0.5 so we tested performance at πtr = πte ± 0.12 and
πtr = πte ± 0.21 depending on the class partition). We maintained that rule of thumb when possible, but cases did arise
where there were insufficient positive example with the labels in Ptrain to support such a high positive prior. In those
cases, we clamp that Ptrain class definition’s maximum πtr.

The key takeaway from Table 13 is that across these additional, orthogonal definitions of Ptrain, our methods still
outperform PUc and nnPU* — usually by a wide margin (statistical significance according to 1% paired t-test).

In all experiments, our methods’ performance degraded as πtr increased since a larger prior makes it harder to identify
the negative examples in Xtr-u. To gain an intuition about why this is true, consider the extreme case where πtr = 1;
learning is impossible since the positive-train class-conditional distribution may be arbitrarily different, and there are no
negative samples that can be used to relate the two distributions. In contrast when πtr = 0, identifying the negative set
is trivial (i.e., all of Xtr-u is negative), and NU learning can be applied directly to learn g.

PUc performs best when πtr = πte. When πtr diverges from that middle point, PUc’s performance declines. To gain an
intuition why that is, consider density-ratio estimation in terms of the component class conditionals. When πtr = πte,
w(x) = 1 for all negative examples; from Table 13’s results, we know that PUc performs best when there is no bias,
i.e., Ptrain = Ptest. A static positive prior eliminates one possible source of bias making density-ratio estimation easier
and more accurate.

A15

Table 13: Full MNIST, 20 Newsgroups, and CIFAR10 experimental class partition results. Each result is the inductive
misclassification rate (%) mean and standard deviation over 100 trials for MNIST, 20 Newsgroups, and CIFAR10 with
different positive & negative class definitions. For all experiments with positive bias (i.e., rows 2–8 for each dataset),
all three of our methods had statistically significant better performance than PUc and nnPU* according to a 1% paired
t-test. Boldface indicates a shifted task’s best performing method. Negative (N) & positive-test (Ptest) class definitions
are identical for each dataset’s first three experiments. Positive train (Ptrain) specified as Ptest denotes no bias. Our three
methods – PURR, PU2aPNU, and PU2wUU – are denoted with †.

N Ptest Ptrain πtr πte
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc nnPU* PNte

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

Ptest 0.5 0.5 10.0 (1.3) 10.0 (1.2) 11.6 (1.6) 8.6 (0.8) 5.5 (0.5) x
7, 9

0.29 0.5 6.8 (0.8) 5.3 (0.6) 6.0 (0.7) 29.2 (2.1) 36.7 (2.7)
0.5 0.5 9.4 (1.5) 7.1 (0.9) 8.3 (1.5) 26.8 (2.4) 35.1 (2.5)
0.71 0.5 14.0 (3.0) 11.1 (1.4) 14.8 (3.1) 26.9 (3.0) 34.5 (2.9) 2.8 (0.2)

1, 3, 5
0.38 0.5 8.1 (1.0) 6.5 (0.8) 7.6 (0.9) 20.2 (2.5) 25.9 (1.1) y0.5 0.5 10.0 (1.6) 8.4 (1.1) 10.2 (1.4) 18.5 (2.9) 26.9 (1.2)
0.63 0.5 12.5 (2.3) 11.4 (1.3) 14.3 (2.3) 18.6 (3.3) 28.5 (1.2)

0, 2 5, 7 1, 3 0.5 0.5 4.0 (0.8) 3.6 (0.9) 3.1 (0.7) 17.1 (4.6) 30.9 (5.3) 1.1 (0.2)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

Ptest 0.56 0.56 15.4 (1.3) 14.9 (1.0) 16.7 (2.3) 14.9 (1.0) 14.1 (0.8) x
misc, rec

0.37 0.56 13.9 (0.7) 12.8 (0.6) 14.3 (0.9) 28.9 (1.8) 28.8 (1.3)
0.56 0.56 17.5 (2.1) 13.5 (0.8) 15.1 (1.3) 23.9 (3.0) 28.8 (1.7)
0.65 0.56 20.2 (2.8) 14.0 (0.9) 15.9 (1.5) 21.8 (3.3) 29.0 (1.8) 10.5 (0.5)

comp
0.37 0.56 13.3 (0.6) 13.7 (0.6) 14.4 (0.7) 30.3 (2.0) 31.4 (0.7) y0.56 0.56 16.0 (1.5) 14.9 (0.7) 15.7 (0.9) 28.6 (2.6) 31.2 (0.8)
0.65 0.56 19.2 (2.4) 15.6 (0.9) 16.5 (1.2) 27.8 (2.7) 31.3 (0.7)

misc, rec soc, talk alt, comp 0.55 0.46 5.9 (1.0) 7.1 (1.1) 5.6 (1.7) 18.5 (4.3) 35.3 (5.2) 2.1 (0.3)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 14.1 (0.8) 14.2 (1.3) 15.4 (1.7) 13.8 (0.7) 12.3 (0.6) x
Plane

0.14 0.4 12.1 (0.7) 11.9 (0.7) 12.4 (0.9) 26.7 (1.4) 26.7 (1.0)
0.4 0.4 13.8 (0.9) 14.5 (1.4) 15.1 (1.6) 20.6 (1.5) 27.4 (1.0)
0.6 0.4 16.1 (1.1) 16.7 (1.5) 20.0 (2.7) 21.5 (1.6) 28.4 (1.0) 9.7 (0.5)

Auto,
Truck

0.25 0.4 12.7 (0.7) 12.4 (0.7) 12.8 (0.8) 19.2 (1.1) 20.3 (0.8) y0.4 0.4 14.1 (0.9) 13.9 (1.1) 14.4 (1.2) 17.7 (1.0) 20.3 (0.8)
0.55 0.4 16.0 (1.1) 16.2 (1.6) 17.1 (2.2) 18.3 (1.1) 20.5 (0.9)

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 14.1 (0.9) 14.9 (1.5) 11.2 (0.8) 33.1 (2.7) 47.5 (2.0) 7.7 (0.4)

A16

E.3 Case Study: Arbitrary Adversarial Concept Drift

This section’s experiments model adversarial settings where the positive class-conditional distribution shifts significantly
faster than the negative class distribution. As explained in Section D.2.2, the training set was composed of spam
and ham emails from the TREC05 dataset; the test set was composed of spam and ham emails from the TREC07
dataset. The two dataset’s ham emails are quite different – TREC05 relies heavily on Enron emails while TREC07
contains many emails received on a university email server. We are therefore confident our fixed-negative-distribution
assumption in Eq. (7) does not hold.

Table 14 and Figure 4 compare our methods to PUc and nnPU across three different training priors (πtr). Under all
three experimental conditions, our three methods outperformed both PUc and nnPU* according to a 1% paired t-test.
PU2wUU was the top performer for all experiments. As evidenced by the PN misclassification rate, a highly accurate
classifier can be constructed for this dataset. Similarly, σ̂ accurately labels Xtr-u. The resulting surrogate negative set
is more useful than Xp to classify the spam emails from the test distribution. PU2aPNU performed slightly worse
than PU2wUU because the spam emails in Xp are of very limited value due to the significant adversarial concept drift.11

Table 14: Inductive misclassification rate (%) mean and standard deviation over 100 trials for arbitrary adversarial
concept drift on the TREC spam email datasets. In all experiments, our three methods – PURR, PU2aPNU, & PU2wUU –
(which are denoted by †) statistically outperformed PUc and nnPU* according to a paired t-test (p < 0.01) with
PU2wUU the top performer across all training priors (πtr).

Train Test
πtr πte

Two-Step (PU2) Baselines Ref.

Pos. Neg. Pos. Neg. PURR† aPNU† wUU† PUc nnPU* PNte

2005
Spam

2005
Ham

2007
Spam

2007
Ham

0.4 0.5 26.5 (2.6) 26.9 (3.1) 25.1 (3.1) 35.2 (11.3) 40.9 (3.1) ↑
0.5 0.5 27.5 (3.4) 28.6 (4.5) 25.1 (3.3) 34.6 (10.2) 40.5 (2.7) 0.6 (0.3)
0.6 0.5 30.8 (4.2) 33.0 (5.7) 29.3 (6.5) 38.5 (10.8) 41.1 (2.9) ↓

πtr=0.4 πtr=0.5 πtr=0.6

0

10

20

30

40

M
is

cl
as

si
fic

at
io

n
R

at
e

(%
)

PURR (ours)
PU2aPNU (ours)
PU2wUU (ours)
PUc
nnPU*

Figure 4: Mean inductive misclassification rate (%) over 100 trials for the TREC spam datasets across three training
priors (πtr). Our PU2wUU method was the top performer across all experiments.

11PU2wUU and PU2aPNU used top-k weighting (see Section E.7.1) for step #1.

A17

E.4 Identical Positive Supports with Bias

The positive bias applied in this section’s experiments is totally different from that in Sections 7.2 and 7.3. Here we
mimic situations where the labeled data are complete but non-representative resulting in identical marginal distribution
supports but shifts in the marginal distribution’s magnitude. We follow the experimental setup described in Sakai and
Shimizu [14]’s PUc paper. LIBSVM [30] benchmarks are used exclusively to ensure suitability with the SVM-like PUc;
benchmarks “banana,” “susy,” “ijcnn1,” and “a9a” appear in Sakai and Shimizu [14]’s PUc paper.

Sakai and Shimizu’s bias operation is based on the median feature vector. Formally, given dataset X ⊂ Rd, define cmed
as the median of set {‖x− x̄‖2 : x ∈ X} where ‖·‖2 is the L2 (Euclidean) norm and x̄ is X ’s mean vector, i.e.,

x̄ =
1

|X |
∑
x∈X

x.

Partition X into subsets Xlo := {x ∈ X : ‖x− x̄‖2 < cmed} and Xhi := X \ Xlo. Examples in Xp and Xtr-u are selected
from Xlo with probability p = 0.9 and from Xhi with probability 1− p. p = 0.1 is used when constructing Xte-u and the
test set. This bias operation simplifies density-ratio estimation since ∀x∈X w(x) ∈ { 19 , 9}. Their setting πtr = πte = 0.5
also simplifies density estimation as detailed in Section E.2.

We modified Sakai and Shimizu’s setup such that X was exclusively the original dataset’s positive-valued examples.
Negative examples were sampled uniformly at random.

Analysis The experiments enumerated in Table 15 and shown visually in Figure 5 used the bias procedure described
above on 10 LIBSVM datasets. According to a 1% paired t-test, PURR and PU2aPNU outperformed the baselines, PUc
and nnPU*, on all ten benchmarks; PU2wUU outperformed the baselines on nine of ten benchmarks.

PURR was the top performer on three benchmarks; PU2aPNU was the top performer on five benchmarks while
PU2wUU was the top performer on two benchmarks. Each estimator is best suited to a different feature dimension
range. PURR performed best when the dataset had fewer features (e.g., <50) while PU2aPNU performed well when
the dimension was moderate. PU2wUU was the top performer when the dimension was large (e.g., ≥300).

Accurate risk estimation is more challenging when the training sets are comparatively small but the feature count is
high. We expect that is causing PURR to struggle to reconcile/relate the different labeled losses (e.g., positive-labeled,
unlabeled train, unlabeled test) in these higher dimension datasets.

A18

Table 15: Inductive misclassification rate (%) mean and standard deviation over 100 trials with Sakai and Shimizu [14]’s
median feature vector-based bias for 10 LIBSVM datasets. Underlining denotes a statistically significant performance
improvement versus PUc and nnPU* according to a 1% paired t-test. Boldface indicates each dataset’s best performing
method. np = 300 and ntr-u = nte-u = 700. Datasets are ordered by increasing dimension. Our three methods – PURR,
PU2aPNU, and PU2wUU – are denoted with †.

Dataset d
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc nnPU* PNte

banana 2 12.9 (2.1) 11.8 (1.6) 13.3 (2.3) 17.4 (3.4) 28.8 (3.8) 8.6 (0.6)
cod-rna 8 14.7 (2.6) 15.1 (3.2) 15.5 (2.9) 25.2 (5.0) 24.9 (2.3) 6.5 (0.9)
susy 18 24.2 (2.1) 25.6 (2.2) 25.8 (2.2) 27.3 (4.3) 45.9 (3.9) 20.5 (1.3)
ijcnn1 22 22.7 (2.8) 17.7 (2.8) 24.6 (3.1) 23.9 (3.6) 34.7 (3.6) 6.8 (0.8)
covtype.b 54 29.5 (2.9) 32.5 (3.2) 29.9 (2.4) 39.4 (4.2) 55.5 (2.8) 22.3 (1.4)
phishing 68 11.3 (1.4) 9.6 (1.0) 11.1 (1.8) 13.8 (4.1) 22.5 (4.1) 6.2 (0.6)
a9a 123 27.1 (2.1) 26.6 (1.8) 27.1 (2.1) 32.8 (2.6) 32.5 (2.3) 20.6 (1.0)
connect4 126 34.9 (3.1) 32.9 (2.7) 35.0 (2.9) 37.0 (2.8) 45.1 (2.6) 21.6 (1.3)
w8a 300 17.2 (2.6) 21.0 (2.9) 16.8 (2.9) 29.3 (6.2) 41.1 (4.3) 6.6 (0.7)
epsilon 2,000 33.5 (4.8) 36.5 (5.0) 31.5 (1.7) 62.8 (6.7) 64.6 (1.5) 23.7 (1.1)

banana cod-rna susy ijcnn1 covtype.b phishing a9a connect4 w8a epsilon

0

10

20

30

40

50

M
is

cl
as

si
fic

at
io

n
R

at
e

(%
)

PURR (ours) PU2aPNU (ours) PU2wUU (ours) PUc nnPU*

Figure 5: Mean inductive misclassification rate (%) over 100 trials with Sakai and Shimizu [14]’s median feature
vector-based bias for the 10 LIBSVM datasets in Section E.4.

A19

E.5 Comparison to bPU Selection Bias Method PUSB

Recall that baseline PUc is a covariate-shift bPU method. A NeurIPS reviewer requested an experiment comparing our
proposed approaches to a selection bias bPU learning baseline. This section compares our algorithms to Kato et al.
[13]’s Positive-Unlabeled Selection Bias (PUSB) method.

Let random variable S ∈ {±1} denote whether some training example (X,Y) ∼ p(x, y) is labeled. For all types of
PU learning (e.g., unbiased, bPU, aPU), it is straightforward that S = +1 implies Y = +1, i.e.,

p(Y = +1|S = +1) = 1 (28)

and
p(S = +1|Y = −1) = 0. (29)

PUSB makes what Kato et al. term the invariance-of-order assumption. Formally, for any pair of training examples
xi, xj ∈ Rd, it holds that

p(Y = +1|xi) ≥ p(Y = +1|xj) ⇐⇒ p(S = +1|xi) ≥ p(S = +1|xj). (30)

In words, a training example is at least as likely to be positive-valued as another example if and only if it is at least
as likely to be labeled as that other example. As mentioned in Section 4, it is not possible to directly compare our
approaches to existing selection bias bPU methods like PUSB. Such bPU learning methods assume access to only
a single unlabeled set (Xte-u) drawn from the test distribution while aPU learning provides two unlabeled sets (Xtr-u
and Xte-u).

To ensure a fair comparison, we sought to replicate Kato et al. [13]’s experimental setup as closely as possible
provided the constraints of our method – even using their source code12 verbatim where possible (e.g., PUSB used
the Chainer [48] neural network framework as specified by Kato et al.). Like in the PUSB paper, we analyzed the
performance of all methods on the MNIST [31] dataset. To enrich the comparison, we also consider the drop-in MNIST
variants FashionMNIST [44] and KMNIST [45].

Dataset Construction Our experiments exactly duplicate Kato et al.’s procedure for constructing biased-positive
set Xp. Specifically, a multilayer perceptron (MLP) with four hidden layers of 300 neurons each and ReLU activation
is trained using the PN logistic loss on the dataset’s complete training and test sets. Xp is then selected u.a.r. without
replacement from those positive-valued training examples the aforementioned MLP identifies as having the highest
positive posterior. Unlabeled test set Xte-u and the inductive test set are drawn u.a.r. without replacement from the
complete training and test sets respectively.

Kato et al. uses the complete MNIST training set as the unlabeled set. Since both PUc and our methods require two
unlabeled sets, we cannot follow the same methodology here. Instead, we limit the size of the test unlabeled set and
create unlabeled training set Xtr-u by selecting its positive examples according to the procedure described above for Xp
and selecting its negative-valued examples u.a.r. without replacement from the training set’s negative elements. Table 16
details our experiments’ positive priors as well as the dataset and mini-batch sizes.

Hyperparameters Identical hyperparameters were used for the MNIST, FashionMNIST, and KMNIST datasets. Our
methods, nnPU*, and PNte used identical hyperparameter settings as those tuned for MNIST in Section 7’s experiments.

PUSB’s hyperparameters match those specified by Kato et al. for MNIST, e.g., learning rate η = 10−5 and weight
decay λ = 5 · 10−3. PUSB learners were trained for 250 epochs using the Adam [49] optimizer. As in the original
paper, PUSB’s neural network had four hidden layers of 300 neurons each and batch normalization before each ReLU
activation.

Results Analysis Table 17 compares the performance of our methods – PURR, PU2aPNU, and PU2wUU – to
the extended baseline set – PUc, PUSB, and nnPU* – for the experimental setup described above. To mitigate the
effects of different unlabeled set configurations, our experiments tested two unlabeled set sizes, with one size half
the other (Table 16). PUc’s and our methods’ results in Table 17a used 6,000 total unlabeled samples, i.e., the
same quantity used by PUSB in Table 17b. Figure 6 visualizes these cross-table, matching-unlabeled-set-size results
graphically. For nnPU* in Figure 6, three unlabeled set configurations are considered namely, nnPUte and nnPUte∪ tr with
|Xtr-u| = |Xte-u| = 3,000 as well as nnPUte with |Xte-u| = 6,000. Observe that these are the only nnPU* configurations
using at most 6,000 unlabeled examples.

12Kato et al.’s source code is publicly available at https://github.com/MasaKat0/PUlearning.

A20

https://github.com/MasaKat0/PUlearning

As mentioned in Section 7.2, when there is little to no dataset shift, shift-unaware methods (e.g., nnPU) are expected to
be the top performer. As an intuition why – when a method searches for a non-existent phenomenon, any patterns found
will not generalize. Since nnPU* is the top performer for MNIST and KMNIST despite not accounting for shift at all, it
then stands to reason that Kato et al. [13]’s invariance-of-order bias induces only a small shift here.

We saw in Section 7.2 that for such mild shifts (e.g., no bias), PUc often outperforms our methods. We generally see
the same trend in Table 17 for MNIST and KMNIST (primary exception being PU2aPNU for MNIST). This is again
expected. Under mild shifts, covariate shift’s consistent input-output relation assumption generally holds. In addition,
importance function w(x) ≈ 1 for all x under limited bias, in which case PUc simplifies to essentially standard nnPU.

All of our methods outperformed all baselines for FashionMNIST. What is more, our methods outperformed PUSB in
all but one case (PU2wUU for KMNIST) even after accounting for unlabeled set size (Figure 6). In fact, PUSB always
lagged nnPU*. This hints at a level of brittleness for Kato et al.’s method since PUSB struggled on a bias condition it
specifically targets.

A21

Table 16: Positive priors, dataset sizes (including the validation set), and mini-batch sizes for Section E.5’s invariance
of order selection bias experiments. The first column lists the table where each setup’s corresponding results are
enumerated.

Prior Dataset Size Batch Size

πtr πte np ntr-u nte-u nTest g(x) σ̂(x) PUSB PNte

Table 17a 0.5 0.5 1,000 3,000 3,000 5,000 2,500 2,500 1,000 2,000
Table 17b 0.5 0.5 1,000 6,000 6,000 5,000 5,000 5,000 1,000 4,000

Table 17: Inductive misclassification rate (%) mean and standard deviation over 100 trials for the experiments using
Kato et al. [13]’s invariance-of-order setup on the MNIST, FashionMNIST, and KMNIST datasets. Bold face denotes
each dataset’s best performing method according to mean misclassification rate. Our methods – PURR, PU2aPNU, and
PU2wUU – are denoted with †.

(a) |Xtr-u| = |Xte-u| = 3,000

Dataset
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc PUSB nnPU* PNte

MNIST 13.0 (2.3) 9.7 (1.3) 11.6 (1.4) 10.6 (1.1) 15.9 (1.0) 8.8 (0.9) 3.6 (0.3)
FashionMNIST 6.4 (1.4) 5.3 (0.7) 5.9 (1.0) 9.0 (1.1) 10.5 (1.2) 8.5 (1.3) 3.5 (0.3)
KMNIST 31.6 (2.4) 29.7 (2.2) 33.7 (2.3) 27.3 (1.4) 33.4 (1.2) 24.6 (1.4) 16.4 (0.8)

(b) |Xtr-u| = |Xte-u| = 6,000

Dataset
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc PUSB nnPU* PNte

MNIST 10.5 (1.8) 8.5 (1.2) 9.3 (1.0) 10.2 (1.1) 14.2 (1.0) 8.0 (0.9) 2.8 (0.2)
FashionMNIST 5.6 (1.3) 4.8 (0.6) 5.0 (0.8) 9.1 (1.2) 10.0 (1.2) 8.2 (1.2) 3.1 (0.2)
KMNIST 29.6 (2.2) 29.3 (2.1) 32.0 (2.2) 27.0 (1.4) 32.1 (1.2) 24.1 (1.4) 13.7 (0.7)

MNIST FashionMNIST KMNIST
0

10

20

30

40

M
is

cl
as

si
fic

at
io

n
R

at
e

(%
)

PURR (ours)
PU2aPNU (ours)
PU2wUU (ours)
PUc
nnPU*
PUSB

Figure 6: Mean inductive misclassification rate (%) over 100 trials for the experiments using Kato et al. [13]’s invariance-
of-order setup on the MNIST, FashionMNIST, and KMNIST datasets. All learners saw up to 6,000 total unlabeled
examples with results cross-compiled between Table 17a (for our methods and PUc) and Table 17b (for PUSB). Here
nnPU* considers three different unlabeled set configurations as described in Section E.5.

A22

E.6 Empirical Comparison of Absolute-Value and Non-Negativity Corrections

Section 3 describes our streamlined absolute-value correction to address PU learning overfitting. This section compares
our simpler absolute-value correction to Kiryo et al. [8]’s non-negativity correction using max and “defitting.”

E.6.1 Ordinary Positive-Unlabeled Learning Performance Without Distributional Shift

We first consider a direct comparison of nnPU and abs-PU on unshifted data. Xp and Xu are constructed identically
to the procedure used to construct the positive-labeled and unlabeled-train datasets in our aPU learning experiments.
Unlike before, the inductive test set is now drawn from the training distribution. We then trained classifiers using nnPU
and abs-PU with the sigmoid loss. In all experiments, the classifiers had identical initial weights and were trained on
identical dataset splits.

Hyperparameters (including γ) were tuned using nnPU; these identical hyperparameters were then used for abs-PU
(i.e., not in any way tuned for absolute-value correction). Therefore, the results represent the performance floor when
transitioning from nnPU to abs-PU. This was done due to time constraints.

Table 18 compares abs-PU and nnPU for the datasets in Sections 7.213, 7.3, and E.4. We also report the difference
between abs-PU and nnPU with a positive number indicating that abs-PU performed better that nnPU.

abs-PU was the top performer on eight of fourteen benchmarks and tied with nnPU on two others; the results are
generally too close to be statistically significant. Both methods had comparable variances. In summary, abs-PU
is both simpler and saw similar or slightly better performance than nnPU on unbiased data, even under conditions
(i.e., hyperparameters) that favor nnPU.

Table 18: Comparison of inductive misclassification rate (%) mean and standard deviation over 100 trials for abs-PU
and nnPU on unshifted data. Boldface denotes the best performing algorithm according to mean misclassification rate.
For the difference (Diff.) column, a positive value denotes that abs-PU outperformed nnPU.

Dataset abs-PU nnPU nnPU – abs-PU
(Diff.)

MNIST 6.6 (0.7) 6.5 (0.7) –0.1 (0)
20 Newsgroups 13.3 (1.3) 13.5 (1.2) 0.2 (–0.1)
CIFAR10 12.4 (0.7) 12.4 (0.7) 0 (0)
TREC Spam 2.0 (1.0) 2.1 (0.9) 0.1 (–0.1)
banana 10.5 (1.0) 10.5 (1.1) 0 (0.1)
cod-rna 10.3 (1.8) 10.4 (2.0) 0.1 (0.2)
susy 28.8 (1.7) 28.7 (1.8) –0.1 (0.1)
ijcnn1 10.1 (1.4) 10.2 (1.5) 0.1 (0.1)
covtype.b 32.8 (2.2) 33.3 (2.1) 0.5 (–0.1)
phishing 8.6 (1.3) 8.5 (1.2) –0.1 (–0.1)
a9a 15.9 (1.1) 16.0 (1.2) 0.1 (0.1)
connect4 24.6 (2.2) 24.4 (2.0) –0.2 (–0.2)
w8a 17.8 (1.6) 17.9 (1.6) 0.1 (0)
epsilon 31.1 (1.4) 31.2 (1.7) 0.1 (0.3)

E.6.2 Ordinary Positive-Unlabeled Learning Performance Under Distribution Shift

The previous section compared the performance of nnPU and abs-PU under ideal conditions, i.e., no positive shift. This
section compares nnPU and abs-PU with positive shift, specifically under the aPU learning conditions we use in our
experimental evaluation.

Like in the previous section, all classifiers in each experimental trial had identical initial weights and saw identical
dataset splits. Hyperparameters (including γ) were tuned using nnPU; these identical hyperparameters were then
used for abs-PU (i.e., not in any way tuned for absolute-value correction). Therefore, the results again represent the
performance floor if transitioning from nnPU to abs-PU. This choice was made due to limited time.

Recall from Section 7 that evaluation baseline nnPU* considers two nnPU-based classifiers – one trained with unlabeled
set Xte-u and the other trained with unlabeled set Xtr-u ∪ Xte-u (using the true composite prior), and we report whichever
of those two classifiers performed best on average. In this section, we introduce abs-PU*, which like nnPU*, considers

13The test conditions for MNIST, 20 Newsgroups, and CIFAR10 correspond to the unbiased test conditions (i.e., row 1 for each
dataset where Ptrain= Ptest) in Table 1/Table 13.

A23

two classifiers separately trained with the different unlabeled set configurations: Xte-u and Xtr-u ∪ Xte-u. The only
difference is that abs-PU*, as its name would suggest, uses our abs-PU risk estimator. We specifically separated this
section to delineate the baseline performance of our contribution (abs-PU) versus existing methods (nnPU).

Table 19 compares abs-PU* and nnPU* for the extended set of experiments in Table 13 (see Section E.2). Recall that
those experiments tested cases where some positive subclasses exist only in the test distribution. Similar to Table 18, a
positive value in the column labeled “Diff.” denotes that abs-PU* performed better than nnPU*.

For multiple positive-train (Ptrain) class configurations (e.g., MNIST Ptrain= {1, 3, 5}), abs-PU* and nnPU* exhibited sim-
ilar performance. When there was a large difference between the two methods (e.g., 20 Newsgroups Ptrain= {misc, rec}),
abs-PU* had significantly better mean accuracy – reducing the misclassification rate by multiple percentage points. The
difference between the methods was most pronounced when Ptrain and Ptest are disjoint.

These results indicate that in some cases, abs-PU* is learning decision boundaries that better generalize to unseen types
of data. To be clear, this does not apply to all datasets (CIFAR10 exhibited little difference between the methods except
when the positive supports were disjoint) nor even to all class partitions within a dataset (see MNIST positive-train
classes {7, 9} versus {1, 3, 5}). It should also be noted that missing positive subclasses is a more extreme form of
positive shift. The next set of results considers the more mild case of marginal-distribution magnitude shifts.

Table 19: Comparison of inductive misclassification rate (%) mean and standard deviation over 100 trials for abs-PU*
and nnPU* for the experimental shift tasks (eight per dataset) in Table 13 with partially/fully disjoint positive class
supports. Boldface denotes the best performing task according to mean misclassification rate. For the difference column,
a positive value indicates abs-PU* outperformed nnPU*.

N Ptest Ptrain πtr πte abs-PU* nnPU* Diff.

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

7, 9
0.29 0.5 34.4 (2.6) 36.7 (2.7) 2.3 (0.1)
0.5 0.5 33.1 (2.3) 35.1 (2.5) 2.0 (0.2)
0.71 0.5 32.7 (2.2) 34.5 (2.9) 1.8 (0.7)

1, 3, 5
0.38 0.5 25.9 (1.2) 25.9 (1.1) 0 (–0.1)
0.5 0.5 27.1 (1.3) 26.9 (1.2) –0.2 (–0.1)
0.63 0.5 28.7 (1.1) 28.5 (1.2) –0.2 (0.1)

0, 2 5, 7 1, 3 0.5 0.5 25.7 (6.9) 30.9 (5.3) 5.2 (–1.6)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

misc, rec
0.37 0.56 27.0 (1.9) 28.8 (1.3) 1.8 (–0.6)
0.56 0.56 26.0 (1.7) 28.8 (1.7) 2.8 (0)
0.65 0.56 25.9 (1.7) 29.0 (1.8) 3.1 (0.1)

comp
0.37 0.56 31.2 (0.7) 31.4 (0.7) 0.2 (0)
0.56 0.56 31.0 (0.9) 31.2 (0.8) 0.2 (–0.1)
0.65 0.56 31.0 (0.8) 31.3 (0.7) 0.3 (–0.1)

misc, rec soc, talk alt, comp 0.55 0.46 34.6 (5.0) 35.3 (5.2) 0.7 (0.2)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Plane
0.14 0.4 26.5 (1.0) 26.7 (1.0) 0.2 (0)
0.4 0.4 27.4 (1.0) 27.4 (1.0) 0 (0)
0.6 0.4 28.3 (1.1) 28.4 (1.0) 0.1 (–0.1)

Auto,
Truck

0.25 0.4 20.3 (0.8) 20.3 (0.8) 0 (0)
0.4 0.4 20.4 (0.9) 20.3 (0.8) –0.1 (–0.1)
0.55 0.4 20.9 (0.9) 20.5 (0.9) –0.4 (0)

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 44.6 (1.8) 47.5 (2.0) 2.9 (0.2)

Table 20 compares abs-PU* and nnPU* for the 10 LIBSVM datasets in Table 15 (see Section E.4). Recall that in these
experiments, the positive-train and positive-test class-conditionals have identical supports. For seven of ten benchmarks,
abs-PU* had better mean performance than nnPU* and had equivalent performance on one other benchmark. abs-PU*
did have generally higher result variance. For some benchmarks (e.g., ijcnn1, covtype.b, epsilon, etc.), the change
in variance was more than offset by the improvement in mean accuracy. Had the abs-PU* learning rates been tuned
directly instead of using nnPU*’s hyperparameter settings, we expect this variance difference would have been mitigated.
Again however, limited time prevented that experiment.

In summary, abs-PU*’s performance is comparable or slightly/significantly better than that of nnPU* under aPU learning
conditions that are deleterious to ordinary PU risk estimators but that may be more realistic to real-world data.

A24

Table 20: Comparison of inductive misclassification rate (%) mean and standard deviation over 100 trials for abs-PU*
and nnPU* for the 10 LIBSVM datasets in Table 15 under Sakai and Shimizu [14]’s mean feature vector bias. Boldface
denotes the best performing task according to mean misclassification rate. For the difference column, a positive value
indicates abs-PU* outperformed nnPU*.

Dataset d abs-PU* nnPU* Diff.

banana 2 28.5 (4.1) 28.8 (3.8) 0.3 (–0.3)
cod-rna 8 25.1 (2.5) 24.9 (2.3) –0.2 (–0.2)
susy 18 45.9 (3.9) 45.9 (3.9) 0 (0)
ijcnn1 22 33.3 (3.9) 34.7 (3.6) 1.4 (–0.3)
covtype.b 54 54.6 (3.1) 55.5 (2.8) 0.9 (–0.3)
phishing 68 22.9 (4.2) 22.5 (4.1) –0.4 (–0.1)
a9a 123 32.0 (2.5) 32.5 (2.3) 0.5 (–0.2)
connect4 126 44.9 (3.1) 45.1 (2.6) 0.2 (–0.5)
w8a 300 40.0 (4.0) 41.1 (4.3) 1.1 (0.3)
epsilon 2,000 64.1 (1.4) 64.6 (1.5) 0.5 (0.1)

E.6.3 Effect of Absolute-Value Correction on Our aPU Learning Methods

This section examines the effect of using absolute-value correction over non-negativity correction for our three
aPU learning methods – PURR, PU2aPNU, and PU2wUU. Recall that non-negativity correction requires custom
ERM algorithms to support “defitting.” Section C describes our methods’ custom ERM frameworks when using
non-negativity.

Due to time constraints, hyperparameter tuning was performed using non-negativity correction with the same hy-
perparameters used for the absolute-value based methods. Therefore, these results maximally favor the baseline of
non-negativity correction.

Table 21’s experiments are identical to Table 13 in Section E.2. “abs” denotes our standard aPU learning methods
(see Sections 5 and 6) while “nn” denotes our methods modified to use Kiryo et al. [8]’s non-negativity correction.
For MNIST, neither absolute-value correction nor non-negativity clearly outperformed the other. For the more
challenging 20 Newsgroups and CIFAR10 datasets, absolute-value correction had consistently better performance than
non-negativity. The only exception were the disjoint support experiments and one experimental setup for PU2wUU
on 20 Newsgroups. Although not shown in Table 13 due to limited space, both correction strategies had comparable
variance.

Table 22’s experiments match the experimental conditions for the 10 LIBSVM datasets in Table 15 from Section E.4. Bi-
asing follows Sakai and Shimizu [14]’s median feature vector-based approach. Neither absolute-value nor non-negativity
correction consistently outperformed the other in these LIBSVM experiments. Note though that since absolute-value
correction is a simpler method with one less hyperparameter, γ, to tune, comparable performance implicitly favors
absolute-value correction over non-negativity.

A25

Table 21: Comparison of mean inductive misclassification rate (%) over 100 trials for the non-overlapping support
experiments in Table 13 when using absolute-value (abs) and non-negativity (nn) corrections for our aPU learning
methods. The best performing method (according to mean misclassification rate) is shown in bold. A positive
difference (Diff.) denotes that our absolute-value correction had better performance. Result standard deviations are
comparable for both correction methods but are not shown here to improve table clarity.

Ptest Ptrain πtr πte
PURR PU2aPNU PU2wUU

abs nn Diff. abs nn Diff. abs nn Diff.

M
N

IS
T 1, 3, 5,

7, 9

Ptest 0.5 0.5 10.0 10.2 0.2 10.0 9.8 –0.2 11.6 11.7 0.1

7, 9
0.29 0.5 6.8 6.6 –0.2 5.3 5.3 0 6.0 6.0 0
0.5 0.5 9.4 9.4 0 7.1 7.1 0 8.3 8.3 0
0.71 0.5 14.0 14.6 0.6 11.1 11.3 0.2 14.8 15.2 0.4

1, 3, 5
0.38 0.5 8.1 8.0 –0.1 6.5 6.5 0 7.6 7.7 0.1
0.5 0.5 10.0 9.9 –0.1 8.4 8.4 0 10.2 10.2 0
0.63 0.5 12.5 12.9 0.4 11.4 11.4 0 14.3 14.5 0.2

5, 7 1, 3 0.5 0.5 4.0 3.9 –0.1 3.6 3.6 0 3.1 3.2 0.1

20
N

ew
sg

ro
up

s

alt, comp,
misc, rec

Ptest 0.56 0.56 15.4 15.5 0.1 14.9 15.0 0.1 16.7 16.7 0

misc,
rec

0.37 0.56 13.9 13.9 0 12.8 12.8 0 14.3 14.3 0
0.56 0.56 17.5 17.7 0.2 13.5 13.5 0 15.1 15.1 0
0.65 0.56 20.2 20.8 0.6 14.0 14.0 0 15.9 15.9 0

comp
0.37 0.56 13.3 13.3 0 13.7 13.7 0 14.5 14.4 –0.1
0.56 0.56 16.0 16.5 0.5 14.9 14.9 0 15.7 15.7 0
0.65 0.56 19.2 19.6 0.4 15.6 15.6 0 16.5 16.5 0

soc, talk alt, comp 0.55 0.46 5.9 5.8 –0.1 7.1 7.1 0 5.6 5.7 0.1

C
IF

A
R

10

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 14.1 14.3 0.2 14.2 14.4 0.2 15.4 15.8 0.4

Plane
0.14 0.4 11.9 12.0 0.1 11.9 12.0 0.1 12.4 12.4 0
0.4 0.4 13.8 14.0 0.2 14.5 14.6 0.1 15.1 15.5 0.4
0.6 0.4 16.1 16.6 0.5 16.7 17.1 0.4 20.0 20.2 0.2

Auto,
Truck

0.25 0.4 12.7 12.8 0.1 12.4 12.5 0.1 12.8 13.0 0.2
0.4 0.4 14.1 14.3 0.2 13.9 14.0 0.1 14.4 14.6 0.2
0.55 0.4 16.0 16.4 0.4 16.2 16.3 0.1 17.1 17.4 0.3

Plane, Auto Cat, Dog 0.5 0.5 14.1 14.0 –0.1 14.9 14.8 –0.1 11.2 11.3 0.1

Table 22: Comparison of inductive misclassification rate (%) mean and standard deviation over 100 trials for Table 15’s
LIBSVM dataset experiments using Sakai and Shimizu’s mean feature vector biasing with absolute-value (abs) and
non-negativity (nn) corrections for our aPU learning methods. The best performing method (according to mean
misclassification rate) is shown in bold. A positive difference (Diff.) denotes that our absolute-value correction had
better performance than non-negativity correction.

Dataset
PURR PU2aPNU PU2wUU

abs nn Diff. abs nn Diff. abs nn Diff.

banana 12.9 (2.1) 12.9 (2.2) 0 (0.1) 11.8 (1.6) 11.7 (1.6) –0.1 (0) 13.3 (2.3) 14.0 (2.3) 0.7 (0)
cod-rna 14.7 (2.6) 14.6 (2.9) –0.1 (0.3) 15.1 (3.2) 15.1 (3.2) 0 (0) 15.5 (2.9) 15.5 (3.3) 0 (0.4)
susy 24.2 (2.1) 24.6 (2.1) 0.4 (0) 25.6 (2.2) 25.6 (2.2) 0 (0) 25.8 (2.2) 26.0 (2.1) 0.2 (–0.1)
ijcnn1 22.7 (2.8) 23.0 (2.8) 0.3 (0) 17.7 (2.8) 19.0 (2.9) 1.3 (0.1) 24.6 (3.1) 24.9 (2.9) 0.3 (–0.2)
covtype.b 29.5 (2.9) 29.6 (2.9) 0.1 (0) 32.5 (3.2) 32.6 (3.1) 0.1 (–0.1) 29.9 (2.4) 30.1 (2.7) 0.2 (0.3)
phishing 11.3 (1.4) 11.9 (1.4) 0.6 (0) 9.6 (1.0) 9.6 (1.0) 0 (0) 11.1 (1.8) 11.7 (1.9) 0.6 (0.1)
a9a 27.1 (2.1) 27.0 (2.1) –0.1 (0) 26.6 (1.8) 26.5 (1.8) –0.1 (0) 27.1 (2.1) 27.0 (2.0) –0.1 (–0.1)
connect4 34.9 (3.1) 34.2 (2.6) –0.7 (–0.5) 32.9 (2.7) 33.0 (2.7) 0.1 (0) 35.0 (2.9) 34.9 (2.6) –0.1 (–0.3)
w8a 17.2 (2.6) 17.1 (2.4) –0.1 (–0.2) 21.0 (2.9) 20.3 (2.9) –0.7 (0) 16.8 (2.9) 18.4 (2.7) 1.6 (–0.2)
epsilon 33.5 (4.8) 32.7 (3.1) –0.8 (–1.7) 36.5 (5.0) 37.8 (6.9) 1.3 (1.9) 31.5 (1.7) 31.3 (1.7) –0.2 (0)

A26

E.7 Alternate Methods for Step #1 of Our Two-Step Methods

Recall from Section 5 that our two-step methods’ first step transform unlabeled training set Xtr-u into surrogate negative
set X̃n by soft weighting each x ∈ Xtr-u using classifier

σ̂soft(x) := σ̂(x) ≈ ptr(Y =−1|x). (31)

In this section, we propose and empirically evaluate two alternative step #1 methods – hard and top-k weighting.
Regardless of which step #1 method is used to create X̃n, no changes are required to our step #2 risk estimators – wUU
and aPNU.

E.7.1 Overview of the Alternate Step #1 Methods

Hard Weighting Guo et al. [50] show that modern neural networks are generally poorly calibrated and tend to report
“peaky” confidence estimates. σ̂ is vulnerable to similar “peaky” behavior. Hard weighting assigns each unlabeled
training example, x ∈ Xtr-u, weight

σ̂hard(x) := bσ̂(x)e (32)

where for a ∈ R, bae rounds a to the nearest integer (i.e., 0 or 1 for probabilistic classifier σ̂).

Hard weighting simulates worst-case “peaked” behavior. Although not statistically consistent for non-separable data,
hard weighting may sometimes outperform soft-weighting due to its thresholding effect.

Top-k Weighting To broadly summarize Guo et al.’s primary contribution, neural network probability estimates
may be inaccurate. Our top-k weighting method attempts to overcome that inaccuracy by focusing, not on the specific
probability values predicted by σ̂, but instead on the ordering of those posterior estimates.

By definition, the expected number of positive-labeled examples in Xtr-u is πtr · ntr-u, where ntr-u := |Xtr-u| is the
unlabeled training set size and πtr is the positive training prior. Define k := bπtr · ntr-ue ∈ Z+. After training σ̂ (same as
before), let set Xtr-u-k be the k examples in Xtr-u with the highest predicted posteriors according to σ̂. Top-k weighting
assigns weight 1 to any x ∈ Xtr-u-k and weight 0 to any x ∈ (Xtr-u \ Xtr-u-k). Formally, for any x ∈ Xtr-u,

σ̂top-k(x) :=

{
1 x ∈ Xtr-u-k

0 Otherwise
. (33)

Observe that top-k weighting uses strictly more information than both soft and hard weighting. However, by relying
on πtr to estimate k, top-k weighting is generally more deleteriously affected by misestimation of πtr.

E.7.2 Step #1 Labeling Accuracy

These experiments examine how accurately our three proposed step #1 methods label Xtr-u. The labeling error rate is
defined as

Error RateM :=
100%

ntr-u

∑
x∈Xtr-u

|2σ̂M(x)− 1− yx|
2

, (34)

where yx ∈ {±1} is unlabeled training example x’s true (unknown) label andM∈ {soft, hard, top-k} denotes the
step #1 method. For hard and top-k weighting, Eq. (34) corresponds to their (scaled) transductive misclassification
rate on Xtr-u. Note that the difference between the soft and hard weightings’ labeling error rates is indicative of the
“peakiness” of σ̂, with a smaller gap indicating that σ̂’s estimates are more peaked.

For all experiments in this section, the three step #1 methods saw identical dataset splits and used the same initial model
parameters.

Analysis Table 23 compares the three weighting methods’ step #1 labeling error rate for the 10 LIBSVM datasets in
Table 15 (see Section E.4). Recall that in these experiments, the positive-train and positive-test class conditionals have
identical supports. The step #1 methods’ labeling error rates varied widely from around 10% on the phishing dataset
to 30–40% for the covtype.b and epsilon datasets.

Recall from Table 15 that PURR was the top performer for the cod-rna, susy, and covtype.b datasets. The step #1
labeling error on those three datasets ranged from moderate to poor. However, epsilon had soft weighting’s worst
step #1 labeling error rate yet PU2wUU still outperformed PURR (see Table 15). This demonstrates that step #1 labeling
accuracy alone does not determine which algorithm class, i.e., two-step or joint, is best.

A27

Table 23: Comparison of the soft, hard, and top-k weighting schemes’ step #1 labeling error rate mean and standard
deviation across 100 trials for the 10 LIBSVM datasets in Table 15.

Dataset d Soft Hard Top-k

banana 2 20.1 (3.8) 13.2 (1.8) 12.4 (1.8)
cod-rna 8 20.8 (4.0) 13.2 (1.9) 12.7 (1.7)
susy 18 39.6 (2.7) 30.7 (2.4) 30.6 (2.4)
ijcnn1 22 27.0 (4.5) 19.3 (2.5) 15.8 (2.7)
covtype.b 54 44.1 (4.2) 37.1 (3.3) 34.9 (2.7)
phishing 68 13.5 (3.6) 10.4 (1.5) 9.6 (1.1)
a9a 123 24.4 (3.8) 17.4 (1.4) 18.1 (1.8)
connect4 128 34.2 (5.5) 27.8 (4.4) 24.7 (2.4)
w8a 300 27.9 (5.1) 19.6 (1.6) 18.5 (1.7)
epsilon 2,000 44.2 (1.5) 32.5 (2.6) 33.7 (2.0)

Table 24 compares the three weighting methods’ step #1 labeling error rate for the extended set of experiments in
Table 13 (see Section E.2). Recall that those experiments, on datasets MNIST, 20 Newsgroups, and CIFAR10, replicated
scenarios where some positive subclasses exist only in the test distribution. As expected, the easier MNIST dataset had
better step #1 labeling accuracy than the more challenging 20 Newsgroups and CIFAR10 datasets. On the whole, these
three datasets had better average step #1 labeling error rate than the 10 LIBSVM datasets discussed above.

E.7.3 Step #1 Method’s Effect on Overall Two-Step Performance

These experiments study how each step #1 method affects our two step methods’ – PU2aPNU and PU2wUU – inductive,
test (i.e., end-to-end) misclassification rate. As in the previous section, all methods saw identical dataset splits and
initial model parameters in each experimental trial.

Analysis Table 25 compares the two-step inductive misclassification rate when using the three step #1 methods for
the 10 LIBSVM datasets in Table 15 (see Section E.4). Soft weighting was the best performing method for all ten
datasets for PU2aPNU and for seven of ten datasets for PU2wUU. It is also noteworthy that only soft weighting learned
a meaningful classifier for the epsilon dataset. In fact, hard and top-k weighting performed worse than random chance
for epsilon.

Table 26 compares the two-step, inductive misclassification rate when using the three step #1 methods for the experiments
in Table 13 on MNIST, 20 Newsgroups, and CIFAR10 (see Section E.2). For the vast majority of setups, top-k weighting
was the best performing method for both PU2aPNU and PU2wUU. Top-k often improved performance over soft
weighting by 10–20% or more – in particular for PU2wUU. The one experimental setup where soft weighting
consistently performed as well or better than top-k was when the positive train and test supports were disjoint. Observe
that in those experiments, the positive and negative classes are composed of fewer constituent labels. As such, we
believe that top-k weighting is exacerbating overfitting in those models resulting in the worse performance.

E.7.4 Discussion

The experiments in the previous subsection demonstrate that the best performing step #1 method is benchmark/setup
dependent. If a user is highly confident that their data is readily and easily separable (like MNIST), top-k weighting may
perform particularly well. Although not shown here, we empirically observed that misestimation of training prior πtr
negatively affects top-k weighting’s accuracy – many times severely.

If the training datasets (e.g., Xp, Xtr-u, and Xte-u) are large enough that asymptotic consistency guarantees generally
apply, soft weighting may perform best. We made soft-weighting the focus of Section 5 due to its stronger statistical
guarantees. Had top-k weighting been used in Section 7.2’s experiments instead of soft weighting, our performance
advantage over the baselines, PUc and nnPU*, would have widened.

A28

Table 24: Comparison of the soft, hard, and top-k weighting schemes’ step #1 labeling error rate mean and standard
deviation across 100 trials for Table 13’s experiments on partially/fully disjoint positive-class support for MNIST,
20 Newsgroups, and CIFAR10.

N Ptest Ptrain πtr πte Soft Hard Top-k

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

Ptest 0.5 0.5 16.2 (2.3) 12.6 (1.0) 10.6 (1.0)

7, 9
0.29 0.5 11.0 (2.0) 6.8 (0.8) 5.4 (0.5)
0.5 0.5 10.8 (1.9) 8.3 (0.9) 6.5 (0.6)
0.71 0.5 11.1 (2.4) 8.3 (0.5) 7.7 (0.6)

1, 3, 5
0.38 0.5 12.6 (1.6) 9.0 (0.9) 7.3 (0.7)
0.5 0.5 14.0 (2.4) 10.7 (0.9) 9.0 (1.0)
0.63 0.5 15.0 (3.1) 11.4 (0.7) 10.3 (1.0)

0, 2 5, 7 1, 3 0.5 0.5 8.9 (1.7) 6.5 (0.7) 5.4 (0.4)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

Ptest 0.56 0.56 23.1 (4.3) 16.9 (1.3) 16.5 (1.3)

misc, rec
0.37 0.56 15.5 (1.3) 12.0 (1.4) 9.3 (1.3)
0.56 0.56 14.1 (1.5) 11.6 (1.0) 10.2 (1.2)
0.65 0.56 12.8 (1.5) 10.3 (0.9) 9.8 (1.1)

comp
0.37 0.56 15.7 (0.9) 12.1 (0.8) 11.1 (1.0)
0.56 0.56 14.3 (1.2) 12.0 (1.1) 11.6 (1.2)
0.65 0.56 12.8 (1.3) 10.7 (1.1) 11.1 (1.3)

misc, rec soc, talk alt, comp 0.55 0.46 12.4 (1.0) 10.6 (1.1) 10.1 (1.2)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 21.3 (3.1) 16.6 (1.3) 14.6 (0.7)

Plane
0.14 0.4 16.6 (3.1) 9.2 (0.6) 8.4 (0.5)
0.4 0.4 21.3 (4.0) 14.7 (1.1) 13.1 (0.7)
0.6 0.4 21.8 (3.0) 15.0 (1.0) 13.8 (0.6)

Auto,
Truck

0.25 0.4 14.7 (1.4) 10.4 (0.8) 9.1 (0.5)
0.4 0.4 15.7 (2.6) 12.5 (1.1) 10.9 (0.7)
0.55 0.4 17.0 (3.3) 13.3 (1.2) 11.8 (0.6)

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 30.9 (2.6) 21.4 (1.1) 21.0 (1.0)

A29

Table 25: Effect of step #1 method on our two-step methods’ overall inductive misclassification rate (%) for the
10 LIBSVM datasets in Table 15. The table’s upper half reports each method’s misclassification rate mean and
standard deviation over 100 trials. Boldface denotes each experimental setup’s best performing method according
to mean misclassification rate. The table’s lower half is an alternate visualization showing the difference (Diff.) in
misclassification rate mean and standard deviation w.r.t. to our soft method. Red denotes that the associated alternate
step #1 method had worse (i.e., higher) mean misclassification rate than soft weighting while green denotes that the
alternate method had a better (i.e., lower) mean misclassification rate.

Dataset d
PU2aPNU PU2wUU

Soft Hard Top-k Soft Hard Top-k

banana 2 11.7 (1.6) 13.4 (2.0) 13.1 (1.9) 13.4 (2.4) 14.0 (2.6) 13.3 (2.5)
cod-rna 8 14.6 (3.8) 18.6 (3.7) 18.3 (3.9) 15.5 (3.2) 17.4 (3.2) 16.7 (3.2)
susy 18 25.8 (2.6) 27.8 (3.2) 27.6 (2.5) 25.8 (2.4) 26.3 (3.5) 26.1 (2.6)
ijcnn1 22 18.0 (2.7) 22.1 (3.6) 18.4 (2.9) 25.1 (3.4) 24.3 (3.3) 21.4 (2.9)
covtype.b 54 32.1 (3.2) 40.6 (3.5) 37.0 (3.5) 29.7 (2.5) 40.1 (3.7) 34.8 (4.2)
phishing 68 9.6 (0.9) 9.8 (1.0) 10.0 (1.1) 11.6 (2.1) 10.9 (1.4) 10.1 (1.2)
a9a 123 26.8 (1.6) 28.6 (1.7) 27.9 (1.6) 27.4 (2.1) 28.5 (1.8) 28.3 (1.9)
connect4 126 32.9 (2.1) 37.2 (2.8) 35.6 (2.3) 34.8 (2.7) 38.0 (3.1) 35.3 (2.8)
w8a 300 21.6 (2.4) 23.7 (2.0) 24.6 (2.3) 16.9 (2.7) 22.4 (2.4) 22.0 (2.7)
epsilon 2,000 35.0 (4.4) 58.6 (3.2) 54.6 (3.4) 31.2 (1.1) 52.6 (3.9) 52.9 (5.8)

Dataset d
PU2aPNU PU2wUU

Soft Diff. Hard Diff. Top-k Soft Diff. Hard Diff. Top-k

banana 2 11.7 (1.6) 1.7 (0.4) 1.4 (0.4) 13.4 (2.4) 0.5 (0.2) –0.1 (0.1)
cod-rna 8 14.6 (3.8) 4.1 (–0.1) 3.7 (0.1) 15.5 (3.2) 1.9 (0) 1.2 (0)
susy 18 25.8 (2.6) 2.0 (0.6) 1.9 (–0.1) 25.8 (2.4) 0.6 (1.1) 0.4 (0.2)
ijcnn1 22 18.0 (2.7) 4.1 (0.8) 0.3 (0.2) 25.1 (3.4) –0.8 (0.2) –3.7 (–0.5)
covtype.b 54 32.1 (3.2) 8.5 (0.2) 4.9 (0.3) 29.7 (2.5) 10.3 (1.2) 5.0 (1.7)
phishing 68 9.6 (0.9) 0.2 (0) 0.4 (0.2) 11.6 (2.1) –0.6 (–0.7) –1.5 (–0.9)
a9a 123 26.8 (1.6) 1.9 (0.2) 1.2 (0) 27.4 (2.1) 1.2 (–0.4) 0.9 (–0.2)
connect4 126 32.9 (2.1) 4.3 (0.7) 2.7 (0.2) 34.8 (2.7) 3.3 (0.4) 0.6 (0.1)
w8a 300 21.6 (2.4) 2.1 (–0.4) 3.0 (–0.1) 16.9 (2.7) 5.6 (–0.3) 5.1 (0)
epsilon 2,000 35.0 (4.4) 23.7 (–1.2) 19.6 (–0.9) 31.2 (1.1) 21.4 (2.8) 21.7 (4.6)

A30

Table 26: Effect of step #1 method on our two-step methods’ overall inductive misclassification rate (%) for the MNIST,
20 Newsgroups, and CIFAR10 datasets. The table’s upper half reports each method’s misclassification rate mean and
standard deviation over 100 trials. Boldface denotes each experimental setup’s best performing method according
to mean misclassification rate. The table’s lower half is an alternate visualization showing the difference (Diff.) in
misclassification rate mean and standard deviation w.r.t. to our soft method. Red denotes that the associated alternate
step #1 method had worse (i.e., higher) mean misclassification rate than soft weighting while green denotes that the
alternate method had a better (i.e., lower) mean misclassification rate.

N Ptest Ptrain πtr πte
PU2aPNU PU2wUU

Soft Hard Top-k Soft Hard Top-k

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

Ptest 0.5 0.5 10.2 (1.5) 9.8 (1.3) 7.8 (1.0) 11.8 (1.5) 10.6 (1.1) 9.3 (1.0)

7, 9
0.29 0.5 5.4 (0.5) 5.3 (0.5) 4.9 (0.4) 6.1 (0.7) 5.5 (0.4) 5.6 (0.3)
0.5 0.5 6.9 (0.9) 7.7 (1.2) 5.9 (0.6) 8.0 (1.3) 7.5 (0.9) 6.4 (0.5)
0.71 0.5 11.0 (1.4) 12.9 (1.2) 9.9 (1.3) 14.9 (3.7) 12.9 (1.1) 9.9 (1.0)

1, 3, 5
0.38 0.5 6.4 (0.8) 6.6 (0.8) 5.7 (0.6) 7.6 (0.9) 7.0 (0.7) 6.6 (0.6)
0.5 0.5 8.4 (1.1) 9.0 (1.0) 7.2 (0.9) 10.0 (1.4) 9.3 (0.9) 8.0 (0.8)
0.63 0.5 11.3 (1.4) 12.8 (1.4) 10.2 (1.4) 14.1 (2.5) 12.9 (1.2) 10.5 (1.1)

0, 2 5, 7 1, 3 0.5 0.5 3.5 (1.0) 4.1 (1.1) 2.8 (0.6) 3.1 (0.7) 3.7 (0.9) 2.8 (0.4)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

Ptest 0.56 0.56 14.9 (1.3) 14.9 (1.4) 14.4 (1.5) 16.6 (2.5) 15.9 (1.8) 15.5 (1.9)

misc, rec
0.37 0.56 12.8 (0.6) 12.9 (0.8) 12.4 (0.6) 14.2 (0.9) 13.7 (0.9) 13.1 (0.7)
0.56 0.56 13.6 (0.9) 14.0 (0.9) 13.4 (0.9) 15.1 (1.3) 14.8 (1.1) 14.1 (1.1)
0.65 0.56 14.0 (0.9) 14.4 (0.9) 13.8 (0.9) 15.8 (1.3) 15.3 (1.2) 14.6 (0.9)

comp
0.37 0.56 13.7 (0.6) 13.8 (0.6) 13.0 (0.7) 14.5 (0.8) 14.1 (0.7) 13.3 (0.7)
0.56 0.56 14.9 (0.7) 15.7 (0.7) 14.3 (0.8) 15.7 (0.9) 15.9 (0.8) 14.6 (0.9)
0.65 0.56 15.5 (1.1) 16.5 (1.0) 15.2 (1.2) 16.3 (1.4) 16.7 (1.3) 15.4 (1.3)

misc, rec soc, talk alt, comp 0.55 0.46 7.2 (1.2) 8.1 (1.2) 7.5 (1.2) 5.8 (1.6) 7.1 (1.5) 5.8 (1.4)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 13.9 (1.2) 13.6 (0.9) 12.0 (0.7) 15.0 (1.2) 14.7 (0.9) 13.2 (0.8)

Plane
0.14 0.4 12.0 (0.8) 12.1 (0.6) 12.2 (0.7) 12.5 (0.9) 11.8 (0.6) 11.7 (0.7)
0.4 0.4 14.4 (1.3) 15.4 (1.1) 14.1 (0.8) 14.9 (1.4) 15.0 (1.2) 13.2 (0.8)
0.6 0.4 16.7 (1.5) 20.0 (1.5) 16.9 (1.1) 20.1 (2.3) 20.0 (1.8) 15.5 (1.1)

Auto,
Truck

0.25 0.4 12.4 (0.7) 12.6 (0.7) 12.4 (0.7) 12.8 (0.7) 12.4 (0.7) 12.2 (0.7)
0.4 0.4 14.0 (1.2) 14.7 (1.1) 13.4 (0.8) 14.4 (1.2) 14.6 (1.3) 13.1 (0.8)
0.55 0.4 16.2 (1.6) 17.7 (1.8) 15.3 (1.0) 17.0 (2.1) 17.7 (2.1) 14.8 (1.0)

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 15.1 (1.7) 20.2 (1.2) 19.2 (1.1) 11.2 (0.8) 16.3 (1.3) 14.2 (1.0)

N Ptest Ptrain πtr πte
PU2aPNU PU2wUU

Soft Diff. Hard Diff. Top-k Soft Diff. Hard Diff. Top-k

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

Ptest 0.5 0.5 10.2 (1.5) –0.4 (–0.2) –2.5 (–0.5) 11.8 (1.5) –1.3 (–0.4) –2.6 (–0.5)

7, 9
0.29 0.5 5.4 (0.5) –0.1 (0) –0.5 (–0.1) 6.1 (0.7) –0.5 (–0.3) –0.5 (–0.3)
0.5 0.5 6.9 (0.9) 0.8 (0.3) –1.0 (–0.3) 8.0 (1.3) –0.5 (–0.4) –1.6 (–0.8)
0.71 0.5 11.0 (1.4) 1.9 (–0.2) –1.1 (–0.1) 14.9 (3.7) –2.0 (–2.7) –5.0 (–2.7)

1, 3, 5
0.38 0.5 6.4 (0.8) 0.2 (0) –0.7 (–0.2) 7.6 (0.9) –0.6 (–0.2) –1.0 (–0.3)
0.5 0.5 8.4 (1.1) 0.6 (0) –1.2 (–0.2) 10.0 (1.4) –0.8 (–0.5) –2.1 (–0.7)
0.63 0.5 11.3 (1.4) 1.5 (0) –1.1 (0) 14.1 (2.5) –1.2 (–1.3) –2.1 (–0.7)

0, 2 5, 7 1, 3 0.5 0.5 3.5 (1.0) 0.6 (0.1) –0.7 (–0.4) 3.1 (0.7) 0.6 (0.3) –0.3 (–0.3)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

Ptest 0.56 0.56 14.9 (1.3) 0 (0.2) –0.5 (0.3) 16.6 (2.5) –0.7 (–0.8) –1.1 (–0.6)

misc, rec
0.37 0.56 12.8 (0.6) 0.1 (0.1) –0.4 (0) 14.2 (0.9) –0.5 (0) –1.1 (–0.2)
0.56 0.56 13.6 (0.9) 0.3 (0) –0.2 (0) 15.1 (1.3) –0.3 (–0.2) –1.0 (–0.2)
0.65 0.56 14.0 (0.9) 0.4 (0) –0.2 (–0.1) 15.8 (1.3) –0.5 (–0.1) –1.2 (–0.4)

comp
0.37 0.56 13.7 (0.6) 0.1 (0) –0.6 (0) 14.5 (0.8) –0.4 (0) –1.2 (0)
0.56 0.56 14.9 (0.7) 0.8 (0) –0.6 (0) 15.7 (0.9) 0.2 (–0.1) –0.1 (–0)
0.65 0.56 15.5 (1.1) 1.0 (0) –0.4 (0.1) 16.3 (1.4) 0.4 (–0.1) –0.9 (–0.1)

misc, rec soc, talk alt, comp 0.55 0.46 7.2 (1.2) 1.0 (0.1) 0.3 (0) 5.8 (1.6) 1.4 (–0.1) 0 (–0.3)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 13.9 (1.2) –0.3 (–0.3) –1.9 (–0.5) 15.0 (1.2) –0.4 (–0.3) –1.9 (–0.4)

Plane
0.14 0.4 12.0 (0.8) 0.1 (–0.1) 0.1 (–0.1) 12.5 (0.9) –0.8 (–0.3) –0.8 (–0.2)
0.4 0.4 14.4 (1.3) 1.0 (–0.2) –0.3 (–0.5) 14.9 (1.4) 0.1 (–0.2) –1.8 (–0.6)
0.6 0.4 16.7 (1.5) 3.3 (0) 0.2 (–0.4) 20.1 (2.3) –0.1 (–0.5) –4.6 (–1.2)

Auto,
Truck

0.25 0.4 12.4 (0.7) 0.2 (0) 0 (0) 12.8 (0.7) –0.4 (–0.1) –0.6 (0)
0.4 0.4 14.0 (1.2) 0.6 (–0.1) –0.6 (–0.4) 14.4 (1.2) 0.3 (0.1) –1.3 (–0.4)
0.55 0.4 16.2 (1.6) 1.5 (0.2) –0.9 (–0.7) 17.0 (2.1) 0.7 (0) –2.2 (–1.1)

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 15.1 (1.7) 5.1 (–0.5) 4.1 (–0.6) 11.2 (0.8) 5.1 (0.6) 3.0 (0.3)

A31

E.8 Analyzing the Effect of Positive and Negative Class-Conditional Distribution Shift

The goal of these experiments is to:

1. Demonstrate the effectiveness of our approaches across the entire spectrum of positive-train class-conditional
distribution shift.

2. Study how our methods perform when the assumption of a fixed negative class-conditional distribution is
violated.

We look at these trends across three datasets (as in Section 7.2): MNIST, 20 Newsgroups, and CIFAR10. The positive
and negatives classes are formed by combining two labels from the original dataset (the use of two labels per class
is necessary for this experimental setup). Table 27 enumerates each dataset’s positive and negative class definitions;
these definitions apply for both train and test. The dataset sizes are listed in Table 28; note that nTest is the size of the
inductive test set used to measure performance. The validation set was one-fifth the training set size. The priors were
also fixed such that πtr = πte = 0.5.

Table 27: Positive and negative class definitions for the class-conditional bias experiments

Dataset Positive Negative

C1 C2 C1 C2

MNIST 8 9 3 4
20 Newsgroups sci rec comp talk
CIFAR10 Auto Plane Ship Truck

Table 28: Dataset sizes for the class-conditional bias experiments
Dataset np ntr-u nte-u nTest

MNIST 250 5,000 5,000 1,500
20 Newsgroups 500 2,000 2,000 1,000
CIFAR10 500 5,000 5,000 1,500

The default rule in this section is that the positive/negative train/test classes are selected uniformly at random without
replacement from their respective subclasses. In each experiment, either the positive-train or negative-train class-condi-
tional distribution is shifted (never both). The test distribution is never biased and is identical for all experiments.

Positive-Train Shift In these experiments, the positive-train class-conditional distribution (i.e., ptr-p(x)) is shifted.
Recall that each positive class is composed of two labels; denote them C1 and C2 (e.g., C1 = Auto and C2 = Plane
for CIFAR10). Pr[Labeltr=C1|Y = +1] is the probability that any positive-valued training example has original
label C1. Since there are two labels per class,

Pr[Labeltr=C2|Y = +1] = 1− Pr[Labeltr=C1|Y = +1]. (35)

The positive-train class-conditional distribution shift entails sweeping Pr[Labeltr=C1|Y = +1] from 0.5 to 1 (i.e., from
unbiased on the left to maximally biased on the right). This setup is more challenging than shifting the positive-test
distribution since it entails the learner seeing fewer labeled examples from positive subclass C2.

Figures 7a, 7c, and 7e show the positive-train shift’s effect on the MNIST, 20 Newsgroups, and CIFAR10 misclassi-
fication rate respectively (where C1 corresponds to digit 8, document category “rec”, and image type “automobile”).
PURR’s performance was consistent across the entire bias range while the two step methods’ (PU2wUU and PU2aPNU)
performance improved as bias increased (due to easier identification of negative examples as explained in Section 7.2).
In contrast, PUc’s performance degrades as bias increases; this degradation is largely due to poor density estimation and
demonstrates why covariate shift methods can be non-ideal.

PNtr and PNte are trained using (labeled) Xtr-u and Xte-u. Since the test distributions are never biased, PNte is unaffected
by shift. In contrast, as Pr[Labeltr=C1|Y = +1] increases, there are fewer examples in Xtr-u with label C2 causing a
degradation in PNtr’s performance.

PUc’s and nnPU*’s performance begins to degrade at the same point where PNtr’s and PNte’s performance begins to
diverge. For nnPU* in particular, this degradation is primarily attributable to fewer examples labeled C2 in Xp. PUc is
more robust to bias than nnPU* (as shown by the slower rate of degradation) since it considers distributional shifts.

A32

Negative-Train Shift These experiments follow the same basic concept as the positive-train class-conditional distri-
bution shift described above except that the bias is instead applied to the negative-train class-conditional distribution,
i.e., ptr-n(x). This bias means that ptr-n(x) 6= pte-n(x). To reiterate, these experiments deliberately violate Eq. (7)’s as-
sumption upon which our methods are predicated. The goal here is to understand our methods’ robustness under
intentionally deleterious conditions. It is more deleterious to bias the negative class in Xtr-u since both two-step methods
and PURR use Xtr-u’s negative risk in dependent calculations; any error propagates and compounds in these subsequent
operations.

Let C1 and C2 now be the two labels that make up the negative class (e.g., C1 = Ship and C2 = Truck for CIFAR10).
Now, Pr[Labeltr = C1|Y = −1] is swept along the x-axis from 0.5 to 1 (unbiased to maximally biased). The results for
MNIST, 20 Newsgroups, and CIFAR10 are in Figures 7b, 7d, and 7f respectively.

With the exception of PU2wUU on MNIST, all of our methods showed moderate robustness to some negative
class-conditional distribution bias. In particular, PU2aPNU was almost as robust as PUc in some cases. nnPU*’s
robustness here is expected since anything not in Xp is assumed negative; even under bias, sufficient negative examples
exist for each label in Xte-u to allow nnPU* to learn how to classify those examples.

A33

0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

Pr[Digittr = 8|Y = +1]

M
is

cl
as

si
fic

at
io

n
R

at
e

(a) MNIST positive train bias

0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

Pr[Digittr = 3|Y = −1]

M
is

cl
as

si
fic

at
io

n
R

at
e

PURR (ours)
PU2aPNU (ours)
PU2wUU (ours)
PUc
nnPU*
PNte

PNtr

(b) MNIST negative train bias

0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

Pr[Categorytr = rec|Y = +1]

M
is

cl
as

si
fic

at
io

n
R

at
e

(c) 20 Newsgroups positive train bias

0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

Pr[Categorytr = comp|Y = −1]

M
is

cl
as

si
fic

at
io

n
R

at
e

(d) 20 Newsgroups negative train bias

0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

Pr[Labeltr = Auto|Y = +1]

M
is

cl
as

si
fic

at
io

n
R

at
e

(e) CIFAR10 positive train bias

0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

Pr[Labeltr = Truck|Y = −1]

M
is

cl
as

si
fic

at
io

n
R

at
e

(f) CIFAR10 negative train bias

Figure 7: Effect of positive (ptr-p(x)) or negative (ptr-n(x)) training class-conditional distribution shift on induc-
tive misclassification rate (%) for the MNIST, 20 Newsgroups, and CIFAR10 datasets. The x-axis corresponds
to Pr[Labeltr = C1|y = ŷ] where ŷ ∈ {±1}. Each data point is the average of 100 trials.

A34

E.9 Effect of Prior Probability Misestimation

As explained in Section 4, this work treats the positive-class priors, πtr and πte, as known. This set of experiments
examines our methods’ performance when the priors are misspecified.

Experimental Setup These experiments reuse the partially disjoint positive-support experiment setups from Sec-
tion 7.2’s Table 1. Therefore, we are specifically considering the MNIST, 20 Newsgroups, and CIFAR10 datasets with
Table 29 summarizing the experimental setups.

πtr and πte in Table 29 are the actual prior probabilities used to construct each training and test data set. We tested
our methods’ performance when each prior was specified correctly and when each prior was misspecified by ±20%
for a total of 9 = 3× 3 conditions per learner. PUc estimates πte as part of its density-ratio estimation. As such, we
only report three bias conditions for PUc, all over training prior πtr. Like all previous experiments, performance was
evaluated using the inductive (test) misclassification rate, and all methods saw identical datasets splits in each trial.

Analysis Tables 30, 31, and 32 contain the results for MNIST, 20 Newsgroups, and CIFAR10 respectively. Each
learner’s results are presented in a 3× 3 grid with πtr changing row by row and πte changing column by column. Each
cell is shaded red, with a darker background denoting worse performance, i.e., a greater misclassification rate. In all but
one setup, our methods outperformed PUc.

Similar to Section E.8’s experiments, the MNIST results were most affected by bias. The 20 Newsgroups and CIFAR10
results were more immune due to the richer feature representations generated through transfer learning.

Of our three methods, PU2aPNU was the least affected by misspecified priors. For the two-step methods, the worst
performing misestimation profile was dataset specific. In contrast, PURR’s performance was always worst when the
train and test priors were misspecified in opposite directions. To understand why this is, recall that PURR’s definition in
Eq. (14) includes prior ratio 1−πte

1−πtr
. This ratio compounds prior misestimations with opposite signs.

As an example, consider the MNIST experiment below with true priors πtr = πte = 0.5, making PURR’s ideal prior
ratio 1−0.5

1−0.5
= 1. This ratio remains 1 even if the priors are misspecified as πtr = πte = 0.6 or πtr = πte = 0.4. In

contrast, if πtr = 0.4 and πte = 0.6, PURR’s (erroneous) prior ratio is 1−0.6
1−0.4

≈ 0.67 – a 33% error. Furthermore, when
the priors are misspecified as πtr = 0.6 and πte = 0.4, the prior ratio jumps to 1−0.4

1−0.6
= 1.5 – a 50% error. This is

why over-estimation of the training prior and underestimation of the test prior is always PURR’s worst performing
configuration.

Table 29: Positive train (Ptrain), positive test (Ptest), and negative (N) class definitions and actual prior probabilities for
the experiments examining the effect of misspecified prior(s) on our algorithms’ performance.

N Ptrain Ptest πtr πte

MNIST 0, 2, 4,
6, 8

1, 3, 5,
7, 9 7, 9 0.5 0.5

20 News. sci, soc,
talk

alt, comp,
misc, rec

misc,
rec 0.37 0.56

CIFAR10
Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Plane 0.4 0.4

A35

Table 30: Combined heat map and table showing the effect of incorrectly specified priors πtr and πte on MNIST’s
inductive misclassification rate (%). Each result is the average of 100 trials.

PURR PU2aPNU PU2wUU PUc
0.8πte πte 1.2πte 0.8πte πte 1.2πte 0.8πte πte 1.2πte

0.8πtr 17.4 16.6 19.8 7.4 9.5 12.2 10.3 13.2 18.7 29.6
πtr 12.9 9.2 13.6 6.6 7.4 10.1 8.5 10.3 13.9 26.7

1.2πtr 25.3 15.8 12.7 18.0 7.7 7.5 16.9 8.9 10.3 26.3

Table 31: Combined heat map and table showing the effect of incorrectly specified priors πtr and πte on 20 Newsgroups’s
inductive misclassification rate (%). Each result is the average of 100 trials.

PURR PU2aPNU PU2wUU PUc
0.8πte πte 1.2πte 0.8πte πte 1.2πte 0.8πte πte 1.2πte

0.8πtr 15.2 14.9 16.5 12.3 12.5 13.3 13.4 14.3 16.7 34.1
πtr 15.9 13.8 15.1 12.6 12.8 13.5 13.4 14.2 16.1 28.6

1.2πtr 18.7 13.3 14.0 13.4 14.2 15.0 14.4 15.6 17.2 24.9

Table 32: Combined heat map and table showing the effect of incorrectly specified priors πtr and πte on CIFAR10’s
inductive misclassification rate (%). Each result is the average of 100 trials.

PURR PU2aPNU PU2wUU PUc
0.8πte πte 1.2πte 0.8πte πte 1.2πte 0.8πte πte 1.2πte

0.8πtr 16.4 15.6 18.0 13.9 15.1 17.5 18.2 19.3 21.1 23.4
πtr 16.0 13.7 15.3 13.3 14.4 16.6 14.2 14.9 16.9 20.1

1.2πtr 20.8 15.7 14.7 16.8 16.4 17.5 15.6 15.9 17.9 19.7

A36

