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Abstract

We consider the problem of wisely using a limited budget to label a small subset of
a large unlabeled dataset. We are motivated by the NLP problem of word sense
disambiguation. For any word, we have a set of candidate labels from a knowledge
base, but the label set is not necessarily representative of what occurs in the data:
there may exist labels in the knowledge base that very rarely occur in the corpus
because the sense is rare in modern English; and conversely there may exist true
labels that do not exist in our knowledge base. Our aim is to obtain a classifier
that performs as well as possible on examples of each “common class” that occurs
with frequency above a given threshold in the unlabeled set while annotating as
few examples as possible from “rare classes” whose labels occur with less than this
frequency. The challenge is that we are not informed which labels are common
and which are rare, and the true label distribution may exhibit extreme skew. We
describe an active learning approach that (1) explicitly searches for rare classes by
leveraging the contextual embedding spaces provided by modern language models,
and (2) incorporates a stopping rule that ignores classes once we prove that they
occur below our target threshold with high probability. We prove that our algorithm
only costs logarithmically more than a hypothetical approach that knows all true
label frequencies and show experimentally that incorporating automated search can
significantly reduce the number of samples needed to reach target accuracy levels.

1 Introduction

We are motivated by the problem of labelling a dataset for word sense disambiguation, where we
want to use a limited budget to collect annotations for a reasonable number of examples of each
sense for each word. This task can be thought of as an active learning problem (Settles, 2012), but
with two nonstandard challenges. First, for any given word we can get a set of candidate labels from
a knowledge base such as WordNet (Fellbaum, 1998). However, this label set is not necessarily
representative of what occurs in the data: there may exist labels in the knowledge base that do not
occur in the corpus because the sense is rare in modern English; conversely, there may also exist
true labels that do not exist in our knowledge base. For example, consider the word “bass.” It is
frequently used as a noun or modifier, e.g., “the bass and alto are good singers”, or “I play the bass

guitar”. It is also commonly used to refer to a type of fish, but because music is so widely discussed
online, the fish sense of the word is orders of magnitude less common than the low-frequency sound
sense in internet text. The Oxford dictionary (Lexico) also notes that bass once referred to a fibrous
material used in matting or chords, but that sense is not common in modern English. We want a
method that collects balanced labels for the common senses, “bass frequencies” and “bass fish”, and
ignores sufficiently rare senses, such as “fibrous material”. Second, the empirical distribution of the
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true labels may exhibit extreme skew: word sense usage is often power-law distributed (McCarthy
et al., 2007) with frequent senses occurring orders of magnitudes more often than rare senses.

When considered individually, neither of these constraints is incompatible with existing active
learning approaches: incomplete label sets do not pose a problem for any method that relies on
classifier uncertainty for exploration (new classes are simply added to the classifier as they are
discovered); and extreme skew in label distributions has been studied under the guided learning
framework wherein annotators are asked to explicitly search for examples of rare classes rather than
simply label examples presented by the system (Attenberg & Provost, 2010). But taken together,
these constraints make standard approaches impractical. Search-based ideas from guided learning
are far more sample efficient with a skewed label distribution, but they require both a mechanism
through which annotators can search for examples and a correct label set because it is undesirable to
ask annotators to find examples that do not actually occur in a corpus.

Our approach is as follows. We introduce a frequency threshold, �, below which a sense will be
deemed to be “sufficiently rare” to be ignored (i.e. for sense y, if P (Y = y) = py < � the sense
is rare); otherwise it is a “common” sense of the word for which we want a balanced labeling
with other common senses. Of course, we do not know py, so it must be estimated online. We do
this by providing a stopping rule that stops searching for a given sense when we can show with
high probability that it is sufficiently rare in the corpus. We automate the search for rare senses by
leveraging the high-quality feature spaces provided by modern self-supervised learning approaches
(Devlin et al., 2018; Radford et al., 2019; Raffel et al., 2019). We leverage the fact that one typically
has access to a single example usage of each word sense1, which enables us to search for more
examples of a sense in a local neighborhood of the embedding space. This allows us to develop a
hybrid guided and active learning approach that automates the guided learning search procedure.
Automating the search procedure makes the method cheaper (because annotators do not have to
explicitly search) and allows us to maintain an estimate of p̂y by using importance-weighted samples.
Once we have found examples of common classes, we switch to more standard active learning
methods to find additional examples to reduce classifier uncertainty.

Overall, this paper makes two key contributions. First, we present an Exemplar Guided Active
Learning (EGAL) algorithm that offers strong empirical performance under extremely skewed label
distributions by leveraging exemplar embeddings. Second, we identify a stopping rule that makes
EGAL robust to misspecified label sets and prove that this robustness only imposes a logarithmic
cost over a hypothetical approach that knows the correct label set. Beyond these key contributions,
we also present a new Reddit word sense disambiguation dataset, which is designed to evaluate active
learning methods for highly skewed label distributions.

2 Related Work

Active learning under class imbalance The decision-boundary-seeking behavior of standard
active learning methods which are driven by classifier uncertainty has a class balancing effect under
moderately skew data (Attenberg & Ertekin, 2013). But, under extreme class imbalance, these
methods may exhaust their labeling budgets before they ever encounter a single example of the rare
classes. This issue is caused by an epistemic problem: the methods are driven by classifier uncertainty,
but standard classifiers cannot be uncertain about classes that they have never observed. Guided
learning methods (Attenberg & Provost, 2010) address this by assuming that annotators can explicitly
search for rare classes using a search engine (or some other external mechanism). Search may be
more expensive than annotation, but the tradeoff is worthwhile under sufficient class imbalance.
However, explicit search is not realistic in our setting: search engines do not provide a mechanism
for searching for a particular sense of a word and we care about recovering all classes that occur in
our dataset with frequency above �, so searching by sampling uniformly at random would require
labelling n � O( 1

�2 ) samples2 to find all such classes with high probability.

Active learning with extreme class imbalance has also been studied under the “active search” paradigm
(Jiang et al., 2019) that seeks to find as many examples of the rare class as possible in a finite budget

1Example usages can be found in dictionaries or other lexical databases such as WordNet.
2For the probability of seeing at least one example to exceed 1 � �, we need at least n � log 1/�

�2 samples.
See Lemma 3 for details.
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of time, rather than minimizing classifier uncertainty. Our approach instead separates explicit search
from uncertainty minimization in two different phases of the algorithm.

Active learning for word sense disambiguation Many authors have showed that active learning
is a useful tool for collecting annotated examples for the word sense disambiguation task. Chen et al.
(2006) showed that entropy and margin-based methods offer significant improvements over random
sampling. To our knowledge, Zhu & Hovy (2007) were the first to discuss the practical aspects of
highly skewed sense distributions and their effect on the active learning problems. They studied over-
and under-sampling techniques which are useful once one has examples, but did not address the
problem of finding initial points under extremely skewed distributions.

Zhu et al. (2008) and Dligach & Palmer (2011) respectively share the two key observations of our
paper: good initializations lead to good active learning performance and language models are useful
for providing a good initialization. Our work modernizes these earlier papers by leveraging recent
advances in self-supervised learning. The strong generalization provided by large-scale pre-trained
embeddings allow us to guide the initial search for rare classes with exemplar sentences which are not
drawn from the training set. We also provide stopping rules that allow our approach to be run without
the need to carefully select the target label set, which makes it practical run in an automated fashion.

Yuan et al. (2016) also leverage embeddings but they use label propagation to nearest neighbors in
embedding space. This approach is similar to ours in that it also uses self-supervised learning, but
we have access to ground truth through the labelling oracle which offers some protection against the
possibility that senses are poorly clustered in embedding space.

Pre-trained representations for downstream NLP tasks There are a large number of recent
papers showing that combining extremely large datasets with large Transformer models (Vaswani et al.,
2017) and training them on simple sequence prediction objectives leads to contextual embeddings that
are very useful for a variety of downstream tasks. In this paper we use contextual embeddings from
BERT (Devlin et al., 2018) but because the only property we leverage is the fact that the contextual
embeddings provide a useful notion of distance between word senses, the techniques described are
compatible with any of the recent contextual models (e.g. Radford et al., 2019; Raffel et al., 2019).

3 Exemplar-guided active learning

We are given a large training set of unlabeled examples described by features (typically provided
by an embedding function), Xi 2 Rd, and our task is to build a classifier, f : Rd

! {1, . . . ,K},
that maps a given example to one of K classes. We are evaluated based on the accuracy of our
trained classifiers on a balanced test set of the “common classes”: those classes, yi, that occur
in our corpus with frequency, pyi > �, where � is a known threshold. Given access to some
labelling oracle, l : Rd

! {1, . . . ,K}, that can supply the true label of any given example at a
fixed cost, we aim to spend our labelling budget on a set of training examples such that our resulting
classifier minimizes the 0� 1 loss on the k(�) =

P
i 1

⇥
pyi � �

⇤
classes that exceed the threshold,

L = 1
k(�)

PK
i=1 1

⇥
pyi � �

⇤
EX:l(X)=yk

[1(f(X) 6= yk)].

That is, any label that occurs with probability at least � in the observed data generating process will
receive equal weight, 1

k(�) , in the test set and anything that occurs less frequently can be ignored.
The task is challenging because rare classes (i.e. those which occur with frequency � < py ⌧ 1) are
unlikely to be found by random sampling, but still contribute a 1

k(�) fraction of the overall loss.

Our approach leverages the guided learning insight that “search beats labelling under extreme skew”,
but automates the search procedure. We assume we have access to high-quality embeddings—such
as those from a modern statistical language model—which gives us a way of measuring distances
between word usage in different contexts. If these distances capture word senses and we have an
example usage of the word for each sense, a natural search strategy is to examine the usage of the
word in a neighborhood of the example sentence. This is the key idea behind our approach: we have
a search phase where we sample the neighborhood of the exemplar embedding until we find at least
one example of each word sense, followed by a more standard active learning phase where we seek
examples that reduce classifier uncertainty.
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Input :D = {Xi}i21...n a dataset of unlabeled examples
� : domain(X)! Rd, d : Rd

⇥ Rd
! R an embedding and distance function

l : Xi ! yi a labeling operation (such as querying a human expert)
L : The total number of potential class labels
� : the label-probability threshold
E the set of exemplars, |E| = L
B : a budget for maximum number of queries
b : batch size of queries sampled before the model is retrained

A {1, . . . , L} # Set of active classes
C  ; # Set of completed classes
D

(l)
 ; # Set of labeled examples

while |D
(l)
| < B do

A
0 = A # A

0 is the target set of classes for the algorithm to find.
while A

0
6= ; and number of collected samples < b do

Select random i0 from A
0 and set A0

 A
0
\ {i0} and X  ;

repeat
X  X [ {x} where x is selected with exemplar Ei0 using either equation 1 or
✏-greedy sampling.
y  {l(x) for x in X} # Label each example in X

until (Number of unique labels in y = bb/Lc) or (Number of labeled samples = b);
Update empirical means p̂y and remove any classes with p̂y + �y < � from A and A

0

D
(l)
 D

(l)
[(X, y)

A {i 2 A : i not in unique labels in D(l)
} # Remove observed labels from the active

set
end
Sample the remainder of the batch, (X, y), using using either algorithm in equation 3
D

(l)
 D

(l)
[(X, y)

Update empirical means p̂y and remove any classes with p̂y + �y < � from A

A {i 2 A : i not in unique labels in D(l)
}

Update classifier using D
(l).

end
Algorithm 1: EGAL: Exemplar Guided Active Learning

In the description below we denote the embedding vector associated with the target word in sentence,
i, as xi. For each sense, y, denote the embedding of an example usage as x̃y. We assume that
this example usage is selected from a dictionary or knowledge base so we do not include it in our
classifier’s training set. Full pseudocode is given in Algorithm 1.

Guided search Given an example embedding, x̃y , we could search for similar usages of the word
in our corpus by iterating over corpus examples, xi, sorted by distance, di = kxi � x̃yk2. However,
using this approach does not give us a way of maintaining an estimate of p̂y , the empirical frequency
of the word sense in the corpus which we need for our stopping rule that stops searching for classes
that are unlikely to exist in the corpus. Instead we sample each example to label, xi, from a Boltzmann
distribution over unlabeled examples,

xi : i ⇠ Cat(q = [q1, . . . , qn]), qi =
exp(�di/�y)P
i exp(�di/�y)

, (1)

where �y is a temperature hyper-parameter that controls the sharpness of q.

We sample with replacement and maintain a count vector c that tracks the number of times an
example has been sampled. If an example has previously been sampled, labelling does not diminish
our annotation budget because we can simply look up the label, but maintaining these counts lets
us maintain an unbiased estimate of py, the empirical frequency of the sense label and gives a way
of choosing �y, the length scale hyper-parameter, which we describe below. We continue drawing
samples until we have a batch of b labeled examples.
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Optimizing the length scale The sampling procedure selects examples to label in proportion to
how similar they are to our example sentence, where similarity is measured by a square exponential
kernel on the distance di. To use this, we need to choose a length scale, �y , which selects how to scale
distances such that most of the weight is applied to examples that are close in embedding space. One
challenge is that embedding spaces may vary across words and in density around different example
sentences. If �y is set either too large or too small, one tends to sample few examples from the target
class because for extreme values of �, q either concentrates on a single example (and is uniform over
the rest) or is uniform over all examples. We address this with a heuristic that automatically selects
the length scale for each example sentence xy . We choose � that minimizes

�y = arg min�E


1P
i2B w2

i

�
; wi =

ci(xy)P
j2B cj(xy)

. (2)

This score measures the effective sample size that results from sampling a batch of B examples for
example sentence xy. The score is minimized when � is set such that as much probability mass
as possible is placed on a small cluster of examples. This gives the desired sampling behavior of
searching a tight neighborhood of the exemplar embedding. Because the expectation can be estimated
using only unlabeled examples, we can optimize this by averaging the counts from multiple runs of
the sampling procedure and finding the minimal score by binary search.

Active learning The second phase of our algorithm builds on standard active learning methods.
Most active learning algorithms select unlabeled points to label, ranking them by an “informativeness”
score for various notions of informativeness. The most widely used scores are the uncertainty

sampling approaches, such as entropy sampling, which scores examples by sENT, the entropy of the
classifier predictions, and the least confidence heuristic sLC, which selects the unlabeled example
about which the classifier is least confident. They are defined as

sENT(x) = �
X

i

P (yi|x; ✓) logP (yi|x; ✓); sLC(x) = �max
y

P (y|x; ✓). (3)

Typically examples are selected to maximize these scores, xi = arg maxx2Xpools(x), but again
we can sample from a distribution implied by the score function to select examples xi : i ⇠
Cat(q0 = [q01, . . . , q

0
n]) and maintain an estimate of py in a manner analogous to Equation 2 as

q0i =
exp(sLC(xi)/�y)P
i exp(sLC(xi)/�y) ,

✏-greedy sampling The length scale parameters for Boltzmann sampling can be tricky to tune
when applied to the active learning scores because the scores vary over the duration of training. The
means that we cannot use the optimization heuristic that we applied to the guided search distribution.
A simple alternative to the Boltzmann distribution sampling procedure is to sample some u ⇠
Uniform(0,1) and select a random example whenever u  ✏. ✏-greedy sampling is far simpler to tune
and analyze theoretically, but has the disadvantage that one can only use the random steps to update
estimates of the class frequencies. We evaluate both methods in the experiments.

Stopping conditions For every sample we draw, we estimate the empirical frequencies of the
senses. We continue to search for examples of each sense as long as an upper bound on the sense
frequency exceeds our threshold �. For each sense, the algorithm remains in “importance weighted
search mode” as long as p̂y + �y > � and we have not yet found an example of sense y in the
unlabeled pool. Once we have found an example of y, we stop searching for more examples and
instead let further exploration be driven by classifier uncertainty.

Because any wasted exploration is costly in the active learning setting, a key consideration for the
stopping rule is choosing the confidence bound to be as tight as possible while still maintaining the
required probabilistic guarantees. We use two different confidence bounds for each of the sampling
strategies. When sampling using the ✏-greedy strategy, we know that the random variable, y, obtains
values in {0, 1} so we can get tight bounds on py using Chernoff’s bound on Bernoulli random
variables. We use the following implication of the Chernoff bound (see Lattimore & Szepesvári,
2020, chapter 10),
Lemma 1 (Chernoff bound). Let yi be a sequence of Bernoulli random variables with parameter py ,

p̂y = 1
n

Pn
i=1 yi and KL(p, q) = p log(p/q) + (1� p) log((1� p)/(1� q)). For any � 2 (0, 1) we
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can define the upper and lower bounds as follows,

U(�) = max{x 2 [0, 1] : KL(p̂y, x) 
log(1/�)

n
}, L(�) = min{x 2 [0, 1] : KL(p̂y, x) 

log(1/�)

n
}

and we have that P [py � U(�)]  � and P [py  L(�)]  �.

There do not exist closed-form expressions for these upper and lower bounds, but they are simple
bounded 1D convex optimization procedures that can be solved efficiently using a variety of optimiza-
tion methods. In practice we use Scipy’s (Virtanen et al., 2020) implementation of Brent’s method
(Brent, 1973).

When using the importance weighted approach, we have to contend with the fact that the random
variables implied by the importance-weighted samples are not bounded above. This leads to wide
confidence bounds because the bounds have to account for the possibility of large changes to the
mean that stem from unlikely draws of extreme values. When using importance sampling, we sample
points according to some distribution q and we can maintain an unbiased estimate of py by computing
a weighted average of the indicator function, 1(yi = y), where each observation is weighted by its
inverse propensity, which implies importance weights wi =

1/n
qi

. The resulting random variable
zi = wi1(yi = y) has expected value equal to py, but can potentially take on values in the range
[0,maxi 1(yi = y) 1/n

qi
]. Because the distribution q has probability that is inversely proportional

to distance, this range has a natural interpretation in terms of the quality of the embedding space:
the largest zi is the example from our target class that is furthest from our example embedding. If
the embedding space does a poor job of clustering senses around the example embedding, then it
is possible that the furthest point in embedding space—which will have tiny propensity because
propensity decreases exponentially with distance—shares the same label as our target class, so our
bounds have to account for this possibility.

There are two ways one could tighten these bounds: either make assumptions on the distribution
of senses in embedding space that imply clustering around the example embedding, or modify the
sampling strategy. We choose the latter approach: we can control the range of the importance
weighted samples by enforcing a minimum value, ↵, on our sampling distribution q such that the
resulting upper bound maxi

1/n
qi

= ↵�1

n . In practice this can be achieved by simply adding a small
constant to each qi and renormalizing the distribution. Furthermore, we note that when the embedding
space is relatively well clustered, the true distribution of z will have far lower variance than the
worst case implied by the bounds. We take advantage of this by computing our confidence intervals
using Maurer & Pontil (2009)’s empirical Bernstein inequality which offers tighter bounds when the
empirical variance is small.
Lemma 2 (Empirical Bernstein). Let zi be a sequence of i.i.d. bounded random variables on the

range [0,m] with expected value py, empirical mean z̄ = 1
n

P
i zi, empirical variance Vn(Z). For

any � 2 (0, 1) we have,

P
"
py � z̄ +

r
m22Vn(Z) log(2/�)

n
+

7m log(2/�)

3(n� 1)

#
 �

Proof. Let z0i =
zi
m such that it is bounded on [0, 1]. Apply Theorem 4 of Maurer & Pontil (2009) to

z0i. The result follows by rearranging to express the theorem in terms of zi.

The bound is symmetric so the lower bound can be obtained by subtracting the interval. Note that
the width of the bound depends linearly on the width of the range. This implies a practical trade-off:
making the q distribution more uniform by increasing the probability of rare events leads to tighter
bounds on the class frequency which rules out rare classes more quickly; but also costs more by
selecting sub-optimal points more frequently.

Unknown classes One may also want to allow for the possibility of labelling unknown classes
that do not appear in the dictionary or lexical database. We use the following approach. If during
sampling we discover a new class, it is treated in the same manner as the known classes, so we
maintain estimates of its empirical frequency and associated bounds. This lets us optimize for
classifier uncertainty over the new class and remove it from consideration if at any point the upper
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bound on its frequency falls below our threshold (which may occur if the unknown class simply stems
from an annotator misunderstanding).

For the stronger guarantee that with probability 1� � we have found all classes above the threshold,
�, we need to collect at least n � log 1/�

�2 uniform at random samples.

Lemma 3. For any � 2 (0, 1), consider an algorithm which terminates if
P

i 1(yi = k) = 0 after

n � log 1/�
�2 draws from an i.i.d. categorical random variable, y, with support {1, . . . ,K} and

parameters p1, . . . , pK . Let the “bad” event, {Bj = 1}, be the event that the algorithm terminates

in experiment j with parameter pk > �. Then P [Bj = 1]  �, where the probability is taken across

all runs of the algorithm.

Proof sketch. The result is a direct consequence of Hoeffding’s inequality.

A lower bound of this form is unavoidable without additional knowledge, so in practice we suggest
using a larger threshold parameter �0 for computing n if one is only worried about ‘frequent’
unknown classes. When needed, we support these unknown class guarantees by continuing to use
an ✏�greedy sampling strategy until we have collected at least n(�, �) uniform at random samples
without encountering an unknown class.

Regret analysis Regret measures loss with respect to some baseline strategy, typically one that is
endowed with oracle access to random variables that must be estimated in practice. Here we define
our baseline strategy to be that of an active learning algorithm that knows in advance which of the
classes fall below the threshold �. This choice of adversary lets us focus our analysis on the affect of
searching for thresholded classes.

Algorithm 1 employs the same strategy as the optimal agent during both the search and active learning
phases, but may differ in the set of classes that it considers active: in particular, at the start of
execution, it considers all classes active whereas the optimal strategy only regards all classes for
which pyi > � as active. Because of this it will potentially remain in the exemplar guided search
phase of execution for longer than the optimal strategy and hence the sub-optimality of Algorithm 1
will be a function of the number of samples it takes to rule out classes that fall below the threshold �.

Let � = mini |pi��| denote the smallest gap between pi and �. Assume the classifier’s performance
on class y can be described by some concave utility function, U : Rn⇥d

⇥ [K]! R, that measures
expected generalization as a function of the number of observations it receives. This amounts to
assuming that standard generalization bounds hold for classifiers trained on samples derived from the
active learning procedure.
Theorem 4. Given some finite time horizon n implied by the labelling budget, if the utility derived

from additional labeled examples for each class y can be described by some concave utility function,

U : Rn⇥d
⇥ [K] ! R and � = mini |pyi � �| > 0 then Algorithm 1 has regret at most, R 

1 + k(�)
h

2 log(n)
�2 + 2+�2

n�2

i

The proof leverages that fact that the difference in performance is bounded by differences in the
number of times Algorithm 1 selects the unthresholded classes. Full details are given in the appendix.

4 Experiments

Our experiments are designed to test whether automated search with embeddings could find examples
of very rare classes and to assess the effect of different skew ratios on performance.

Reddit word sense disambiguation dataset The standard practice for evaluating active learning
methods is to take existing supervised learning datasets and counterfactually evaluate the performance
that would have been achieved if the data had been labeled under the proposed active learning policy.
While there do exist datasets for word sense disambiguation (e.g Yuan et al., 2016; Edmonds &
Cotton, 2001; Mihalcea et al., 2004), they typically either have a large number of words with few
examples per word or have too few examples to test the more extreme label skew that shows the
benefits of guided learning approaches. To test the effect of a skew ratio of 1:200 with 50 examples
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Figure 1: Average accuracy improvement over random search for all 21 words at different levels of
skew. With lower levels of skew (left), EGAL tends to give big improvments over random search
quickly as the examplars make it relatively easy to find examples of the rare classes. With larger
amounts of skew (left), it takes longer on average before the uncertainty driven methods find examples
of the rare class, so the performance difference with EGAL remains large for longer. Once skew
becomes sufficiently large (right), EGAL still offers some benefit, but the absolute gains are smaller
as the rare classes are suffiently rare that they are hard to find even with an exemplar.

of the rare class, one would need 10 000 examples of the common class; more extreme skew would
require correspondingly larger datasets. The relatively small existing datasets thus limit the amount
of label skew that is possible to observe, but as an artifact rather than a property of real text.

To address this, we collected a new dataset for evaluating active learning methods for word sense
disambiguation. We took a large publicly-available corpus of Redditcomments (Baumgartner, 2015)
and leveraged the fact that some words will exhibit a "[o]ne sense per discourse" (Gale et al., 1992)
effect: discussions in different subreddits will typically use different senses of a word. Taking this
assumption to the extreme, we label all applicable sentences in each subreddit with the same word
sense. For example, we consider occurrences of the word “bass” to refer to the fish in the r/fishing
subreddit, but to refer to low frequencies in the r/guitar subreddit. Obviously, this approach
produces an imperfect labelling; e.g., it does not distinguish between nouns like “The bass in this
song is amazing” and the same word’s use as an adjective as in “I prefer playing bass guitar”, and
it assumes that people never discuss music in a fishing forum. Nevertheless, this approach allows
us to evaluate more extreme skew in the label distribution than would otherwise have been possible.
Overall, our goal was to obtain realistic statistical structure across word senses in a way that can
leverage existing embeddings, not to maximize accuracy in labeling word senses.

We chose the words by listing the top 1000 most frequently used words in the top 1000 most
commented subreddits, and manually looking for words whose sense clearly correlated with the
particular subreddit. Table 1 lists the 21 words that we identified in this way and the associated
subreddits that we used to determine labels. For each of the words, we used an example sentence
from each target sense from Lexico as exemplar sentences.

Setup All experiments used Scikit Learn (Pedregosa et al., 2011)’s multi-class logistic regression
classifier with default regularization parameters on top of BERT (Devlin et al., 2018) embeddings
of the target word. We used Huggingface’s Transformer library (Wolf et al., 2019) to collect the
bert-large-cased embeddings of the target word in the context of the sentence in which it was
used. This embedding gives a 1024 dimensional feature vector for each example. We repeated every
experiment with 100 different random seeds report the mean and 95% confidence intervals3 on test set
accuracy. The test set had an equal number of samples from each class that exceeded the threshold.

Results We compare three versions of the Exemplar-Guided Active Learning (EGAL) algorithm
relative to uncertainty driven active learning methods (Least Confidence and Entropy Search) and
random search. Figure 1 gives aggregate performance of the various approaches, aggregated across
100 random seeds and the 21 words. We found the hybrid of importance sampling for guided search

3Computed using a Normal approximation to the mean performance.
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Figure 2: Accuracy vs number of samples for bass (left), bank (middle) and fit (right), having label
skew of 1:60, 1:450 and 1:100 respectively. The word bass is a case where EGAL achieves significant
gains with few samples; these gains are eventually evened out once the standard active learning
methods gain sufficient samples. Bank has both a high quality exemplar and extreme skew, leading
to large gains by using EGAL. Fit shows a failure case where EGAL’s performance does not differ
significantly from standard approaches.

and ✏-greedy active learning worked best across a variety of datasets. This EGAL hybrid approach
outperformed all baselines for all levels of skew, with the largest relative gains at 1:200: with 100
examples labeled, EGAL had an increase in accuracy of 11% over random search and 5% over the
active learning approaches.

In Figure 2 we examine performance on three individual words and include guided learning as an
oracle upper bound on the performance improve that could be achieved by a perfect exemplar search
routine. On average guided learning achieved over 80� 90% accuracy on a balanced test for both
tasks using less than ten samples. By contrast, random search achieved 55% and 80% accuracy on
bass and bank respectively, and did not perform better than random guessing on fit. This suggests
that the key challenge for all of these datasets is collecting balanced examples. For the first two of
these three datasets, having access to an exemplar sentence gave the EGAL algorithms a significant
advantage over the standard approaches; this difference was most stark on the bank dataset, which
exhibits far more extreme skew in the label distribution. On the fit dataset, EGAL did not significantly
improve performance, but also did not hurt performance. These trends were typical (see the appendix
for all words): on two thirds of the words we tried, EGAL achieved significant improvements in
accuracy, while on the remaining third EGAL offered no significant improvements but also no cost as
compared to standard approaches. As with guided learning, direct comparisons between the methods
are not on equal footing: the exemplar classes give EGAL more information than the standard
methods have access to. However, we regard this as the key experimental point of our paper. EGAL
provides a simple approach to getting potentially large improvements in performance when the label
distribution is skewed, without sacrificing performance in settings where it fails to provide a benefit.

5 Conclusions

We present the Exemplar Guided Active Learning algorithm that leverages the embedding spaces of
large scale language models to drastically improve active learning algorithms on skewed data. We
support the empirical results with theory that shows that the method is robust to mis-specified target
classes and give practical guidance on its usage. Beyond word-sense disambiguation, we are now
using EGAL to collect multi-word expression data, which shares the extreme skew property.

Broader Impact

This paper presents a method for better directing an annotation budget towards rare classes, with
particular application to problems in NLP. The result could be more money spent on annotation
because such efforts are more worthwhile (increasing employment) or less money spent on annotation
if “brute force” approaches become less necessary (reducing employment). We think the former is
more likely overall, but both are possible. Better annotation could lead to better language models,
with uncertain social impact: machine reading and writing technologies can help language learners
and knowledge workers, increasing productivity, but can also fuel various negative trends including
misinformation, bots impersonating humans on social networks, and plagiarism.
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