A Deferred Proofs

For completeness, we give a full proof of Theorem [ which shows that any bounded degree graph
admits an exact low-rank factorization. Our proof closely follows the approach of [AFR85] for
bounding the sign rank of sparse matrices

Theorem @ Let A € {0,1}"*™ be the adjacency matrix of a graph G with maximum de-
gree c. Then there exist embeddings X,Y € R™ D gych that A = o(XYT) where
o(r) = max(0, min(1, x)) is applied entry-wise to XY T.

Proof. Let V. € R™*(2¢+1) pe the Vandermonde matrix with V; ; = t/~!. For any z € R?**!,

[Vz](t) = Z?:{l z(j) - /71, Thatis: Vr € R™ is a degree 2c polynomial evaluated at the integers

t=1,...,n.

Let a; be the i*" row of A. a; has at most ¢ nonzeros since G has maximum degree c. We seek
to find z; so that s(Va;) = a;, and thus, letting X € R"*(¢t1) have z; as its i*" row, will
have A = s(VXT). This yields the theorem since, if we scale VX7 by a large enough constant
(which does not change its rank), all its positive entries will be larger than 1 and thus we will have
o(VXT) = A

To give x; with s(Vx;) = a;, we equivalently must find a degree 2¢ polynomial which is positive
at all integers ¢ with a;(t) = 1 and negative at all ¢ with a;(t) = 0. Let ¢, to,...,t. denote the
indices where a; is 1. Let r; 1, and r; y be any values with ¢;,_; < r; 1 <t;andt; < r;y < tiy1.
If we chose the polynomial with roots at each r; 7, and r; 17, it will have 2c¢ roots and so degree 2c.
Further, this polynomial will switch signs just at each root r; 1, and r; ;7. We can observe then that
the polynomial will have the same sign at ¢, %o, . . ., t. (either positive or negative). Flipping the sign
to be positive, we have the result.

We next give an extension of Theorem[5] showing that a simple binary embedding can yield a graph
with very high triangle density.

Theorem 8 (Simplified Embeddings Capturing Triangles). Let A = o(UMUT) where ¢ =
max (0, min(1, x)). For any c, there are matrices U € {0,1}"** and M € R*** for k = O(logn)
such that if a graph G is generated by adding edge (i, j) independently with probability A; ;: 1) G
has maximum degree c and 2) G contains Q(c*n) triangles.

Proof. Let k = dlogn for a sufficiently large constant d and consider binary U € {0, 1}"** where
each row has exactly 2logn nonzero entries. Let D = UUT — logn - .J where .J is the all ones
matrix. Note that D can be written as UMU™ for M = I — g1 J.

Observe that the only positive entries in D are those where u u; > logn. Thus A = o(D) is binary
with 1s where uiTuj > logn and Os elsewhere. In turn, G is deterministic, with adjacency matrix A.

We will construct U so that its rows are partitioned into n/c clusters with ¢ nodes in them each as in
Theorem The construction is as follows: choose n/c random binary vectors my, . .., m,, /. (the

‘cluster centers’) with exactly 2 log n nonzeros in them. In expectation, the number of overlapping

entries between any two of these vectors will be 21"% and so with high probability after union
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enough. Thus, miij < 10% ™ for any ¢ and j and the centers will not be connected in G.

bounding over ( ) < n? pairs, all will have at most overlapping entries if we set d large

If we set d large enough, then around each cluster center m;, there are at least (d 10%0’;;2/13% ”) >n>c

binary vectors v, . .., v. each with 21logn nonzeros that overlap the center on all but k’% bits and

logn

so have m v; > 2logn — =%

> logn and a connection in the graph.

Additionally, each v; must overlap each other v; in the same cluster on all but at most 21"% bits
2logn
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v; overlaps each center of a different cluster on at most < logn bits, and so there are no
connections between clusters. So G is a union of n/3 sized 3 cliques, and so by the same argument
as Theoremhas maximum degree ¢ — 1 and Q(c?n) triangles, giving the theorem. O

and so vlv; > 2logn — > logn and so they will be connected in the graph. Finally, each
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