
A Deferred Proofs

For completeness, we give a full proof of Theorem 6, which shows that any bounded degree graph
admits an exact low-rank factorization. Our proof closely follows the approach of [AFR85] for
bounding the sign rank of sparse matrices
Theorem 6. Let A ∈ {0, 1}n×n be the adjacency matrix of a graph G with maximum de-
gree c. Then there exist embeddings X,Y ∈ Rn×(2c+1) such that A = σ(XY T ) where
σ(x) = max(0,min(1, x)) is applied entry-wise to XY T .

Proof. Let V ∈ Rn×(2c+1) be the Vandermonde matrix with Vt,j = tj−1. For any x ∈ R2c+1,
[V x](t) =

∑2c+1
j=1 x(j) · tj−1. That is: V x ∈ Rn is a degree 2c polynomial evaluated at the integers

t = 1, . . . , n.

Let ai be the ith row of A. ai has at most c nonzeros since G has maximum degree c. We seek
to find xi so that s(V xi) = ai, and thus, letting X ∈ Rn×(2c+1) have xi as its ith row, will
have A = s(V XT ). This yields the theorem since, if we scale V XT by a large enough constant
(which does not change its rank), all its positive entries will be larger than 1 and thus we will have
σ(V XT ) = A.

To give xi with s(V xi) = ai, we equivalently must find a degree 2c polynomial which is positive
at all integers t with ai(t) = 1 and negative at all t with ai(t) = 0. Let t1, t2, . . . , tc denote the
indices where ai is 1. Let ri,L and ri,U be any values with ti−1 < ri,L < ti and ti < ri,U < ti+1.
If we chose the polynomial with roots at each ri,L and ri,U , it will have 2c roots and so degree 2c.
Further, this polynomial will switch signs just at each root ri,L and ri,U . We can observe then that
the polynomial will have the same sign at t1, t2, . . . , tc (either positive or negative). Flipping the sign
to be positive, we have the result.

We next give an extension of Theorem 5, showing that a simple binary embedding can yield a graph
with very high triangle density.
Theorem 8 (Simplified Embeddings Capturing Triangles). Let Ā = σ(UMUT ) where σ =
max(0,min(1, x)). For any c, there are matrices U ∈ {0, 1}n×k and M ∈ Rk×k for k = O(log n)
such that if a graph G is generated by adding edge (i, j) independently with probability Ai,j: 1) G
has maximum degree c and 2) G contains Ω(c2n) triangles.

Proof. Let k = d log n for a sufficiently large constant d and consider binary U ∈ {0, 1}n×k where
each row has exactly 2 log n nonzero entries. Let D = UUT − log n · J where J is the all ones
matrix. Note that D can be written as UMUT for M = I − 1

4 lognJ .

Observe that the only positive entries in D are those where uTi uj > log n. Thus Ā = σ(D) is binary
with 1s where uTi uj > log n and 0s elsewhere. In turn, G is deterministic, with adjacency matrix Ā.

We will construct U so that its rows are partitioned into n/c clusters with c nodes in them each as in
Theorem 5. The construction is as follows: choose n/c random binary vectors m1, . . . ,mn/c (the
‘cluster centers’) with exactly 2 log n nonzeros in them. In expectation, the number of overlapping
entries between any two of these vectors will be 2 logn

d and so with high probability after union
bounding over

(
n/c
2

)
< n2 pairs, all will have at most logn

3 overlapping entries if we set d large
enough. Thus, mT

i mj <
logn
3 for any i and j and the centers will not be connected in G.

If we set d large enough, then around each cluster centermi, there are at least
(
d logn−2 logn

logn/3

)
≥ n ≥ c

binary vectors v1, . . . , vc each with 2 log n nonzeros that overlap the center on all but logn
3 bits and

so have mT
i vj > 2 log n− logn

3 > log n and a connection in the graph.

Additionally, each vi must overlap each other vj in the same cluster on all but at most 2 logn
3 bits

and so vTi vj ≥ 2 log n − 2 logn
3 > log n and so they will be connected in the graph. Finally, each

vi overlaps each center of a different cluster on at most 2 logn
3 < log n bits, and so there are no

connections between clusters. So G is a union of n/3 sized 3 cliques, and so by the same argument
as Theorem 5 has maximum degree c− 1 and Ω(c2n) triangles, giving the theorem.
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