
R#1: Thanks for stressing the strengths of the paper (a complete theory of FP in MFG and a rich empirical evaluation).We1

first address the stated weaknesses. W1: Short presentation of FP. We’ll improve it for the final version by adding2

formal def of the best response and explaining why an arbitrary policy between [0, 1] is needed for init purpose. W2:3

Gap between CTFP and practical algs: We’ll add the following discussion to the paper. We chose to provide an4

analysis in continuous time because it provides convenient mathematical tools allowing to exhibit state of the art5

convergence rate. The convergence rate in discrete time is still an open problem even for 2-players games, but would6

be an interesting research question (there is a known conjecture in O(1/
√
t) [75]). Detailed comments: (1) We7

acknowledge that some useful details should be moved from appx to the main text for the sake of clarity. E.g. the8

computation of the Best Response (BR) and the population distribution (cf. Appx) are both used in FP (Alg. 1), which9

is implemented in two different settings: a model-based and a model-free approach. The model-based uses Backward10

Induction (BI, Alg. 4) and an exact calculation of the population distribution (Alg. 5). The model-free approach uses11

Q-learning (Alg. 2) and a sampling-based estimate of the distribution (Alg. 3). As suggested, we will add the update12

rules of the Q-function of both methods in the main text. We will clarify how the distribution µ̂πn (Alg. 3) is used13

in Alg. 2 by using proper notations. Q-learning and BI approximate the BR against µ̄j (mean distribution), which14

needs to be clarified: we will add a line in Alg. 1 µ̄j = j−1
j µ̄j−1 + 1

j µ̂
j (so here, µ̂πn and µ̂j are the same). In Alg.15

2, the µ of the input can be any distribution (µ = (µk)k) but we use the mean population distribution µ̄j (from the16

previous FP step) in our setting. (2) Randomization: As we use µ̄j we don’t need to select the policy uniformly over17

previously obtained policies. Also, we already do employ randomized strategies (for the model-free), with ε-greedy18

exploration parameter set to 0.2 (l.140). Authors of [64] use a softmax to ensure the regularity needed in their proof.19

To the best of our understanding, Angiuli et al. use ε-greedy action because the updates of Q and µ are intertwined,20

so the exploration/exploitation are mixed. In Alg.2, the Q-learning (with exploration) and the action to update the21

distribution (with pure exploitation) are separated. Furthermore, the stochasticity of the environment (noise εn) adds22

randomization. Note that randomization is not necessary in model-based as the BR and population distribution are23

computed exactly (which also bridges the gap between model-based and the theory). Adding ε-randomization or a24

softmax in the distribution update is an interesting direction. Exploitability: Please notice that, because it scales with25

rewards, its absolute value is not meaningful. This quantity is game dependent and hard to re-scale without introducing26

other issues (dependence on the initial policy if we re-normalize with the initial exploitability for example). But it27

decreases by a large factor compared with the initial value. (3) The problem of error propagation is addressed in [51]28

(see Eq. 7). However, [51] does not provide any rate for discrete time FP. As opposed to this work, we focused in29

getting a convergence rate for CTFP without approximations (in a wider set of settings than in [51]). Surprisingly, these30

rates do not seem to be too off in practice. We also introduce a new theory of common noise for the two practical algs31

(c.f. R#3). (4) We will improve on that transition stating that to go from continuous to discrete time we simply replace32

sums by integral and difference equations by differential equation (inclusion to be precised). The "watershed" region is33

necessary to make sure the differential equation is defined on a closed set (here [1,+∞[). Without it, we would only34

be able to define it on ]0,+∞[ which is not enough. (5) We apologize for the too short Sec.3. We’ll rewrite it with35

elements from appx A. Even if not directly used, we felt that the equation involving πtn was important as it is easier36

to manipulate policies compared to distribution over states. (6) Our common noise can be history dependent (i.e., no37

assumption on it). In the experiment of Sec.6, the common noise is stationary and i.i.d. Common noises affect the38

transition probability of the distribution, which is then random (it is not the case with only idiosyncratic noise).39

R#3: We are grateful for the positive comments acknowledging the importance of common noise in MFGs and MARL,40

and on the fact that our contribution bridges the gap between MFG and tools from algorithmic game theory such as41

exploitability. W1: connections with MARL examples: Actually our numerical examples are strongly motivated by42

classical examples in the RL literature. For instance, the beach bar process example is a simplified version of the well43

known Santa Fe bar problem, which has received a strong interest in the MARL community, see e.g. [Farago et al, Fair44

and Efficient Solutions to the Santa Fe Bar Problem (2002)]. Similarly, the maze is motivated by swarm motion models45

from the distributed robotics MARL literature. We will stress this point and add references in the revision. Other46

works: Thank you for pointing out these relevant references, that we will cite as well. Note however that, compared47

with these works, our paper provides a rigorous rate of convergence, and covers the common noise setting. Last but not48

least, our work is not limited to potential or variational MFGs as we only need the weaker monotonicity assumption.49

R#5: (1) We strongly disagree about the lack of novelty and incremental nature of our work, and would have appreciated50

some argument for this harsh comment. We would like to stress that the other two referees have acknowledged the51

novelty of work (rate of convergence, common noise, etc.). (2) The monotonicity assumption is classical in the MFG52

literature and much weaker than assumptions made in other works (regularity and smallness of the coefficients in [64],53

potential structure in [84], etc.). Also, R#1 considers these assumptions as mild. (3) This is the very principle of the54

fictitious play to obtain convergence for averaged policies. We would appreciate any reference where it is not the case.55


