
R1: The experimental setup of our paper is designed to both corroborate our theoretical results which are non-trivial,1

while also demonstrating the possible application of the hypernetwork induced prior in some practical use cases. We2

concede that our experiments are by no means thorough enough to consider the hypernetwork kernels as a go-to3

algorithm for image completion tasks, however we feel they do serve their purpose demonstrating the usefulness of4

hypernetworks induced priors, explaining the validity and inductive bias of the architecture. Size of f : While in some5

of the hypernetworks in the literature f is not very large, this is the case in many of the recent networks, e.g., [B,C,D,E].6

R2: We accept the suggested terminology and would use “hypernet” to refer to network f only. There are two types7

of hypernetwork architectures (including the hypernetwork f and the primary network g). Type A has a much larger8

network f than g, and the input to f is larger than the input to g. Type B has a smaller f and larger g. In the references9

that the reviewer mentioned, where one optimizes the input of f , it is more natural to use type B (smaller inputs).10

However, type A is at least as prevalent in the literature as type B. Examples of type A include cases where g is a11

single convolutional layer in a deeper network [17,15,5,A]. This is also very prominent in recent work in which the12

perceptual task is done by a resnet f and the solution is parameterized by a small network g [B,C,D,E]. In such cases, f13

observes the entire context, while g is a local model, see also [F]. Our analysis holds also for type B networks, given14

that the network f is wide enough to be approximated by a GP. However, since type B networks are used to find optimal15

hyperparameters, they require training by definition, and NTKs, which are studied at initialization, are less relevant.16

Indeed, there is currently no theoretical machinery for understanding the dynamics of optimizing the input with a fixed,17

trained network in the NTK regime. Our work here presents a first step at a new understanding of hypernetworks through18

the new machinery of NTK, which covers the type A scenario. We hope to extend this analysis to type B scenarios in19

the future as well by using the recent Tensor Programs framework. However, this is out of the scope of this contribution.20

The MNIST experiment is a typical type A hypenet setting. The perceptual input is processed by f , and g is a model21

of the “scene”. It directly follows [B,E] (E is a paper R4 pointed to as an example for realistic settings). The reviewer’s22

suggestion to condition f on the digit label is equivalent to learning 10 different denoising networks, which is not23

utilizing the full power of hypernets. The computational advantage (L 208) is meaningful when compared to other24

kernel methods. From the composition of the hyperkernel (Eq. 12), Θf (x, x′) can be evaluated separately for all pairs25

x, x′, instead of evaluating kernel values for all pair of tuples (x, z), (x′, z′) when considering other kernel methods.26

When f is a convnet, this can represent a significant reduction in computational cost. R3: Our theoretical results are27

non-trivial. In particular, Thm. 1 provides the asymptotic behavior of high order NTK terms which hold for ReLU28

hypernetworks, as well as regular ReLU MLPs. Our contribution here is both a technical novelty (in the proof) and the29

significance of the final result. On the technical level, as noted in remark 1 and in L 280-283, we have proven (and30

improved upon) a conjecture on the asymptotic rates of various correlation functions arising in neural network dynamics31

(see [5]). As for the result itself, we are the first to arrive at these tight bounds which relate to both hypernetworks and32

MLPs. Thms. 2 and 3 describe the conditions in which GP behavior emerges in hypernetworks (again nontrivial), and33

describe the composition of the GP and NTK kernels. We feel these theoretical results are of interest to the community.34

The case of a finite f and an infinite g is left for future work. Note that an infinite g would require f to output an35

infinite number of parameters. We do discuss the case of both f and g being infinite in Sec. 4. Reporting variance we36

regret not reporting error bars, which will be added. The results were averaged over 10 different training and test splits.37

Figure I: Interpolation between 7 ->2
and 5 ->6 using hyperkernel (rows 1
,3) and hypernetwork (rows 2,4). Both
methods used merely 200 samples for
training. The hypernetwork trained
with sgd clealy underperforms in this
low data regime

HN outperforms HK in Tab. 2 For small data regimes, the HK outperforms,38

while for larger datasets, the HN is better. This is consistent with prior observa-39

tions that kernel methods with NTK tend to outperform in low data regimes. In40

Fig. 2, the input of f is depicted in Row 2, the input of g is a pixel coordinate.41

The output of g is the pixel intensity in the corresponding coordinate. Typos42

We apologize for the typos and would provide more background on NTK and43

GP. R4: The paper is theoretically driven. The experiment setup is very sim-44

ilar to that of the mentioned paper (arXiv 1902.10404) only done on MNIST.45

To demonstrate this, Fig. I has interpolation results similar to that paper by in-46

terpolating between [Θh(u, u1), ..,Θh(u, uN )] and [Θh(v, u1), ..,Θh(v, uN )]47

for two images u and v in Eq. 16. We regret the lack of details in the exper-48

imental section. The hypernet f in our setup is a convolutional neural network49

operating on sparse images containing the context points, similarly to [G].50
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