A Proof for Theorem I (Number of aggregators needed)

In order to discriminate between multisets of size n whose underlying set is R, at least n aggregators
are needed.

Proof. Let S be the n-dimensional subspace of R™ formed by all tuples (z1, z2, ..., x,) such that
1 < 29 < ... < 2,,and notice how S is the collection of the aforementioned multisets. We defined
an aggregator as a continuous function from multisets to reals, which corresponds to a continuous
functiong : S — R.

Assume by contradiction that it is possible to discriminate between all the multisets of size n using
only n — 1 aggregators, Viz. g1,92,...,9n—1-

Define f : S — R""! to be the function mapping each multiset X to its output vector
(1(X), 92(X), ... ,gn-1(X)). Since gi1,92,...,9,—1 are continuous, so is f, and, since we
assumed these aggregators are able to discriminate between all the multisets, f is injective.

As S is a n-dimensional Euclidean subspace, it is possible to define a (n — 1)-sphere C™ ! entirely
contained within it, i.e. C"~! C S. According to Borsuk—Ulam theorem [35} [36]], there are two
distinct (in particular, non-zero and antipodal) points 71, 7> € C"~! satisfying f(#1) = f(%2),
showing f not to be injective; hence the required contradiction.

Note: n aggregators are actually sufficient. A simple example is to use g1, g2, ..., g, Where
gx(X) = the k-th smallest item in X. It’s clear to see that the multiset whose elements are
91(X), 92(X), ... ,gn(X) is X, which can hence be uniquely determined by the aggregators.

B Proof for Proposition [I| (Moments of the multiset)

The moments of a multiset (as defined in Equation[d) exhibit a valid example using n aggregators.

Proof. Since n > 1, and the first aggregator is mean, we know u. Let X = {z1, 2, ..., z,} be the
multiset to be found, and define R = {r{ = o1 — p, 7o = To — [ty ..., Ty = Tp — [}

Notice how Y ;! = 0, and for 1 < k < n we have Y. r;* = n My(X)*, i.e. all the symmetric
power sums pi = >_7;* (k < n) are uniquely determined by the moments.

Additionally, ey, the elementary symmetric sums of R, i.e. the sum of the products of all the
sub-multisets of size k (1 < k < n), are determined as follow:

ey, the sum of all elements, is equal to p;; e, the sum of the products of all pairs in R, is
(e1p1 — p2) /2; es, the sum of the products of all triplets, is (eap1 — e1p2 + p3) /3, and so on.
Notice how ey, e, .. ., e, can be computed using the following recursive formula [37]]:

k k
Z H ri; | =ex = %Z(—l)j_lek_jpj , e=1
1 j=1

1<i1 <io < <ip<n \j=

Consider polynomial P(z) = II(xz — r;), i.e. the unique polynomial of degree n with leading
coefficient 1 whose roots are R. This defines A, the coefficients of P, i.e. the real numbers
ag, a1, .- ., an_1 for which P(x) = 2" + a,_12" "' + ... 4+ a1z + ag. Using Vieta’s formulas [38]:

k

> ry | = (R
1 2%

1<iy <ig<--<ip<n \j=

we obtain
An—k
ep = (—1)FIn=k
k o
= (—1)kan,k recall a,, = 1
ap = (—1)"ep letting k = n + i and rearranging

13

Hence A is uniquely determined, and so is P, being its coefficients a valid definition of it. By the
fundamental theorem of algebra, P has n (possibly repeated) roots, which are the elements of R,
hence uniquely determining the latter.

Finally, X can be easily determined adding 4 to each element of R. O

Note: the proof above assumes the knowledge of n. In the case that n is variable (as in GNNs), and
so we have multisets of up to n elements, an extra aggregator will be needed. An example of such
aggregator is the mean multiplied by any injective scaler which would allow the degree of the node to
be inferred.

C Proof for Theorem [2] (Injective functions on countable multisets)

The mean aggregation composed with any scaling linear to an injective function on the neighbourhood
size can generate injective functions on bounded multisets of countable elements.

Proof. Let x be the countable input feature space from which the elements of the multisets are taken
and X an arbitrary multiset. Since y is countable and the cardinality of multisets is bounded, let
Z :x — NT be an injection from to natural numbers, and N € N such that | X |+ 1 < N for all
X.

Let’s define an injective function s, and without loss of generality, assume s(0), s(1),...,s(N) >0
(otherwise for the rest of the proof consider s as s’(i) = s(i) —min;¢[o,] 5(j) + € which is positive
for all i € [0, N]). s(]X]|) can only take value in {s(0), s(1),...,s(N)}, therefore let us define

= mln{:((;)) | 4,5 €[0,N], s(i) > s(j)}. Since s is injective, s(i) # s(j) for i # j, which

implies v > 1.
Let K > —L be a positive real number and consider f(x) = N~7(") 4 K.
Vrex,Z(z) €[1,N] = N?@ c[0,1] = f(z) € [K,K+1],50 E,ex[f(z)] € [K, K+1].

We proceed to show that the cardinality of X can be uniquely determined, and X itself can be
determined as well, by showing that exist an injection /& over the multisets.

Let us h as a function that scales the mean of f by an injective function of the cardinality:
hX) = s(IX]) Ezex[f(2)]

We want show that the value of | X| can be uniquely inferred from the value of A(X). Assume by
contradiction 3 X', X" multisets of size at most IV such that | X’| # | X" | but h(X’) = h(X"); since
s is injective s(|X'|) # s(|X"|), without loss of generality let s(|X’|) > s(]X”|), then:

SXN(K+1) > s(X") Egexo[f(@)] = h(X") = h(X") = s(|X']) Eyex[f(@)] > s(IX']) K
1 1

<
SIXD) 7 S 51
saxn — L7

— K<

which is a contradiction. So it is impossible for the size of a multiset X to be ambiguous from the
value of A(X).

Let us define d as the function mapping h(X) to | X]|.
h(X)|X]|

’ _ —Z(z) _ 2 =
n(X) IGZ;(N SOXD) K|X|

h(X)d(h(X))

s@mE)y) X))

Considering the Z(j)-th digit 7 after the decimal point in the base IV representation of A/(X), it can
be inferred that X contains ¢ elements j, and, so, all the elements in X can be determined; hence h is
injective over the multisets in X . O

Note: this proof is a generalization of the one by Xu et al. 6] on the sum aggregator.

14

D Normalized moments aggregation

The main motivation for choosing the n root normalization for the moments is numerical stability.
In fact, one property of our version is that it scales linearly with L, for uniformly distributed random
variables U0, L], as do other aggregators such as mean, max and min (std is a particular case). Other
common formulations of the moments such as those in Equation |§| scale respectively as the n'" power
and constantly with L. This difference causes numerical instability when combined in the same layer.

My(X) —E[(X —)] My(x) = & =1 ©)

O-TL

To demonstrate the usefulness of higher moments aggregation and further motivate the need for
multiple aggregation functions, we ran an ablation study showing how different moments affect the
performance of the model. We conduct this by testing five different models, each taking a different
number of moments, on our multi-task benchmark.

-1.9
2.1
. 01
" 23 g T 1,2
S —i— . 1,2,3
o 25
S 1,2,3,4
O X
2.7 ¢ 11,2,3,4,5
C1PNA
-2.9 J_
3]
-3.1

Figure 7: Multi-task log;, MSE on different versions of the PNA model with increasing number
of moments aggregators (specified in the legend), using mean as first moment. All the models use
the identity, amplification and attenuation scalers. The model on the right is the complete PNA as
described before (mean, max, min and std aggregators).

The results in Figure[7]demonstrate that with the increase of the number of aggregators the models
reach a higher expressive power, but at a certain point (dependent on the graphs and tasks, in this
case around 3) the increase in expressiveness given by higher moments reduces the performance
since the model becomes harder to optimize and prone to overfitting. We expect that higher moments
will be more beneficial on graphs with a higher average degree since they will better characterize the
neighbourhood distributions.

Finally, we note how the addition of the max and min aggregators in the PNA (rightmost column)
gives a better and more consistent performance in these tasks than higher moments. We believe this
is task-dependent, and, for algorithmic tasks, discrete aggregators can be valuable. As a side note, we
point out how the max and min aggregators of positive values can be considered as the n'"-root of the
n™ (non-centralized) moment as n tends to, respectively, +o0o and —oo.

15

E Alternative aggregators

Besides those described above, we have experimented with additional aggregators. We detail some
examples below. Domain-specific metrics can also be an effective choice.

Softmax and softmin aggregations As an alternative to max and min, softmax and softmin are
differentiable and can be weighted in the case of edge features or attention networks. They also allow
an asymmetric message passing in the direction of the strongest signal. Equation [I0|presents their
direct neighbour formulations, where X! are the nodes features at layer [with respect to node 7 and
N (2) is the neighbourhood of node i:

XL exp(Xt
softmax; (X') = Z j (X)) . softmin;(X') = —softmax;(—X") (10)
> xp(X})
JEN (i) 2ekeN (i) P

F Alternative graph convolutions

In this section, we present the details of the four graph convolutional layers from existing models that
we used to compare the performance of the PNA in the multi-task benchmark.

Graph Convolutional Networks (GCN) [15] use a normalized mean aggregator followed by a

linear transformation and an activation function. We define it in Equation , where A = A + Iy is
the adjacency matrix with self-connections, W is a trainable weight matrix and b a learnable bias.

X+ — o (D*%AD*%X(”W+I)) (11)

Graph Attention Networks (GAT) [16] perform a linear transformation of the input features
followed by an aggregation of the neighbourhood as a weighted sum of the transformed features,
where the weights are set by an attention mechanism a. We define it in Equation[I2] where W is a
trainable projection matrix. As in the original paper, we employ the use of multi-head attention.

XM —o [3 a(x x)wxl (12)
(4,9)eE

Graph Isomorphism Networks (GIN) [6] perform a sum aggregation over the neighbourhood,
followed by an update function U consisting of a multi-layer perceptron. We define it in Equation
where € is a learnable parameter. As in the original paper, we use a 2-layer MLP for U.

X :U<(1+6)X,@+ 3 Xj.“) (13)

JEN (i)

Message Passing Neural Networks (MPNN) [17] perform a transformation before and after an
arbitrary aggregator. We define it in Equation where M and U are neural networks and & is a
single aggregator. In particular, we test models with sum and max aggregators, as they are the most
used in literature. As with PNA layers, we found that linear transformations are sufficient for M and
U and, as in the original paper [17]], we employ multiple towers.

(t+1) _ (t)) ~(t)
X _U<XZ- . @ m(x0.x])) (14)
(4i)EE

G Random graph generation

In this section, we present the details of the random generation of the graphs we used in the multi-task
benchmark. Following previous work [[18, 28]], we opted for undirected unweighted graphs from a
wide variety of types (we provide, in parentheses, the approximate proportion of such graphs in the
benchmark). Letting IV be the total number of nodes per graph:

16

o Erdds-Rényi [39] (20%): with probability of presence for each edge equal to p, where p is
independently generated for each graph from /|0, 1]

e Barabasi-Albert [40] (20%): the number of edges for a new node is k, which is taken
randomly from {1, 2, ..., N — 1} for each graph

e Grid (5%): m x k 2d grid graph with N = mk and m and k as close as possible
e Caveman [41] (5%): with m cliques of size k, with m and k as close as possible
o Tree (15%): generated with a power-law degree distribution with exponent 3

e Ladder graphs (5%)

e Line graphs (5%)

e Star graphs (5%)

e Caterpillar graphs (10%): with a backbone of size b (drawn from U[1, N)),and N — b
pendent vertices uniformly connected to the backbone

o Lobster graphs (10%): with a backbone of size b (drawn from U[1, N)), p (drawn from
U[1, N—b]) pendent vertices uniformly connected to the backbone, and additional N —b—p
pendent vertices uniformly connected to the previous pendent vertices.

Additional randomness was introduced to the generated graphs by randomly toggling arcs, without
strongly impacting the average degree and main structure. If e is the number of edges and m the
number of “missing edges’ (2e + 2m = N (N — 1)), the probabilities of toggling an existing and
missing edge, respectively P, and P,,, are:

0.1 e<m 01 & e<m
€ {0.1’: e>m m {0.1 e>m (5)

After performing the random toggling, we discarded graphs containing singleton nodes, as they are in
no way affected by the choice of aggregation.

H Graph type experiments

In order to better interpret the improvements in performance that the PNA brings, we tested the
models against the various types of graphs in the multi-task benchmark. In particular, in these
experiments, we trained the models on the whole dataset with the proportions described above and
then tested them against datasets composed by just one category of graphs.

Erdos- Barabasi- Cater-

Rényi Albert Tree Ladder Line Star pillar Lobster

PNA S -3.495 -2.770 | -3.000 | -3.097 | -3.131 | -2.371 | -3.252 | -2.879 | -2.790
MPNN-sum | -2.085 -2.347 -1.955 | -1.872 | -2.237 | -2.024 | -1.991 | -2.790 | -2.219 | -2.190
MPNN-max | -2.807 -2.943 -2.383 | -2.523 | -2.484 | -2.721 | -1.980 | -3.066 | -2.379 | -2.339

Model

GAT -2.361 -2.578 -2.111 | -2.027 | -2.161 | -2.250 | -1.892 | -2.678 | -2.134 | -2.114
GIN -1.840 -2.084 -1.769 | -1.679 | -1.912 | -1.842 | -1.672 | -1.927 | -1.913 | -1.877
GCN -1.930 -2.187 -1.740 | -1.536 | -2.039 | -1.841 | -1.691 | -2.088 | -1.997 | -1.974

Figure 8: Average log,,MSE error across the various tasks of a particular model against a particular
type of graphs.

The results, presented in Figure[§] show that the PNA improves across all types. However, it performs
the worst on the graphs with a higher diameter (especially graphs close to lines), suggesting that the
number of layers is not enough to reach the complete graph. Therefore, the main limitation to the
PNA performance seems to be the message passing framework; this could motivate future research to
try to improve the framework itself.

17

I Standard architecture

In this section we will provide more intuition on the motivation behind our choice of architecture,
presented in Section which we will refer to as recurrentE] and present the results on a more standard
architecture.

The main motivations behind the choice of the architecture were: (1) provide a fairer comparison
between the models (2) showcase a parameter-efficient recurrent architecture with a priorE]that works
very well with the tasks at hand. In particular:

1. The GRU helps to avoid over-smoothing, and the models that do not have a skip connection
across the aggregation (GAT, GIN and GCN) are those benefiting the most from it; therefore,
to still provide a fair comparison in the results below, we added skip connections from every
convolutional layer to the readout, in all the models.

2. The S28S (as opposed to a mean readout used below) helps the most architectures without
scalers as it can provide an alternative counting mechanism.

3. The repeated convolutions are a parameter-saving prior which works well in these tasks but
does not change the rank between the various models.

For completeness, we present in Figure [9] the comparison of the average results of the recurrent
architecture and standard one which uses no GRU but skip connections, mean readout rather than
S2S and a fixed number of convolutions (8).

PNA no mean, max MPNN MPNN

Framework PNA GAT GIN GCN

scalers & min sum max
Recurrent -3.13 -2.77 -2.57 -2.53 -2.50 -2.26 -1.99 -2.04
Standard -2.97 -2.55 -2.43 -2.78 -2.41 -2.00 -2.03 -2.14

Figure 9: Average log;,MSE error across the various tasks of a particular model when inserted in the
recurrent or the standard model. The mean, max & min model represents a baseline MPNN which
employs mean, max and min aggregators and no scaler.

J Single task experiments

Apart from a good method to evaluate the performance on a variety of different problems, the multi-
task approach offers a regularization opportunity that some models capture more than others. In
particular, we found that models without scalers (or sum aggregator) are those benefiting the most
from the approach; we hypothesise that the reason for this lies in some supervision that specific tasks
give to recognise the size of a model neighbourhood. Moreover, more complex models are more
prone to overfitting when trained on a single task. Figure[T0[shows the average performance on the
individual tasks of the various models.

PN A 0 P »

multi-task -3.13 -2.77 -2.53 -2.50 -2.26 =iLCR) -2.04

single task -2.86 -2.07 -2.68 -2.10 -2.46 -1.96 2013

Figure 10: Average log,,MSE error across the various tasks of a particular model either trained
concurrently on all the tasks (multi-task) or trained separately on the individual tasks (single task).
With the exception of the output layer, the two settings use the same architecture.

?Note that this was only used in the synthetic benchmarks, while in the real-world benchmarks, we kept the
same architecture from Dwivedi et al.

3This prior corresponds to the knowledge that these tasks can be solved by the convergence of an aggregation
function in the message passing context, potentially with an additional readout/function.

18

K Parameters comparison

Figure[TT|shows the results of testing all the other models on the multi-task benchmark with increased
latent size.

PNA 8350 B3
MPNN (sum) 7294 -2.53 11186 22116)
MPNN (max) 8032 -2.50 12356 -2.23
GAT 6694 -2.26 10286 -2.08
GCN 6662 -2.04 10246 -1.96
GIN 7272 -1.99 11168 <AL,

Figure 11: Average score of different models using feature sizes of 16 and 20, compared to the
PNA with 16 on the multi-task benchmark. "# params" is the total number of parameters in each
architecture.

We observe that, even with fewer parameters, PNA performs consistently better and an increased
number of parameters does not boost the performance of the other models. This suggests that the
multiple aggregators in the PNA produce a qualitative improvement to the capacity of the model.

19

