A Detailed Description of Evaluation Metrics

We use a variety of evaluation metrics to diagnose the effect that training with instance selection
has on the learned distribution. In all cases where a reference distribution is required we use the
original training distribution, and not the distribution produced after instance selection. Doing so
would unfairly favour the evaluation of instance selection, since the reference distribution could be
changed to one that is trivially easy to generate.

Inception Score (IS) [24] evaluates samples by extracting class probabilities from an ImageNet
pretrained Inceptionv3 classifier and measuring the distribution of outputs over all samples. The
Inception Score is maximized when a model produces highly recognizable outputs for each of the
ImageNet classes. One of the major limitations of the Inception Score is its insensitivity to mode
collapse within each class. A model that produces a single high quality image for each category can
still achieve a good score.

Fréchet Inception Distance (FID) [10] measures the distance between a generated distribution and
a reference distribution, as approximated by a Gaussian fit to samples projected into the feature space
of a pretrained Inceptionv3 model. FID has been shown to correlate well with image quality, and is
capable of detecting mode collapse and mode adding. However, FID does not differentiate between
fidelity and diversity. As such, it is difficult to assess whether a model has achieved a good FID score
based on good mode coverage, or because it produces high quality samples.

Precision and Recall (P&R) [14] were designed to address the limitations of FID by providing
separate metrics to evaluate fidelity and diversity. To calculate P&R, image manifolds are created by
first embedding each image in a given distribution into the feature space of a pretrained classifier. A
radius is then extended from each data point to its K" nearest neighbour to form a hypersphere, and
the union of all hyperspheres represents the image manifold. Precision is described as the percentage
of generated samples that fall within the manifold of real images. Recall is described as the percentage
of real images which fall within the manifold of generated samples. A limitation of P&R is that they
are susceptible to outliers, both in the reference and generated distributions [19]. Outliers artificially
inflate the size of the image manifolds, increasing the rate at which samples fall into those manifolds.
Thus, a dataset or model that produces many outliers may achieve scores that are better than the
quality of the samples would indicate.

Density and Coverage (D&C) [19] have recently been proposed as robust alternatives to Precision
and Recall. Density can be seen as an extension of Precision which measures how many real image
manifolds a generated sample falls within on average. Coverage is described as the percentage of real
images that have a generated sample fall within their manifold.

Classification Accuracy Score (CAS) [23, 25] was introduced for evaluating the usefulness of
conditional generative models for augmenting downstream tasks such as image classification. To
compute CAS, generated samples are used to train a classifier, which is then used to classify real data
from a test set. Generally, it is observed that models with greater sample diversity achieve higher
CAS, with image fidelity being of less importance. We do not evaluate CAS for the majority of our
experiments as it is very computationally expensive to compute, but we do report it in § [B] Table ] for
our 128 x 128 ImageNet BigGAN experiments as a reference for how instance selection affects CAS.

B Additional Evaluation Metrics - Classification Accuracy Score (CAS)

We compute CAS by training a ResNetS0 on samples from each of our 128 x 128 BigGAN models
using the standard ImageNet pipeline from PyTorcIﬂ We find that the model trained without instance
selection achieves the best CAS, which is expected given that this model also produces more diverse
samples (as measured by Recall). Interestingly, CAS for the BigGAN trained with instance selection
drops by less than 1%, despite it only having seen 50% of the ImageNet training set. This result
might suggest that neither of the models evaluated does a good job at generating recognizable outliers
from the ImageNet training set.

>https://github.com/pytorch/examples/tree/master/imagenet
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Table 4: CAS for BigGAN trained with and without instance selection. Following [23], both models
use a truncation ratio of 1.5 when generating samples for increased diversity.

Training Set Resolution Top-5 Accuracy Top-1 Accuracy
BigGAN 128 x 128 18.73 9.21
BigGAN + 50% inst. sel. 128 x 128 17.94 8.42

C Scores of Evaluation Metrics on Real Data

For each evaluation metric we compute scores on real data (Table[5)) as a reference for comparison
with the values produced by generative models. These values can be thought of as the scores which
would be achieved by a generative model that perfectly captures the target distribution. Metrics are
evaluated on the ImageNet validation set, using all 50k data points for IS and FID and 10k randomly
selected data points for P&R and D&C. Note that it is possible for generative models to surpass the
scores of real data for metrics that focus on image fidelity, such as IS, P, and D, but these models
often have proportionally lower diversity scores.

Table 5: Scores of real data from the ImageNet validation set for all evaluation metrics.
Resolution | ISt | FID| | P+ Rt | Dt C1

64 x 64 59.1 1.0 079 0.79 | 0.99 0.96
128 x 128 | 148.2 1.2 1084 082 1.01 096
256 x 256 | 2259 14 | 085 0.83] 1.01 096

D Retention Ratio Experiment Numerical Results

In Table[6] we include numerical results for the retention ratio experiments conducted in §4.4. These
values accompany the plots in Figure 3. We also report the performance of BigGAN and FQ-BigGAN
from [39] for comparison.

Table 6: Performance of models trained on 64 x 64 resolution ImageNet. A retention ratio of less
than 100 indicates that instance selection is used. Best results in bold.

Params Batch Retention

Model M) Size Ratio(%) | ST |FIDL| Pt RT| DT Ct

BigGAN 5254 512 100 2543 | 10.55 | - - - -

FQ-BigGAN 5254 512 100 2596 | 9.67 | - - - -
100 17.77 | 17.23 | 0.68 0.66 | 0.72 0.71
90 1898 | 15.85 | 0.70 0.66 | 0.75 0.74

80 | 2162 | 13.17 | 0.74 0.65 | 0.87 0.79
70 | 2395 | 1198 | 075 064 [ 092 0.82
60 | 27.95 | 1035 | 078 063 | 099 087
SAGAN 2364150 3104 | 963 | 079 062|107 088
40 3710 | 907 | 081 060 | 112 090
30 | 4185 | 975 | 0.83 0.55 | 119 0.90
20 | 4330 | 1236 | 082 049 | 117 088
10 | 37.06 | 1924 | 079 033 | 1.07 078
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E Complementarity of Instance Selection and Truncation

The truncation trick is a simple and popular technique which is used to increase the visual fidelity
of samples from a GAN at the expense of reduced diversity [2]. This trade-off is achieved by
biasing latent samples towards the interior regions of the latent distribution, either by truncating the
distribution, or by interpolating latent samples towards the mean [11, 14].

To examine the compatability between the truncation trick and instance selection, we truncate latent
vectors of the models trained in §4.4, varying the truncation threshold from 1.0 to 0.1 (Figure [6)).
We observe that combining both techniques results in a greater improvement in visual fidelity than
either method applied in isolation. We anticipate that other post-hoc filtering methods could also see
complimentary benefits when combined with instance selection, such as DRS, MH-GAN, and DDLS.
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Figure 6: Truncation trick applied to models trained with instance selection for truncation thresholds
1 to 0.1. The base models (threshold = 1) are marked with a e. Up and to the right is best.

F Insights for Applying Instance Selection to GANs

We found that, while instance selection could be used to achieve significant gains in model perfor-
mance, some changes to other hyperparameters were necessary in order to ensure training stability.
Here we detail some techniques that we found to work well in our experiments.

* Reduce batch size - Contrary to evidence from BigGAN [2] suggesting that larger batch
sizes improve GAN performance, we found batch sizes larger than 256 to degrade perfor-
mance when training with instance selection. We speculate that because we have simplified
the training distribution by removing the difficult examples, the discriminator overfits the
training set much faster. We posit that the smaller batch size could be acting as a form of
regularization by reducing the accuracy of the gradients, thereby allowing the generator to
train for longer before the discriminator overfits the training set and the model collapses.

* Reduce model capacity - Since the complexity of the training set is reduced when applying
instance selection, we found it necessary in some cases to also reduce model capacity.
Training models with too much capacity lead to early collapse, also likely caused by the
discriminator quickly overfitting the training set. We note that with proper regularization,
models trained with instance selection could still benefit from more capacity.

» Apply additional regularization - We have not experimented much with applying GAN
regularization methods to our models, but think that it could be important for combating
the aforementioned discriminator overfitting problem. Applying techniques such as R1
regularization [18] or recently proposed GAN data augmentation [13, 38] could allow for
instance selection to be combined with the benefits of larger batch sizes and model capacity.
We leave this investigation for future work.
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G Sample Sheets

We generate several different sample visualizations in order to better understand the impact that
instance selection has on GAN behaviour.

In Figure [7] we showcase some photorealistic samples generated by a 256 x 256 BigGAN model
trained with instance selection.

In Figure|8| we compare randomly selected samples from the official pretrained 256 x 256 BigGAN
(Figure[8a) with random samples from our 256 x 256 BigGAN trained with 50% instance selection
(Figure [8b)). Samples from the instance selection model appear more realistic on average.

To better understand how instance selection affects sample diversity, we visualize image manifolds
of different datasets and models by organizing images in 2D using UMAP [17] (Figure[9). We only
plot a single class so that we can see variations across the image manifold in greater detail than if
multiple classes were plotted simultaneously. All image samples share the same 2D embedding,
such that manifolds are comparable between datasets and models. We observe that even though
instance selection has removed 50% of the images from the original dataset (Figure @), it still retains
coverage over most of the original image manifold (Figure [Ob). Only images containing extreme
viewpoints are omitted. The GANs trained on the original and reduced datasets both cover less of the
image manifold than their respective source datasets. While the baseline GAN (Figure [9c) covers
more of the image manifold than the GAN trained with instance selection (Figure[9d), samples from
these extra regions often appear less realistic.

Figure 7: Photorealistic samples from BigGAN trained on 256 x 256 ImageNet with 50% instance
selection. Samples are manually selected to showcase the best quality outputs from this model.
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(a) Baseline (100% of dataset) (b) w\ Instance selection (50% of dataset)

Figure 8: Uncurated samples from BigGAN models trained on 256 x256 resolution ImageNet. Each
row is conditioned on a different class (from top): Red-breasted Merganser, Lynx, Collie, Mink,
Gibbon, Barn, Castle, Drilling Platform, Promontory.
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(c) Samples from GAN trained on full dataset (d) Samples from GAN trained on 50% of dataset

Figure 9: Visualization of the image manifolds for the red pandas class from (a) the full ImageNet
dataset, (b) the dataset after 50% instance selection, (¢) samples from a GAN trained on the full
dataset, and (d) samples from a GAN trained on 50% of the dataset. All images are at 128 x 128
resolution. Manifolds are created by embedding all images into an Inceptionv3 feature space, then
projecting them into 2D with UMAP [17]. All images share the same 2D embedding such that
subplots are comparable. Instance selection removes images from the dataset that have unusual
viewpoints or pose. Both GANs appear to cover less of the image manifold than their respective
source datasets. The GAN trained on the full dataset covers some regions of the image manifold that
are not covered by the model trained with instance selection, however, these regions are more likely
to appear unrealistic.

18



	Detailed Description of Evaluation Metrics
	Additional Evaluation Metrics - Classification Accuracy Score (CAS)
	Scores of Evaluation Metrics on Real Data
	Retention Ratio Experiment Numerical Results
	Complementarity of Instance Selection and Truncation
	Insights for Applying Instance Selection to GANs
	Sample Sheets

