A Useful Definitions & Theorems

Throughout this paper, we use the following standard Chernoff bounds.

Lemma 22 (Absolute Chernoff Bound). Let $X_1,...,X_n$ be i.i.d. binary random variables with $\mathbb{E}[X_i] = \mu$ for all $i \in [n]$. Then, for any $\epsilon > 0$: $\Pr\left[\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \ge \epsilon\right] \le 2\exp(-2\epsilon^2 n)$.

Lemma 23 (Relative Chernoff Bound). Let $X_1,...,X_n$ be i.i.d. binary random variables and let X denote their sum. Then, for any $\epsilon \in (0,1)$: $\Pr[X \leq (1-\epsilon)\mathbb{E}[X]] \leq \exp(-\epsilon^2\mathbb{E}[X]/2)$.

Next, the definition of Vapnik-Chervonenkis dimension, following by Uniform convergence for statistical learning and the Fundamental Theorem of Statistical Learning.

Definition 24. [VC-dimension] Let $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$ be a hypothesis class. A subset $S = \{x_1,...,x_{|S|}\} \subseteq \mathcal{X}$ is shattered by \mathcal{H} if: $|\{(h(x_1),...,h(x_{|S|})):h\in\mathcal{H}\}|=2^{|S|}$. The VC-dimension of \mathcal{H} , denoted $VCdim(\mathcal{H})$, is the maximal cardinality of a subset $S\subseteq\mathcal{X}$ shattered by \mathcal{H} .

Definition 25 (Uniform convergence for statistical learning). Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a hypothesis class. We say that \mathcal{H} has the uniform convergence property w.r.t. loss function ℓ if there exists a function $m^{sl}_{\mathcal{H}}(\epsilon,\delta) \in \mathbb{N}$ such that for every $\epsilon,\delta \in (0,1)$ and for every probability distribution D over $\mathcal{X} \times \{0,1\}$, if S is a sample of $m \geq m^{sl}_{\mathcal{H}}(\epsilon,\delta)$ examples drawn i.i.d. from to D, then, with probability of at least $1-\delta$, for every $h \in \mathcal{H}$, the difference between the risk and the empirical risk is at most ϵ . Namely, with probability $1-\delta$, $\forall h \in \mathcal{H}: |L_S(h)-L_D(h)| \leq \epsilon$.

Theorem 26. [The Fundamental Theorem of Statistical Learning] Let $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$ be a binary hypothesis class with $VCdim(\mathcal{H}) = d$ and let the loss function, ℓ , be the 0-1 loss. Then, \mathcal{H} has the uniform convergence property with sample complexity $m_{\mathcal{H}}^{UC}(\epsilon,\delta) = \Theta\left(\frac{1}{\epsilon^2}\left(d + \log(1/\delta)\right)\right)$.

B Proofs for Section 4

Proof. (Proof of Theorem 9)

Let $S^m = \{(x_1, y_1), ..., (x_m, y_m)\}$ be a random sample of size $m \geq m_{\mathcal{H}}(\epsilon, \delta, \psi, \gamma, \lambda)$ labeled examples drawn i.i.d. according to D.

For convenience, throughout the proof we use the following notations. We first define the quantities with respect to the distribution. For a given hypothesis $h \in H$, group $U \in \Gamma$ and interval $I \in \Lambda$, we are interested in the subpopulation which belongs to U and for which h prediction is in I, i.e., $[x \in U, h(x) \in I]$. For this subpopulation we define: p(h, U, I) the probability of being in this subpopulation, $\mu_y(h, U, I)$ the average y value in the subpopulation, and $\mu_h(h, U, I)$, the average prediction, i.e., h(x). The three measures are with respect to the true distribution D. Formally,

$$\begin{split} p(h,U,I) &:= \Pr_D[x \in U, h(x) \in I] \\ \mu_y(h,U,I) &:= \mathop{\mathbb{E}}_D[y \mid x \in U, h(x) \in I] \\ \mu_h(h,U,I) &:= \mathop{\mathbb{E}}_D[h(x) \mid x \in U, h(x) \in I] \end{split}$$

Similarly we denote the three empirical quantities with respect to the sample. Namely, we denote by $\hat{n}(h,U,I,S)$, $\hat{\mu}_y(h,U,I,S)$ and $\hat{\mu}_h(h,U,I,S)$ the number of samples, empirical outcome and empirical prediction, of the subpopulation $[x \in U, h(x) \in I]$. Formally,

$$\hat{n}(h, U, I, S) := \sum_{i=1}^{m} \mathbb{I} \left[x_i \in U, h(x_i) \in I \right]$$

$$\hat{\mu}_y(h, U, I, S) := \sum_{i=1}^{m} \frac{\mathbb{I} \left[x_i \in U, h(x_i) \in I \right]}{\hat{n}(h, I, U, S)} y_i$$

$$\hat{\mu}_h(h, U, I, S) := \sum_{i=1}^{m} \frac{\mathbb{I} \left[x_i \in U, h(x_i) \in I \right]}{\hat{n}(h, I, U, S)} h(x_i)$$

Then, the calibration error and the empirical calibration error can be expressed as:

$$c(h, U, I) = \mu_y(h, U, I) - \mu_h(h, U, I)$$

$$\hat{c}(h, U, I, S) = \hat{\mu}_y(h, U, I, S) - \hat{\mu}_h(h, U, I, S)$$

Let C_h denote the collection of all interesting categories according to predictor h, namely,

$$C_h := \left\{ (U, I) : U \in \Gamma, I \in \Lambda, \Pr_D[x \in U] \ge \gamma, \Pr_D[h(x) \in I \mid x \in U] \ge \psi \right\}$$

Note that every interesting category $(U, I) \in C_h$ has a probability of at least $\gamma \psi$, namely, for every $h \in \mathcal{H}$ and for any interesting category $(U, I) \in C_h$:

$$\Pr_{x \sim D}[x \in U, h(x) \in I] = \Pr_{x \sim D}[h(x) \in I \mid x \in U] \cdot \Pr_{x \sim D}[x \in U] \ge \gamma \psi$$

We define a "bad" event B^m over the samples, as the event there exist some predictor and some interesting category for which the generalization error is larger than ϵ .

$$B^{m} := \left\{ S \in (\mathcal{X} \times \{0,1\})^{m} : \exists h \in \mathcal{H}, \exists (U,I) \in C_{h} : |\hat{c}(h,U,I,S) - c(h,U,I)| > \epsilon \right\}$$

Bounding the probability that $S^m \in B^m$ by δ implies the theorem. In order to do so, we would like to have a "large enough" induced sample in every interesting category. For this purpose, we define the "good" event, $G^{m,l}$, as the event that indicates that for every predictor, each interesting category has at least l samples.

$$G^{m,l} := \left\{ S \in (\mathcal{X} \times \{0,1\})^m : \forall h \in \mathcal{H}, \forall (U,I) \in C_h : \hat{n}(h,U,I,S) \ge l \right\}$$

We will later set l to achieve ϵ -accurate approximation with confidence δ later. Note that $G^{m,l}$ is not the complement of B^m .

According to the law of total probability the following holds:

$$\begin{split} \Pr[B^m] &= \Pr\left[B^m \mid G^{m,l}\right] \Pr\left[G^{m,l}\right] + \Pr\left[B^m \mid \overline{G^{m,l}}\right] \Pr\left[\overline{G^{m,l}}\right] \\ &\leq \Pr\left[B^m \mid G^{m,l}\right] + \Pr\left[\overline{G^{m,l}}\right] \end{split}$$

We would like to bound each of the probabilities $\Pr\left[B^m \mid G^{m,l}\right]$ and $\Pr[\overline{G^{m,l}}]$ by $\delta/2$, in order to bound the probability of B^m by δ . We start by bounding $\Pr\left[S^m \in B^m \mid S^m \in G^{m,l}\right]$. By using the union bound:

$$\Pr\left[S^{m} \in B^{m} \mid S^{m} \in G^{m,l}\right]$$

$$= \Pr\left[\exists h \in \mathcal{H}, \exists (U,I) \in C_{h} : |\hat{c}(h,U,I,S^{m}) - c(h,U,I)| > \epsilon \mid \forall h \in \mathcal{H}, \forall (U,I) \in C_{h} : \hat{n}(h,U,I,S^{m}) \geq l\right]$$

$$\leq \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_{h}} \Pr\left[|\hat{c}(h,U,I,S^{m}) - c(h,U,I)| > \epsilon \mid \forall h \in \mathcal{H}, \forall (U,I) \in C_{h} : \hat{n}(h,U,I,S^{m}) \geq l\right]$$

$$= \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_{h}} \Pr\left[|\hat{c}(h,U,I,S^{m}) - c(h,U,I)| > \epsilon \mid \hat{n}(h,U,I,S^{m}) \geq l\right]$$

By using the triangle inequality:

$$\sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \left[|\hat{c}(h,U,I,S^m) - c(h,U,I)| > \epsilon \, \middle| \, \hat{n}(h,U,I,S^m) \ge l \right] \\
= \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \left[|\hat{\mu}_y(h,U,I,S^m) - \hat{\mu}_h(h,U,I,S^m) - \mu_y(h,U,I) + \mu_h(h,U,I)| > \epsilon \, \middle| \, \hat{n}(h,U,I,S^m) \ge l \right] \\
\le \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \left[|\hat{\mu}_h(h,U,I,S^m) - \mu_h(h,U,I)| + |\mu_y(h,U,I) - \hat{\mu}_y(h,U,I,S^m)| > \epsilon \, \middle| \, \hat{n}(h,U,I,S^m) \ge l \right]$$

Since $a + b \ge \epsilon$ implies that either $a \ge \epsilon/2$ or $b \ge \epsilon/2$:

$$\begin{split} & \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \bigg[|\hat{\mu}_h(h,U,I,S^m) - \mu_h(h,U,I)| + |\mu_y(h,U,I) - \hat{\mu}_y(h,U,I,S^m)| > \epsilon \ \bigg| \ \hat{n}(h,U,I,S^m) \ge l \bigg] \\ & \leq \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \bigg[|\hat{\mu}_h(h,U,I,S^m) - \mu_h(h,U,I)| > \frac{\epsilon}{2} \ \lor \ |\mu_y(h,U,I) - \hat{\mu}_y(h,U,I,S^m)| > \frac{\epsilon}{2} \ \bigg| \ \hat{n}(h,U,I,S^m) \ge l \bigg] \end{split}$$

And by using the union-bound once again:

$$\sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \left[|\hat{\mu}_h(h,U,I,S^m) - \mu_h(h,U,I)| > \frac{\epsilon}{2} \lor |\mu_y(h,U,I) - \hat{\mu}_y(h,U,I,S^m)| > \frac{\epsilon}{2} \middle| \hat{n}(h,U,I,S^m) \ge l \right] \\
\leq \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_h} \Pr \left[|\hat{\mu}_h(h,U,I,S^m) - \mu_h(h,U,I)| > \frac{\epsilon}{2} \middle| \hat{n}(h,U,I,S^m) \ge l \right] \\
+ \Pr \left[|\mu_y(h,U,I) - \hat{\mu}_y(h,U,I,S^m)| > \frac{\epsilon}{2} \middle| \hat{n}(h,U,I,S^m) \ge l \right]$$

We would like to use Chernoff inequality (Lemma 22) to bound the probability with a confidence of $1-\delta/2$. However, in order to do so, we must fix the number of samples, $\hat{n}(h,U,I,S^m)$, that h maps to a certain category (rather than using a random variable). Note that for $\hat{n}(h,U,I,S^m) \geq l$ the probability is maximized at $\hat{n}(h,U,I,S^m) = l$, so we will assume that $\hat{n}(h,U,I,S^m) = l$. We denote by $S^l|_{(h,U,I)}$ the sub-sample with $[x \in U, h(x) \in I]$, and its size is l.

Now, in order to use Chernoff inequality, we define two random variables, $\hat{Z}_y(h, U, I)$ and $\hat{Z}_h(h, U, I)$, as follows:

$$\hat{Z}_{y}(h, U, I) := \frac{1}{l} \sum_{(x_{i}, y_{i}) \in S^{l} | (h, U, I)} y_{i}$$

$$\hat{Z}_{h}(h, U, I) := \frac{1}{l} \sum_{(x_{i}, y_{i}) \in S^{l} | (h, U, I)} h(x_{i})$$

and we observe that

$$\mathbb{E}\left[\hat{Z}_y(h, U, I)\right] = \mu_h(h, U, I)$$
$$\mathbb{E}\left[\hat{Z}_h(h, U, I)\right] = \mu_y(h, U, I)$$

Using this notation,

$$\Pr\left[S^{m} \in B^{m} \mid S^{m} \in G^{m,l}\right] \\
\leq \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_{h}} \left[\Pr\left[\left|\hat{Z}_{y}(h,U,I) - \mu_{h}(h,U,I)\right| > \frac{\epsilon}{2}\right] + \Pr\left[\left|\hat{Z}_{h}(h,U,I) - \mu_{y}(h,U,I)\right| > \frac{\epsilon}{2}\right]\right] \\
\leq \sum_{h \in \mathcal{H}} \sum_{(U,I) \in C_{h}} 4e^{-\frac{\epsilon^{2}}{2}l} \leq \frac{4|\Gamma||\mathcal{H}|}{\lambda} e^{-\frac{\epsilon^{2}}{2}l}$$

We would like to set l so that $\Pr\left[S^m \in B^m \mid S^m \in G^{m,l}\right]$ will be at most $\delta/2$, as follows,

$$\frac{4|\Gamma||\mathcal{H}|}{\lambda}e^{-\frac{\varepsilon^2}{2}l} \leq \frac{\delta}{2} \iff l \geq \frac{2}{\epsilon^2}\log\left(\frac{8|\Gamma||\mathcal{H}|}{\delta\lambda}\right)$$

Hence, we set

$$l = \frac{2}{\epsilon^2} \log \left(\frac{8|\Gamma||\mathcal{H}|}{\delta \lambda} \right)$$

Next, we will bound $\Pr\left[S^m \in \overline{G^{m,l}}\right]$ by $\delta/2$.

Since $m \ge m_{\mathcal{H}}(\epsilon, \delta, \psi, \gamma, \lambda)$ and since $p(h, U, I) \ge \gamma \psi$ for any $h \in \mathcal{H}$ and $(U, I) \in C_h$, we know that for any $h \in \mathcal{H}$ and $(U, I) \in C_h$:

$$m \ge \frac{4l}{\gamma\psi} = \frac{8\log\left(\frac{8|\Gamma||\mathcal{H}|}{\delta\lambda}\right)}{\epsilon^2\gamma\psi}$$

Thus, the expected number of samples we have in each interesting category, is at least twice the value of l, i.e.,

$$\mathbb{E}[\hat{n}(h, U, I, S)] = mp(h, U, I) \ge m\gamma\psi \ge 2l$$

Thus, using the relative version of Chernoff bound, the upper bound we have on l, and the lower bound we have on m, for any $h \in \mathcal{H}$ and for any interesting category $(U, I) \in C_h$, the probability that S^m has less than l samples in the category (U, I) is bounded by:

$$\Pr[\hat{n}(h,U,I,S) \leq l] \leq \Pr\left[\hat{n}(h,U,I,S) \leq \frac{\mathbb{E}[\hat{n}(h,U,I,S)]}{2}\right] \leq e^{-\frac{\mathbb{E}[\hat{n}(h,U,I,S)]}{8}} \leq \frac{\lambda \delta}{2|\Gamma||\mathcal{H}|}$$

And, by using the union bound:

$$\Pr[S^m \in \overline{G^{m,l}}] = \Pr\left[\exists h \in \mathcal{H}, \exists (U,I) \in C_h : \hat{n}(h,U,I,S) < l\right] \le |C_h| \frac{\lambda \delta}{2|\Gamma|} \le \frac{\delta}{2}$$

Thus, overall:

$$\Pr[S^m \in B^m] \leq \Pr\left[S^m \in B^m \mid S^m \in G^{m,l}\right] + \Pr[S^m \in \overline{G^{m,l}}] \leq \delta/2 + \delta/2 = \delta$$
 as required.

C Proofs for Section 5

Proof. (Proof of Lemma 16)

Let us assume that $VCdim(\mathcal{H}_v) > d$ and let S be a sample of size d+1 such that \mathcal{H}_v shatters S.

Let us define the function $f: S \to \mathcal{Y}$ as:

$$\forall x \in S : f(x) = v$$

Let $T \subseteq S$ be an arbitrary subset of S. By assuming that \mathcal{H}_v shatters S we know that there exists $h_v \in \mathcal{H}_v$ such that:

$$\forall x \in S : h_v(x) = 1 \iff x \in T$$

This means that for the corresponding predictor $h \in \mathcal{H}$:

$$\forall x \in S : h(x) = v = f(x) \iff x \in T$$

Thus, using our definition of f,

$$\forall T \subseteq S, \exists h \in \mathcal{H}, \forall x \in S : h(x) = f(x) \iff x \in T$$

Which means that S is G-shattered by \mathcal{H} . However, since |S| > d, it is a contradiction to the assumption that $d_G(\mathcal{H}) \leq d$.

Proof. (Proof of Lemma 17)

Assume that $VCdim(\Phi_{\mathcal{H}_v}) > d$ and let S be a sample of d+1 domain points and outcomes shattered by $\Phi_{\mathcal{H}_v}$.

Note that y=0 implies that $\forall h_v \in \mathcal{H}_v, \forall x \in \mathcal{X}: \phi_{h_v}(x,y)=0$. Thus, $\forall (x,y) \in S: y=1$ (otherwise S cannot be shattered).

Let $S_x = \{x_j : (x_j, y_j) \in S\}$. Observe that when $y = 1, \forall h_v \in \mathcal{H}_v, \forall x \in \mathcal{X} : \phi_{h_v}(x, 1) = h_v(x)$. Thus, the fact that S is shattered by $\Phi_{\mathcal{H}_v}$ implies that S_x is shattered by \mathcal{H}_v . However, $|S_x| = d + 1$. Thus, we have a contradiction to the assumption that $VCdim(\Phi_{\mathcal{H}_v}) > d$.

Proof. (Proof of Lemma 18)

Let \mathcal{H}_v and $\Phi_{\mathcal{H}_v}$ be the binary prediction and binary prediction-outcome classes of \mathcal{H} .

Using Lemmas 16 and 17, and since $d_G(\mathcal{H}) \leq d$, we know that $VCdim(\Phi_{\mathcal{H}_v}) \leq VCdim(\mathcal{H}_v) \leq d$.

In addition, note that:

$$\left| \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}[h(x_i) = v] - \Pr_{x \sim D_U}[h(x) = v] \right| = \left| \frac{1}{m} \sum_{i=1}^{m} h_v(x_i) - \Pr_{x \sim D_U}[h_v(x) = 1] \right|,$$

And

$$\left| \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left[h(x_i) = v, y = 1 \right] - \Pr_{(x,y) \sim D_U}[h(x) = v, y = 1] \right| = \left| \frac{1}{m} \sum_{i=1}^{m} \phi_{h,v}(x_i, y_1) - \Pr_{(x,y) \sim D_U}[\phi_{h,v}(x, y)] \right|.$$

and the lemma follows directly from Corollary 13.

Proof. (Proof of Lemma 19) Let us denote $\xi := \psi \epsilon/3$

$$\frac{p_1}{p_2} - \frac{\tilde{p}_1}{\tilde{p}_2} \le \frac{p_1}{p_2} - \frac{p_1 - \xi}{p_2 + \xi} = \frac{p_1(1 + \xi/p_2)}{p_2(1 + \xi/p_2)} - \frac{p_1 - \xi}{p_2(1 + \xi/p_2)} = \frac{\xi}{p_2(1 + \xi/p_2)} \left[\frac{p_1}{p_2} + 1 \right]$$

Since $p_1, \psi \leq p_2$,

$$\frac{\xi}{p_2(1+\xi/p_2)} \left[\frac{p_1}{p_2} + 1 \right] \le \frac{\xi}{p_2} \left[\frac{p_2}{\psi} + \frac{p_2}{\psi} \right] = \frac{2\xi}{\psi} \le \frac{3\xi}{\psi} = \epsilon.$$

Similarly,

$$\frac{\tilde{p}_1}{\tilde{p}_2} - \frac{p_1}{p_2} \le \frac{p_1 + \xi}{p_2 - \xi} - \frac{p_1}{p_2} = \frac{p_1 + \xi}{p_2(1 - \xi/p_2)} - \frac{p_1(1 - \xi/p_2)}{p_2(1 - \xi/p_2)} = \frac{\xi}{p_2(1 - \xi/p_2)} \left[1 + \frac{p_1}{p_2} \right].$$

Since $n_1 \ \psi < n_2$

$$\frac{\xi}{p_2(1-\xi/p_2)} \left[1 + \frac{p_1}{p_2} \right] \leq \frac{\xi}{p_2(1-\xi/\psi)} \left[\frac{p_2}{\psi} + \frac{p_2}{\psi} \right] = \frac{2\xi}{\psi(1-\xi/\psi)} = \frac{2\epsilon}{3(1-\epsilon/3)} \leq \frac{2\epsilon}{3(1-1/3)} = \epsilon$$

Thus,

$$\left| \frac{p_1}{p_2} - \frac{\tilde{p}_1}{\tilde{p}_2} \right| \le \epsilon$$

Proof. (Proof of Lemma 20) Let P_U denote the probability of subpopulation U:

$$\mathbf{P}_U := \Pr_{x \sim D} \left[x \in U \right]$$

Using the relative Chernoff bound (Lemma 23) and since $\mathbb{E}[|S \cap U|] = mP_U$, we can bound the probability of having a small sample size in U. Namely, if $P_U \ge \gamma$, then:

$$\Pr_D\left[|S\cap U| \leq \frac{\gamma m}{2}\right] \leq \Pr_D\left[|S\cap U| \leq \frac{m\mathsf{P}_U}{2}\right] \leq e^{-\frac{m\mathsf{P}_U}{8}} \leq e^{-\frac{\gamma m}{8}}$$

Thus, for any $U \in \Gamma_{\gamma}$, if $m \geq \frac{8 \log(\frac{|\Gamma|}{\delta})}{\gamma}$, then, with probability of at least $1 - \frac{\delta}{|\Gamma|}$,

$$|S \cap U| > \frac{\gamma m}{2}$$

Finally, using the union bound, with probability at least $1 - \delta$, for all $U \in \Gamma_{\gamma}$,

$$|S\cap U|>\frac{\gamma m}{2}$$

Proof. (Proof of Theorem 10)

Let $S = \{(x_1, y_1), ..., (x_m, y_m)\}$ be a sample of m labeled examples drawn i.i.d. according to D, and let $S_U := \{(x, y) \in S : x \in U\}$ be the samples in S that belong to subpopulation U.

Let Γ_{γ} denote the set of all subpopulations $U \in \Gamma$ that has probability of at least γ :

$$\Gamma_{\gamma} := \{ U \in \Gamma \mid \Pr_{x \sim D}[x \in U] \ge \gamma \}$$

Let us assume the following lower bound on the sample size:

$$m \ge \frac{8\log\left(\frac{2|\Gamma|}{\delta}\right)}{\gamma}$$

Thus, using Lemma 20, we can bound the probability of having a subpopulation $U \in \Gamma_{\gamma}$ with small number of samples. Namely, we know that with probability of at least $1 - \delta/2$, for every $U \in \Gamma_{\gamma}$:

$$|S_U| \ge \frac{\gamma m}{2}$$

Next, we would like to show that having a large sample size in U implies accurate approximation of the calibration error, with high probability, for any interesting category in (U, I). For this purpose, let us define ϵ' , δ' as:

$$\epsilon' := \frac{\psi \epsilon}{3}$$

$$\delta' := \frac{\delta}{4|\Gamma||\mathcal{Y}|}$$

By using Lemma 18 and since $d_G(\mathcal{H}) \leq d$, we know that there exists some constant a > 0, such that, for any $v \in \mathcal{Y}$ and any $U \in \Gamma_{\gamma}$, with probability at least $1 - \delta'$, a random sample of m_1 examples from U, where,

$$m_1 \ge a \frac{d + \log(1/\delta')}{\epsilon'^2} = 9a \frac{d + \log(\frac{4|\Gamma||\mathcal{Y}|}{\delta})}{\epsilon^2 \psi^2}$$

will have,

$$\forall h \in \mathcal{H} : \left| \frac{1}{m_1} \sum_{x' \in S_U} \mathbb{I}\left[h(x') = v\right] - \Pr\left[h(x) = v \mid x \in U\right] \right| \le \epsilon' = \frac{\psi \epsilon}{3}$$

By using Lemma 18 and since $d_G(\mathcal{H}) \leq d$, we know that for any $v \in \mathcal{Y}$ and any $U \in \Gamma_{\gamma}$, with probability at least $1 - \delta'$, a random sample of m_2 labeled examples from $U \times \{0, 1\}$, where,

$$m_2 \ge a \frac{d + \log(1/\delta')}{\epsilon'^2} = 9a \frac{d + \log(\frac{4|\Gamma||\mathcal{Y}|}{\delta})}{\epsilon^2 \psi^2}$$

will have,

$$\forall h \in \mathcal{H} : \left| \frac{1}{m_2} \sum_{(x',y') \in S_U} \mathbb{I}\left[h(x') = v, y' = 1\right] - \Pr\left[h(x) = v, y = 1 \mid x \in U\right] \right| \le \epsilon' = \frac{\psi \epsilon}{3}$$

Let us define the constant a' in a manner that sets an upper bound on both m_1 and m_2 :

$$a' := 18a$$

and let m' be that upper bound:

$$m' := a' \frac{d + \log\left(\frac{|\Gamma||\mathcal{Y}|}{\delta}\right)}{\psi^2 \epsilon^2} \ge \max(m_1, m_2)$$

Then, by the union bound, if for all subpopulation $U \in \Gamma_{\gamma}$, $|S_U| \ge m'$, then, with probability at least $1 - 2|\Gamma||\mathcal{Y}|\delta' = 1 - \frac{\delta}{2}$:

$$\begin{aligned} \forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}: \\ \left| \frac{1}{|S_{U}|} \sum_{(x',y') \in S_{U}} \mathbb{I}\left[h(x') = v\right] - \Pr\left[h(x) = v \mid x \in U\right] \right| \leq \frac{\psi\epsilon}{3} \\ \forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}: \\ \left| \frac{1}{|S_{U}|} \sum_{(x',y') \in S_{U}} \mathbb{I}\left[h(x') = v, y' = 1\right] - \Pr\left[h(x) = v, y = 1 \mid x \in U\right] \right| \leq \frac{\psi\epsilon}{3} \end{aligned}$$

Let us choose the sample size m as follows:

$$m := \frac{2m'}{\gamma} = 2a \frac{d + \log\left(\frac{|\Gamma||\mathcal{Y}|}{\delta}\right)}{\psi^2 \epsilon^2 \gamma}$$

Recall that with probability at least $1 - \delta/2$, for every $U \in \Gamma_{\gamma}$:

$$|S_U| \ge \frac{\gamma m}{2} = m'$$

Thus, using the union bound once again, with probability at least $1 - \delta$:

 $\forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}:$

$$\left| \frac{1}{|S_U|} \sum_{x' \in S_U} \mathbb{I}\left[h(x') = v \right] - \Pr\left[h(x) = v \mid x \in U \right] \right| \le \frac{\psi \epsilon}{3}$$

 $\forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}:$

$$\left| \frac{1}{|S_U|} \sum_{(x',y') \in S_U} \mathbb{I}[h(x') = v, y' = 1] - \Pr[h(x) = v, y = 1 \mid x \in U] \right| \le \frac{\psi \epsilon}{3}$$

To conclude the theorem, we need show that having $\psi \epsilon/3$ approximation to the terms described above, implies accurate approximation to the calibration error. For this purpose, let us denote:

$$p_{1}(h, U, v) := \Pr [h(x) = v, y = 1 \mid x \in U]$$

$$p_{2}(h, U, v) := \Pr [h(x) = v \mid x \in U]$$

$$\tilde{p}_{1}(h, U, v) := \frac{1}{|S_{U}|} \sum_{(x', y') \in S_{U}} \mathbb{I} [h(x') = v, y' = 1]$$

$$\tilde{p}_{2}(h, U, v) := \frac{1}{|S_{U}|} \sum_{x' \in S_{U}} \mathbb{I} [h(x') = v]$$

Then, with probability at least $1 - \delta$:

$$\forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y} : \left| \tilde{p}_{2}(h, U, v) - p_{2}(h, U, v) \right| \leq \frac{\psi \epsilon}{3}$$

$$\forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y} : \left| \tilde{p}_{1}(h, U, v) - p_{1}(h, U, v) \right| \leq \frac{\psi \epsilon}{3}$$

Using Lemma 19, for all $h \in \mathcal{H}$, $U \in \Gamma_{\gamma}$ and $v \in \mathcal{Y}$, if $p_2(h, U, v) \geq \psi$, then:

$$\left|\frac{p_1(h,U,v)}{p_2(h,U,v)} - \frac{\tilde{p}_1(h,U,v)}{\tilde{p}_2(h,U,v)}\right| \le \epsilon$$

Thus, since

$$c(h, U, \{v\}) = \frac{p_1(h, U, v)}{p_2(h, U, v)} - v$$
$$\hat{c}(h, U, \{v\}, S) = \frac{\tilde{p}_1(h, U, v)}{\tilde{p}_2(h, U, v)} - v$$

then with probability at least $1 - \delta$:

 $\forall h \in \mathcal{H}, \forall U \in \Gamma, \forall v \in \mathcal{Y}: \qquad \Pr[x \in U] \ge \gamma, \Pr[h(x) = v \mid x \in U] \ge \psi \Rightarrow |c(h, U, \{v\}) - \hat{c}(h, U, \{v\}, S)| \le \epsilon$

D Proofs for Section 6

Proof. (Proof of Theorem 11) Let $\mathcal{X} = U \cup \{x^2\}$ where $U = \{x^0, x^1\}$ and $x^0 \neq x^1$. Let $H = \{h\}$, where

$$h(x) = \begin{cases} \frac{1}{2} + \epsilon & x = x^0 \\ 0 & else. \end{cases}$$

Let $\Gamma = \{U, \{x^2\}\}\$. Let $D \in \{D_1, D_2\}$ where

$$D_1(x,y) = \begin{cases} (1/2 + \epsilon)\psi\gamma & (x,y) = (x^0, 1) \\ (1/2 - \epsilon)\psi\gamma & (x,y) = (x^0, 0) \\ (1 - \psi)\gamma & (x,y) = (x^1, 0) \\ 1 - \gamma & (x,y) = (x^2, 0) \end{cases}$$

and

$$D_2(x,y) = \begin{cases} (1/2 + \epsilon)\psi\gamma & (x,y) = (x^0,0) \\ (1/2 - \epsilon)\psi\gamma & (x,y) = (x^0,1) \\ (1-\psi)\gamma & (x,y) = (x^1,0) \\ 1-\gamma & (x,y) = (x^2,0) \end{cases}$$

Now we will show a reduction to coin tossing:

Consider two biased coins. The first coin has a probability of $r_1=1/2+\epsilon$ for heads and the second has a probability of $r_2=1/2-\epsilon$ for heads. We know that in order to distinguish between the two with confidence $\geq 1-\delta_1$, we need at least $C\frac{\ln(\frac{1}{\delta_1})}{\epsilon^2}$ samples.

Since

$$\Pr_{(x,y)\sim D}[x\in U] = \Pr_{(x,y)\sim D}[x\neq x^2] = \gamma$$

the first condition for multicalibration holds. Now, we use another property of our "tailor-maded" distribution D and single predictor h, which is $\{x \in \mathcal{X} : h(x) = \frac{1}{2} + \epsilon\} = \{x \in \mathcal{X} : h(x) = \frac{1}{2} + \epsilon, x \in U\} = \{x_0\}$, to get the second condition:

$$\Pr_{D}[h(x) = 1/2 + \epsilon | x \in U] = \Pr_{D}[x = x^{0} | x \in U] = \frac{\psi \gamma}{\gamma} = \psi,$$

and that

$$\Pr_{D}[y = 1 | h(x) = \frac{1}{2} + \epsilon, x \in U] = \Pr_{D}[y = 1 | x = x^{0}]$$

is either $1/2 + \epsilon$ (if $D = D_1$) or $1/2 - \epsilon$ (in case $D = D_2$) (recall that $D \in \{D_1, D_2\}$).

Now, if H has the multicalibration uniform convergence property with a sample $S = (x_i, y_i)_{i=1}^m$ of size m, and if

$$\sum_{i=1}^{m} \frac{\mathbb{I}[y_i = 1, h(x_i) = 1/2 + \epsilon, x_i \in U]}{\sum_{j=1}^{m} \mathbb{I}[h(x_i) = 1/2 + \epsilon, x_i \in U]} = \sum_{i=1}^{m} \frac{\mathbb{I}[y_i = 1, x_i = x^0]}{\sum_{j=1}^{m} \mathbb{I}[x_i = x^0]} > \frac{1}{2}$$

holds, then

$$\Pr[y = 1 | h(x) = \frac{1}{2} + \epsilon, x \in U] = \frac{1}{2} + \epsilon$$

holds w.p. $1 - \delta_1$ (from the definition of multicalibration uniform convergence).

Let us assume by contradiction that we can get multicalibration uniform convergence with $m=\frac{C}{\epsilon^2\psi\gamma}-\frac{k}{\psi\gamma}<\frac{C}{\epsilon^2\psi\gamma}$ for some constant $k=\Omega(1)$.

Let m_0 denote the random variable that represents the number of samples in S such that $x_i=x^0$ (i.e., $h(x_i)=1/2+\epsilon$). Hence, $\mathbb{E}[m^0]=\gamma\cdot\psi\cdot m=\frac{C}{\epsilon^2}-k$.

From Hoeffding's inequality,

$$\Pr[m^0 \ge \frac{C}{\epsilon^2}] = \Pr[m^0 - \underbrace{\left(\frac{C}{\epsilon^2} - k\right)}_{\mathbb{E}[m_0]} \ge k] \le e^{-2mk^2}.$$

Let δ_2 be the parameter that holds $e^{-2mk^2} \leq \delta_2$, and let $\delta := \delta_1 + \delta_2$. Then we get that with probability $> (1 - \delta_1)(1 - \delta_2) > 1 - \delta_1 - \delta_2 = 1 - \delta$ we can distinguish between the two coins with less than $\frac{C}{\epsilon^2}$ samples, which is a contradiction.

19