
A Useful Definitions & Theorems
Throughout this paper, we use the following standard Chernoff bounds.

Lemma 22 (Absolute Chernoff Bound). Let X1, ..., Xn be i.i.d. binary random variables with
E[Xi] = µ for all i ∈ [n]. Then, for any ε > 0: Pr

[∣∣ 1
n

∑n
i=1Xi − µ

∣∣ ≥ ε] ≤ 2 exp(−2ε2n).

Lemma 23 (Relative Chernoff Bound). Let X1, ..., Xn be i.i.d. binary random variables and let X
denote their sum. Then, for any ε ∈ (0, 1):Pr [X ≤ (1− ε)E[X]] ≤ exp(−ε2 E[X]/2).

Next, the definition of Vapnik–Chervonenkis dimension, following by Uniform convergence for
statistical learning and the Fundamental Theorem of Statistical Learning.

Definition 24. [VC-dimension] Let H ⊆ {0, 1}X be a hypothesis class. A subset S =
{x1, ..., x|S|} ⊆ X is shattered byH if:

∣∣{(h(x1), ..., h(x|S|)
)

: h ∈ H
}∣∣ = 2|S|. The VC-dimension

ofH, denoted V Cdim(H), is the maximal cardinality of a subset S ⊆ X shattered byH.

Definition 25 (Uniform convergence for statistical learning). Let H ⊆ YX be a hypothesis class.
We say that H has the uniform convergence property w.r.t. loss function ` if there exists a function
msl
H(ε, δ) ∈ N such that for every ε, δ ∈ (0, 1) and for every probability distribution D over
X ×{0, 1}, if S is a sample of m ≥ msl

H(ε, δ) examples drawn i.i.d. from to D, then, with probability
of at least 1− δ, for every h ∈ H, the difference between the risk and the empirical risk is at most ε.
Namely, with probability 1− δ, ∀h ∈ H : |LS(h)− LD(h)| ≤ ε.
Theorem 26. [The Fundamental Theorem of Statistical Learning] Let H ⊆ {0, 1}X be a binary
hypothesis class with V Cdim(H) = d and let the loss function, `, be the 0− 1 loss. Then,H has the
uniform convergence property with sample complexity mUC

H (ε, δ) = Θ
(

1
ε2 (d+ log(1/δ))

)
.

B Proofs for Section 4
Proof. (Proof of Theorem 9)
Let Sm = {(x1, y1), ..., (xm, ym)} be a random sample of size m ≥ mH(ε, δ, ψ, γ, λ) labeled
examples drawn i.i.d. according to D.

For convenience, throughout the proof we use the following notations. We first define the quantities
with respect to the distribution. For a given hypothesis h ∈ H , group U ∈ Γ and interval I ∈ Λ,
we are interested in the subpoppulation which belongs to U and for which h prediction is in I , i.e.,
[x ∈ U, h(x) ∈ I]. For this subpoppulation we define: p(h, U, I) the probability of being in this
subpopulation, µy(h, U, I) the average y value in the subpoppulation, and µh(h, U, I), the average
prediction, i.e., h(x). The three measures are with respect to the true distribution D. Formally,

p(h, U, I) := Pr
D

[x ∈ U, h(x) ∈ I]

µy(h, U, I) := E
D

[y | x ∈ U, h(x) ∈ I]

µh(h, U, I) := E
D

[h(x) | x ∈ U, h(x) ∈ I]

Similarly we denote the three empirical quantities with respect to the sample. Namely, we denote
by n̂(h, U, I, S), µ̂y(h, U, I, S) and µ̂h(h, U, I, S) the number of samples, empirical outcome and
empirical prediction, of the subpoppulation [x ∈ U, h(x) ∈ I]. Formally,

n̂(h, U, I, S) :=

m∑
i=1

I [xi ∈ U, h(xi) ∈ I]

µ̂y(h, U, I, S) :=

m∑
i=1

I [xi ∈ U, h(xi) ∈ I]

n̂(h, I, U, S)
yi

µ̂h(h, U, I, S) :=

m∑
i=1

I [xi ∈ U, h(xi) ∈ I]

n̂(h, I, U, S)
h(xi)

Then, the calibration error and the empirical calibration error can be expressed as:

c(h, U, I) = µy(h, U, I)− µh(h, U, I)

ĉ(h, U, I, S) = µ̂y(h, U, I, S)− µ̂h(h, U, I, S)
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Let Ch denote the collection of all interesting categories according to predictor h, namely,

Ch :=

{
(U, I) : U ∈ Γ, I ∈ Λ,Pr

D
[x ∈ U ] ≥ γ,Pr

D
[h(x) ∈ I | x ∈ U ] ≥ ψ

}

Note that every interesting category (U, I) ∈ Ch has a probability of at least γψ, namely, for every
h ∈ H and for any interesting category (U, I) ∈ Ch:

Pr
x∼D

[x ∈ U, h(x) ∈ I] = Pr
x∼D

[h(x) ∈ I | x ∈ U ] · Pr
x∼D

[x ∈ U ] ≥ γψ

We define a “bad” event Bm over the samples, as the event there exist some predictor and some
interesting category for which the generalization error is larger than ε.

Bm :=

{
S ∈ (X × {0, 1})m : ∃h ∈ H,∃(U, I) ∈ Ch : |ĉ(h, U, I, S)− c(h, U, I)| > ε

}
Bounding the probability that Sm ∈ Bm by δ implies the theorem. In order to do so, we would like
to have a “large enough” induced sample in every interesting category. For this purpose, we define
the “good” event, Gm,l, as the event that indicates that for every predictor, each interesting category
has at least l samples.

Gm,l :=

{
S ∈ (X × {0, 1})m : ∀h ∈ H,∀(U, I) ∈ Ch : n̂(h, U, I, S) ≥ l

}

We will later set l to achieve ε-accurate approximation with confidence δ later. Note that Gm,l is not
the complement of Bm.

According to the law of total probability the following holds:

Pr[Bm] = Pr
[
Bm

∣∣Gm,l]Pr
[
Gm,l

]
+ Pr

[
Bm

∣∣∣Gm,l]Pr
[
Gm,l

]
≤ Pr

[
Bm

∣∣Gm,l]+ Pr
[
Gm,l

]
We would like to bound each of the probabilities Pr

[
Bm

∣∣Gm,l] and Pr[Gm,l] by δ/2, in order to
bound the probability of Bm by δ. We start by bounding Pr

[
Sm ∈ Bm

∣∣ Sm ∈ Gm,l]. By using the
union bound:

Pr
[
Sm ∈ Bm

∣∣ Sm ∈ Gm,l]
= Pr

[
∃h ∈ H,∃(U, I) ∈ Ch : |ĉ(h, U, I, Sm)− c(h, U, I)| > ε

∣∣∣∣ ∀h ∈ H,∀(U, I) ∈ Ch : n̂(h, U, I, Sm) ≥ l
]

≤
∑
h∈H

∑
(U,I)∈Ch

Pr

[
|ĉ(h, U, I, Sm)− c(h, U, I)| > ε

∣∣∣∣ ∀h ∈ H,∀(U, I) ∈ Ch : n̂(h, U, I, Sm) ≥ l
]

=
∑
h∈H

∑
(U,I)∈Ch

Pr

[
|ĉ(h, U, I, Sm)− c(h, U, I)| > ε

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

By using the triangle inequality:∑
h∈H

∑
(U,I)∈Ch

Pr

[
|ĉ(h, U, I, Sm)− c(h, U, I)| > ε

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

=
∑
h∈H

∑
(U,I)∈Ch

Pr

[
|µ̂y(h, U, I, Sm)− µ̂h(h, U, I, Sm)− µy(h, U, I) + µh(h, U, I)| > ε

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

≤
∑
h∈H

∑
(U,I)∈Ch

Pr

[
|µ̂h(h, U, I, Sm)− µh(h, U, I)|+ |µy(h, U, I)− µ̂y(h, U, I, Sm)| > ε

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]
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Since a+ b ≥ ε implies that either a ≥ ε/2 or b ≥ ε/2:∑
h∈H

∑
(U,I)∈Ch

Pr

[
|µ̂h(h, U, I, Sm)− µh(h, U, I)|+ |µy(h, U, I)− µ̂y(h, U, I, Sm)| > ε

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

≤
∑
h∈H

∑
(U,I)∈Ch

Pr

[
|µ̂h(h, U, I, Sm)− µh(h, U, I)| > ε

2
∨ |µy(h, U, I)− µ̂y(h, U, I, Sm)| > ε

2

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

And by using the union-bound once again:∑
h∈H

∑
(U,I)∈Ch

Pr

[
|µ̂h(h, U, I, Sm)− µh(h, U, I)| > ε

2
∨ |µy(h, U, I)− µ̂y(h, U, I, Sm)| > ε

2

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

≤
∑
h∈H

∑
(U,I)∈Ch

Pr

[
|µ̂h(h, U, I, Sm)− µh(h, U, I)| > ε

2

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

+ Pr

[
|µy(h, U, I)− µ̂y(h, U, I, Sm)| > ε

2

∣∣∣∣ n̂(h, U, I, Sm) ≥ l
]

We would like to use Chernoff inequality (Lemma 22) to bound the probability with a confidence
of 1− δ/2. However, in order to do so, we must fix the number of samples, n̂(h, U, I, Sm), that h
maps to a certain category (rather than using a random variable). Note that for n̂(h, U, I, Sm) ≥ l
the probability is maximized at n̂(h, U, I, Sm) = l, so we will assume that n̂(h, U, I, Sm) = l. We
denote by Sl|(h,U,I) the sub-sample with [x ∈ U, h(x) ∈ I], and its size is l.

Now, in order to use Chernoff inequality, we define two random variables, Ẑy(h, U, I) and
Ẑh(h, U, I), as follows:

Ẑy(h, U, I) :=
1

l

∑
(xi,yi)∈Sl|(h,U,I)

yi

Ẑh(h, U, I) :=
1

l

∑
(xi,yi)∈Sl|(h,U,I)

h(xi)

and we observe that

E
[
Ẑy(h, U, I)

]
= µh(h, U, I)

E
[
Ẑh(h, U, I)

]
= µy(h, U, I)

Using this notation,

Pr
[
Sm ∈ Bm

∣∣ Sm ∈ Gm,l]
≤
∑
h∈H

∑
(U,I)∈Ch

[
Pr
[∣∣∣Ẑy(h, U, I)− µh(h, U, I)

∣∣∣ > ε

2

]
+ Pr

[∣∣∣Ẑh(h, U, I)− µy(h, U, I)
∣∣∣ > ε

2

]]

≤
∑
h∈H

∑
(U,I)∈Ch

4e−
ε2

2 l ≤ 4|Γ||H|
λ

e−
ε2

2 l

We would like to set l so that Pr
[
Sm ∈ Bm

∣∣ Sm ∈ Gm,l] will be at most δ/2, as follows,

4|Γ||H|
λ

e−
ε2

2 l ≤ δ

2
⇐⇒ l ≥ 2

ε2
log

(
8|Γ||H|
δλ

)

Hence, we set

l =
2

ε2
log

(
8|Γ||H|
δλ

)
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Next, we will bound Pr
[
Sm ∈ Gm,l

]
by δ/2.

Since m ≥ mH(ε, δ, ψ, γ, λ) and since p(h, U, I) ≥ γψ for any h ∈ H and (U, I) ∈ Ch, we know
that for any h ∈ H and (U, I) ∈ Ch:

m ≥ 4l

γψ
=

8 log
(

8|Γ||H|
δλ

)
ε2γψ

Thus, the expected number of samples we have in each interesting category, is at least twice the value
of l, i.e.,

E[n̂(h, U, I, S)] = mp(h, U, I) ≥ mγψ ≥ 2l

Thus, using the relative version of Chernoff bound, the upper bound we have on l, and the lower
bound we have on m, for any h ∈ H and for any interesting category (U, I) ∈ Ch, the probability
that Sm has less than l samples in the category (U, I) is bounded by:

Pr[n̂(h, U, I, S) ≤ l] ≤ Pr

[
n̂(h, U, I, S) ≤ E[n̂(h, U, I, S)]

2

]
≤ e−

E[n̂(h,U,I,S)]
8 ≤ λδ

2|Γ||H|

And, by using the union bound:

Pr[Sm ∈ Gm,l] = Pr [∃h ∈ H,∃(U, I) ∈ Ch : n̂(h, U, I, S) < l] ≤ |Ch|
λδ

2|Γ|
≤ δ

2

Thus, overall:

Pr[Sm ∈ Bm] ≤ Pr
[
Sm ∈ Bm

∣∣ Sm ∈ Gm,l]+ Pr[Sm ∈ Gm,l] ≤ δ/2 + δ/2 = δ

as required.

C Proofs for Section 5
Proof. (Proof of Lemma 16)
Let us assume that V Cdim(Hv) > d and let S be a sample of size d+ 1 such thatHv shatters S.

Let us define the function f : S → Y as:

∀x ∈ S : f(x) = v

Let T ⊆ S be an arbitrary subset of S. By assuming that Hv shatters S we know that there exists
hv ∈ Hv such that:

∀x ∈ S : hv(x) = 1 ⇐⇒ x ∈ T
This means that for the corresponding predictor h ∈ H:

∀x ∈ S : h(x) = v = f(x) ⇐⇒ x ∈ T

Thus, using our definition of f ,

∀T ⊆ S,∃h ∈ H,∀x ∈ S : h(x) = f(x) ⇐⇒ x ∈ T
Which means that S is G-shattered by H. However, since |S| > d, it is a contradiction to the
assumption that dG(H) ≤ d.

Proof. (Proof of Lemma 17)
Assume that V Cdim(ΦHv ) > d and let S be a sample of d+1 domain points and outcomes shattered
by ΦHv .

Note that y = 0 implies that ∀hv ∈ Hv,∀x ∈ X : φhv (x, y) = 0. Thus, ∀(x, y) ∈ S : y = 1
(otherwise S cannot be shattered).

Let Sx = {xj : (xj , yj) ∈ S}. Observe that when y = 1, ∀hv ∈ Hv,∀x ∈ X : φhv (x, 1) = hv(x).
Thus, the fact that S is shattered by ΦHv implies that Sx is shattered byHv . However, |Sx| = d+ 1.
Thus, we have a contradiction to the assumption that V Cdim(ΦHv ) > d.
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Proof. (Proof of Lemma 18)
LetHv and ΦHv be the binary prediction and binary prediction-outcome classes ofH.

Using Lemmas 16 and 17, and since dG(H) ≤ d, we know that V Cdim(ΦHv ) ≤ V Cdim(Hv) ≤ d.

In addition, note that:∣∣∣∣∣ 1

m

m∑
i=1

I [h(xi) = v]− Pr
x∼DU

[h(x) = v]

∣∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

hv(xi)− Pr
x∼DU

[hv(x) = 1]

∣∣∣∣∣ ,
And∣∣∣∣ 1

m

m∑
i=1

I [h(xi) = v, y = 1]− Pr
(x,y)∼DU

[h(x) = v, y = 1]

∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

φh,v(xi, y1)− Pr
(x,y)∼DU

[φh,v(x, y)]

∣∣∣∣∣ .
and the lemma follows directly from Corollary 13.

Proof. (Proof of Lemma 19)
Let us denote ξ := ψε/3

p1

p2
− p̃1

p̃2
≤ p1

p2
− p1 − ξ
p2 + ξ

=
p1(1 + ξ/p2)

p2(1 + ξ/p2)
− p1 − ξ
p2(1 + ξ/p2)

=
ξ

p2(1 + ξ/p2)

[
p1

p2
+ 1

]
Since p1, ψ ≤ p2,

ξ

p2(1 + ξ/p2)

[
p1

p2
+ 1

]
≤ ξ

p2

[
p2

ψ
+
p2

ψ

]
=

2ξ

ψ
≤ 3ξ

ψ
= ε.

Similarly,

p̃1

p̃2
− p1

p2
≤ p1 + ξ

p2 − ξ
− p1

p2
=

p1 + ξ

p2(1− ξ/p2)
− p1(1− ξ/p2)

p2(1− ξ/p2)
=

ξ

p2(1− ξ/p2)

[
1 +

p1

p2

]
.

Since p1, ψ ≤ p2,

ξ

p2(1− ξ/p2)

[
1 +

p1

p2

]
≤ ξ

p2(1− ξ/ψ)

[
p2

ψ
+
p2

ψ

]
=

2ξ

ψ(1− ξ/ψ)
=

2ε

3(1− ε/3)
≤ 2ε

3(1− 1/3)
= ε

Thus, ∣∣∣∣p1

p2
− p̃1

p̃2

∣∣∣∣ ≤ ε
Proof. (Proof of Lemma 20) Let PU denote the probability of subpopulation U :

PU := Pr
x∼D

[x ∈ U ]

Using the relative Chernoff bound (Lemma 23) and since E[|S ∩ U |] = mPU , we can bound the
probability of having a small sample size in U . Namely, if PU ≥ γ, then:

Pr
D

[
|S ∩ U | ≤ γm

2

]
≤ Pr

D

[
|S ∩ U | ≤ mPU

2

]
≤ e−

mPU
8 ≤ e−

γm
8

Thus, for any U ∈ Γγ , if m ≥ 8 log( |Γ|
δ )

γ , then, with probability of at least 1− δ
|Γ| ,

|S ∩ U | > γm

2

Finally, using the union bound, with probability at least 1− δ, for all U ∈ Γγ ,

|S ∩ U | > γm

2
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Proof. (Proof of Theorem 10)

Let S = {(x1, y1), ..., (xm, ym)} be a sample of m labeled examples drawn i.i.d. according to D,
and let SU := {(x, y) ∈ S : x ∈ U} be the samples in S that belong to subpopulation U .

Let Γγ denote the set of all subpopulations U ∈ Γ that has probability of at least γ:

Γγ := {U ∈ Γ | Pr
x∼D

[x ∈ U ] ≥ γ}

Let us assume the following lower bound on the sample size:

m ≥
8 log

(
2|Γ|
δ

)
γ

Thus, using Lemma 20, we can bound the probability of having a subpopulation U ∈ Γγ with small
number of samples. Namely, we know that with probability of at least 1− δ/2, for every U ∈ Γγ :

|SU | ≥
γm

2

Next, we would like to show that having a large sample size in U implies accurate approximation of
the calibration error, with high probability, for any interesting category in (U, I). For this purpose, let
us define ε′, δ′ as:

ε′ :=
ψε

3

δ′ :=
δ

4|Γ||Y|

By using Lemma 18 and since dG(H) ≤ d, we know that there exists some constant a > 0, such that,
for any v ∈ Y and any U ∈ Γγ , with probability at least 1− δ′, a random sample of m1 examples
from U , where,

m1 ≥ a
d+ log(1/δ′)

ε′2
= 9a

d+ log( 4|Γ||Y|
δ )

ε2ψ2

will have,

∀h ∈ H :

∣∣∣∣ 1

m1

∑
x′∈SU

I [h(x′) = v]− Pr [h(x) = v | x ∈ U ]

∣∣∣∣ ≤ ε′ =
ψε

3

By using Lemma 18 and since dG(H) ≤ d, we know that for any v ∈ Y and any U ∈ Γγ , with
probability at least 1− δ′, a random sample of m2 labeled examples from U × {0, 1}, where,

m2 ≥ a
d+ log(1/δ′)

ε′2
= 9a

d+ log( 4|Γ||Y|
δ )

ε2ψ2

will have,

∀h ∈ H :

∣∣∣∣ 1

m2

∑
(x′,y′)∈SU

I [h(x′) = v, y′ = 1]− Pr [h(x) = v, y = 1 | x ∈ U ]

∣∣∣∣ ≤ ε′ =
ψε

3

Let us define the constant a′ in a manner that sets an upper bound on both m1 and m2:

a′ := 18a

and let m′ be that upper bound:

m′ := a′
d+ log

(
|Γ||Y|
δ

)
ψ2ε2

≥ max(m1,m2)
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Then, by the union bound, if for all subpopulation U ∈ Γγ , |SU | ≥ m′, then, with probability at least
1− 2|Γ||Y|δ′ = 1− δ

2 :

∀h ∈ H,∀U ∈ Γγ ,∀v ∈ Y :∣∣∣∣ 1

|SU |
∑

(x′,y′)∈SU

I [h(x′) = v]− Pr [h(x) = v | x ∈ U ]

∣∣∣∣ ≤ ψε

3

∀h ∈ H,∀U ∈ Γγ ,∀v ∈ Y :∣∣∣∣ 1

|SU |
∑

(x′,y′)∈SU

I [h(x′) = v, y′ = 1]− Pr [h(x) = v, y = 1 | x ∈ U ]

∣∣∣∣ ≤ ψε

3

Let us choose the sample size m as follows:

m :=
2m′

γ
= 2a

d+ log
(
|Γ||Y|
δ

)
ψ2ε2γ

Recall that with probability at least 1− δ/2, for every U ∈ Γγ :

|SU | ≥
γm

2
= m′

Thus, using the union bound once again, with probability at least 1− δ:

∀h ∈ H,∀U ∈ Γγ ,∀v ∈ Y : ∣∣∣∣ 1

|SU |
∑
x′∈SU

I [h(x′) = v]− Pr [h(x) = v | x ∈ U ]

∣∣∣∣ ≤ ψε

3

∀h ∈ H,∀U ∈ Γγ ,∀v ∈ Y : ∣∣∣∣ 1

|SU |
∑

(x′,y′)∈SU

I [h(x′) = v, y′ = 1]− Pr [h(x) = v, y = 1 | x ∈ U ]

∣∣∣∣ ≤ ψε

3

To conclude the theorem, we need show that having ψε/3 approximation to the terms described
above, implies accurate approximation to the calibration error. For this purpose, let us denote:

p1(h, U, v) := Pr [h(x) = v, y = 1 | x ∈ U ]

p2(h, U, v) := Pr [h(x) = v | x ∈ U ]

p̃1(h, U, v) :=
1

|SU |
∑

(x′,y′)∈SU

I [h(x′) = v, y′ = 1]

p̃2(h, U, v) :=
1

|SU |
∑
x′∈SU

I [h(x′) = v]

Then, with probability at least 1− δ:

∀h ∈ H,∀U ∈ Γγ ,∀v ∈ Y :

∣∣∣∣p̃2(h, U, v)− p2(h, U, v)

∣∣∣∣ ≤ ψε

3

∀h ∈ H,∀U ∈ Γγ ,∀v ∈ Y :

∣∣∣∣p̃1(h, U, v)− p1(h, U, v)

∣∣∣∣ ≤ ψε

3

Using Lemma 19, for all h ∈ H, U ∈ Γγ and v ∈ Y , if p2(h, U, v) ≥ ψ, then:∣∣∣∣p1(h, U, v)

p2(h, U, v)
− p̃1(h, U, v)

p̃2(h, U, v)

∣∣∣∣ ≤ ε
17



Thus, since

c(h, U, {v}) =
p1(h, U, v)

p2(h, U, v)
− v

ĉ(h, U, {v}, S) =
p̃1(h, U, v)

p̃2(h, U, v)
− v

then with probability at least 1− δ:

∀h ∈ H,∀U ∈ Γ,∀v ∈ Y : Pr[x ∈ U ] ≥ γ,Pr [h(x) = v | x ∈ U ] ≥ ψ ⇒ |c(h, U, {v})− ĉ(h, U, {v}, S)| ≤ ε

D Proofs for Section 6
Proof. (Proof of Theorem 11) Let X = U ∪ {x2} where U = {x0, x1} and x0 6= x1. Let H = {h},
where

h(x) =

{
1
2 + ε x = x0

0 else.

Let Γ = {U, {x2}}. Let D ∈ {D1, D2} where

D1(x, y) =


(1/2 + ε)ψγ (x, y) = (x0, 1)

(1/2− ε)ψγ (x, y) = (x0, 0)

(1− ψ)γ (x, y) = (x1, 0)

1− γ (x, y) = (x2, 0)

and

D2(x, y) =


(1/2 + ε)ψγ (x, y) = (x0, 0)

(1/2− ε)ψγ (x, y) = (x0, 1)

(1− ψ)γ (x, y) = (x1, 0)

1− γ (x, y) = (x2, 0)

Now we will show a reduction to coin tossing:
Consider two biased coins. The first coin has a probability of r1 = 1/2 + ε for heads and the second
has a probability of r2 = 1/2− ε for heads. We know that in order to distinguish between the two

with confidence ≥ 1− δ1, we need at least C
ln( 1

δ1
)

ε2 samples.

Since
Pr

(x,y)∼D
[x ∈ U ] = Pr

(x,y)∼D
[x 6= x2] = γ

the first condition for multicalibration holds. Now, we use another property of our “tailor-maded”
distribution D and single predictor h, which is {x ∈ X : h(x) = 1

2 + ε} = {x ∈ X : h(x) =
1
2 + ε, x ∈ U} = {x0}, to get the second condition:

Pr
D

[h(x) = 1/2 + ε|x ∈ U ] = Pr
D

[x = x0|x ∈ U ] =
ψγ

γ
= ψ,

and that
Pr
D

[y = 1|h(x) =
1

2
+ ε, x ∈ U ] = Pr

D
[y = 1|x = x0]

is either 1/2 + ε (if D = D1) or 1/2− ε (in case D = D2) (recall that D ∈ {D1, D2}).
Now, if H has the multicalibration uniform convergence property with a sample S = (xi, yi)

m
i=1 of

size m, and if
m∑
i=1

I[yi = 1, h(xi) = 1/2 + ε, xi ∈ U ]∑m
j=1 I[h(xi) = 1/2 + ε, xi ∈ U ]

=

m∑
i=1

I[yi = 1, xi = x0]∑m
j=1 I[xi = x0]

>
1

2

holds, then

Pr[y = 1|h(x) =
1

2
+ ε, x ∈ U ] =

1

2
+ ε
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holds w.p. 1− δ1 (from the definition of multicalibration uniform convergence).

Let us assume by contradiction that we can get multicalibration uniform convergence with m =
C

ε2ψγ −
k
ψγ <

C
ε2ψγ for some constant k = Ω(1).

Let m0 denote the random variable that represents the number of samples in S such that xi = x0

(i.e., h(xi) = 1/2 + ε). Hence, E[m0] = γ · ψ ·m = C
ε2 − k.

From Hoeffding’s inequality,

Pr[m0 ≥ C

ε2
] = Pr[m0 − (

C

ε2
− k)︸ ︷︷ ︸

E[m0]

≥ k] ≤ e−2mk2

.

Let δ2 be the parameter that holds e−2mk2 ≤ δ2, and let δ := δ1 + δ2. Then we get that with
probability > (1 − δ1)(1 − δ2) > 1 − δ1 − δ2 = 1 − δ we can distinguish between the two coins
with less than C

ε2 samples, which is a contradiction.

19


	Useful Definitions & Theorems
	Proofs for Section 4
	Proofs for Section 5
	Proofs for Section 6

