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Abstract

A recent breakthrough in deep learning theory shows that the training of over-
parameterized deep neural networks can be characterized by a kernel function
called neural tangent kernel (NTK). However, it is known that this type of results
does not perfectly match the practice, as NTK-based analysis requires the network
weights to stay very close to their initialization throughout training, and cannot
handle regularizers or gradient noises. In this paper, we provide a generalized
neural tangent kernel analysis and show that noisy gradient descent with weight
decay can still exhibit a “kernel-like” behavior. This implies that the training loss
converges linearly up to a certain accuracy. We also establish a novel generalization
error bound for two-layer neural networks trained by noisy gradient descent with
weight decay.

1 Introduction

Deep learning has achieved tremendous practical success in a wide range of machine learning tasks
[21, 19} 134]. However, due to the nonconvex and over-parameterized nature of modern neural
networks, the success of deep learning cannot be fully explained by conventional optimization and
machine learning theory.

A recent line of work studies the learning of over-parameterized neural networks in the so-called
“neural tangent kernel (NTK) regime” [20]. It has been shown that the training of over-parameterized
deep neural networks can be characterized by the training dynamics of kernel regression with
the neural tangent kernel (NTK). Based on this, fast convergence rates can be proved for over-
parameterized neural networks trained with randomly initialized (stochastic) gradient descent [16}, 2|
151139, 140]]. Moreover, it has also been shown that target functions in the NTK-induced reproducing
kernel Hilbert space (RKHS) can be learned by wide enough neural networks with good generalization
error [3, 14, 10].

Despite having beautiful theoretical results, the NTK-based results are known to have their limitations,
for not perfectly matching the empirical observations in many aspects. Specifically, NTK-based
analysis requires that the network weights stay very close to their initialization in the “node-wise”
{5 distance throughout the training. Moreover, due to this requirement, NTK-based analysis cannot
handle regularizers such as weight decay, or large additive noises in the noisy gradient descent.
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Given the advantages and disadvantages of the existing NTK-based results, a natural question is:
Is it possible to establish the NTK-type results under more general settings?

In this paper, we give an affirmative answer to this question by utilizing a mean-field analysis
(12, 28, 27, [37, [17] to study neural tangent kernel. We show that with appropriate scaling, two-
layer neural networks trained with noisy gradient descent and weight decay can still enjoy the nice
theoretical guarantees.

We summarize the contributions of our paper as follows:

e Our analysis demonstrates that neural network training with noisy gradient and appropriate regular-
izers can still exhibit similar training dynamics as kernel methods, which is considered intractable
in the neural tangent kernel literature, as the regularizer can easily push the network parameters
far away from the initialization. Our analysis overcomes this technical barrier by relaxing the
requirement on the closeness in the parameter space to the closeness in the distribution space. A
direct consequence of our analysis is the linear convergence of noisy gradient descent up to certain
accuracy for regularized neural network training.

e We establish generalization bounds for the neural networks trained with noisy gradient descent
with weight decay regularization. Our result shows that the infinitely wide neural networks trained
by noisy gradient descent with weight decay can learn a class of functions that are defined based
on a bounded y2-divergence to initialization distribution. Different from standard NTK-type
generalization bounds [[1} 13} [10], our result can handle explicit regularization. Moreover, our proof
is based on an extension of the proof technique in Meir and Zhang [29] from discrete distributions
to continuous distributions, which may be of independent interest.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. For a vector x = (r1,...,24)" € R?, and
any positive integer p, we denote the ¢, norm of x as ||x||, = (Zf’:l \xi\”)l/p. For a matrix
A = (A;;) € R™*™, we denote by ||A || and ||A || ¢ its spectral and Frobenius norms respectively.
We also define || A || oo,00 = max{|A4;;|: 1 <i<m,1 < j <mn}. Forapositive semi-definite matrix
A, we use A\pin(A) to denote its smallest eigenvalue.

For a positive integer n, we denote [n] = {1,...,n}. We also use the following asymptotic notations.
For two sequences {a,, } and {b, }, we write a,, = O(b,,) if there exists an absolute constant C' such
that a,, < Cb,,. We also introduce O(-) to hide the logarithmic terms in the Big-O notations.

At last, for two distributions p and p’, we define the Kullback-Leibler divergence (KL-divergence)
and x2-divergence between p and p’ as follows:

Dol = [ vy ios Dkt Dol = | (p(z) —1>2p’<z>dz.

P'(z) P'(z)

2 Related Work

Our work is motivated by the recent study of neural network training in the “neural tangent kernel
regime”. In particular, Jacot et al. [20] first introduced the concept of neural tangent kernel by
studying the training dynamics of neural networks with square loss. Based on neural tangent kernel,
Allen-Zhu et al. [2], Du et al. [15], Zou et al. [39] proved the global convergence of (stochastic)
gradient descent under various settings. Such convergence is later studied by a line of work [40]
with improved network width conditions in various settings. Su and Yang [35], Cao et al. [9] studied
the convergence along different eigendirections of the NTK. Chizat et al. [[13] extended the similar
idea to a more general framework called “lazy training”. Liu et al. [26] studied the optimization for
over-parameterized systems of non-linear equations. Allen-Zhu et al. [1], Arora et al. [3]], Cao and
Gu [[L1} [10] established generalization bounds for over-parameterized neural networks trained by
(stochastic) gradient descent. Li et al. [25] studied noisy gradient descent with a certain learning rate
schedule for a toy example.

! Although we focus on the continuous-time limit of the noisy gradient descent algorithm, our result can be
extended to the discrete-time setting by applying the approximation results in Mei et al. [28§]]



Algorithm 1 Noisy Gradient Descent for Training Two-layer Networks

Input: Step size 7, total number of iterations T’
Initialize (6, u;) ~ po(0,u), j € [m].
fort=0to7 — 1do

Draw Gaussian noises ¢, ; ~ N(0,2n), j € [m]

Ut41,5 = Ug,5 — nvu@({(et,ja U, J)} ) fCu \J
Draw Gaussian noises g ; ~ N (0, 2nId) j €[m]

Ori15 =0t — 1VeQ({(Br 5, ur )} 1ly) — VAL,
end for

Our analysis follows the mean-field framework adopted in the recent line of work [5 [12] 28] 27,
37,117, [18]]. Bach [5] studied the generalization performance of infinitely wide two-layer neural
networks under the mean-field setting. Chizat and Bach [12] showed the convergence of gradient
descent for training infinitely wide, two-layer networks under certain structural assumptions. Mei
et al. [28] proved the global convergence of noisy stochastic gradient descent and established
approximation bounds between finite and infinite neural networks. Mei et al. [27]] further showed
that this approximation error can be independent of the input dimension in certain cases, and proved
that under certain scaling condition, the residual dynamics of noiseless gradient descent is close
to the dynamics of NTK-based kernel regression within certain bounded time interval [0, 7). Wei
et al. [37] proved the convergence of a certain perturbed Wasserstein gradient flow, and established a
generalization bound of the global minimizer of weakly regularized logistic loss. Fang et al. [17,|18]
proposed a new concept called neural feature repopulation and extended the mean-field analysis.

3 Problem Setting and Preliminaries

In this section we introduce the basic problem setting for training an infinitely wide two-layer neural
network, and explain its connection to the training dynamics of finitely wide neural networks.

Inspired by the study in Chizat et al. [[13]], Mei et al. [27], we introduce a scaling factor a > 0 and
study two-layer, infinitely wide neural networks of the form

fpx) = a / uh(6,%)p(8, u)d0du, G.1)
Rd+1

where x € R? is the input, @ € R% and u € R are the first and second layer parameters respectively,
p(0,w) is their joint distribution, and h(0, x) is the activation function. It is easy to see that (3.1)) is
the infinite-width limit of the following neural network of finite width

S ({(65,u5) ey, %) = Zuj (3.2)

where m is the number of hidden nodes, {(0;,u;)}}., arei.i.d. samples drawn from p(8,u). Note

that choosing o = /m in (3.2) recovers the standard scaling in the neural tangent kernel regime [16],
and setting o = 1 in (3.I)) gives the standard setting for mean-field analysis [28}, 27].

We consider training the neural network with square loss and weight decay regularization. Let
S = {(x1,41),-- -, (Xn,yn)} be the training data set, and ¢(y’,y) = (v — y)? be the square
loss function. We consider Gaussian initialization py(0,u) o exp[—u®/2 — ||0]|3/2]. Then for
finite-width neural network (3.2), we define the training objective function as

m u2 |12
QU5 wY) =Eslol (657 + 230 (5 + 152). 6

j=1

where Eg[-] denotes the empirical average over the training sample S, and A > 0 is a regularization
parameter. It is worth noting that when the network is wide enough, the neural network training is in
the “interpolation regime”, which gives zero training loss (first term in (3:3))). Therefore, even with a
very large scaling parameter o, weight decay (second term in (3.3)) is still effective.

In order to minimize the objective function @({(0] ,uj) }7) for the finite-width neural network (3.2,
we consider the noisy gradient descent algorithm, Wthh is displayed in Algorithm(I] It has been
extensively studied [28], 112, 27, |17]] in the mean-field regime that, the continuous-time, infinite-width



limit of Algorithm|I|can be characterized by the following partial differential equation (PDE) of the
distribution p; (0, u

dp: (0, u

%) - _vu [pt(07 u)gl (ta 07 u)] - V@ . [Pt(07 u)gQ (ta 07 ’LL)] + AA[Pt(& ’U,)], (34)

where

g1 (t, 0, u) = —alg [Vy’¢(f(pt7 X)? y)h(gv X)] — Au,
g2(t,0,u) = —aEg[Vo(f(pt,x), y)uVeh(6,x)] — A6.
Below we give an informal proposition to describe the connection between Algorithm[I]and the PDE

(3:4). One can refer to Mei et al. [28]], Chizat and Bach [12], Mei et al. [27] for more details on such
approximation results.

Proposition 3.1 (informal). Suppose that 7(6,x) is sufficiently smooth, and PDE (3.4) has a unique
solution p;. Let {(0y,;,u¢,;)}72,t > 0 be output by Algorithm Then for any ¢ > 0 and any x, it
holds that
lim }Iij)% T ({(O1e/m) 50w e/n).5)}ie1,%) = f(pr,X).

Based on Proposition 3.1} one can convert the original optimization dynamics in the parameter space
to the distributional dynamics in the probability measure space. In the rest of our paper, we mainly
focus on p; (0, u) defined by the PDE (3.4). It is worth noting that PDE (3.4)) minimizes the following
energy functional

Q(p) = L(p) + ADkw(pllpo), (3.5

where L(p) = Es[¢((f(p,x),y)] is the empirical square loss, and Dky(p|lpo) =

J plog(p/po)dBdu is the KL-divergence between p and po [17]. The asymptotic convergence
of PDE (3.4) towards the global minimum of (3.3)) is recently established [28],[12, 27, [17].

Recall that, compared with the standard mean-field analysis, we consider the setting with an additional
scaling factor o in (3.1). When « is large, we expect to build a connection to the recent results in
the “neural tangent kernel regime” [27, [13]], where the neural network training is similar to kernel
regression using the neural tangent kernel K (x,x’) defined as K (x,x’) = K;(x,x') + Ka(x,x’),
where

Ki(x,x') = /u2<Vgh(0,X),Vgh(@,X’))po(B,u)dOdu,

Ky(x,x') = /h(0,x)h(0,x’)pO(G,u)dOdu.

Note that the neural tangent kernel function K (x, x’) is defined based on the initialization distribution
po. This is because the specific network scaling in the neural tangent kernel regime forces the network
parameters to stay close to initialization. In our analysis, we extend the definition of neural tangent
kernel function to any distribution p, and define the corresponding Gram matrix H € R™*™ of the
kernel function on the training sample S as follows:

H(p) = Hi(p) + Ha(p), (3.6)

where Hl(p)i,j =E, [UQ (Voh(0,%;),Veh(6, Xj)” and Hy (p)imj = Ep[h(O, x;)h(8, Xj)]. Note
that our definition of the Gram matrix H is consistent with a similar definition in Mei et al. [27].

Our study of NTK from the distributional perspective is based on the formulation of energy functional
(3:5), which is different from the standard NTK analysis in the parameter space. Standard NTK
analysis in the parameter space highly relies on the closeness of the parameters to the initialization.
However, weight decay regularizer will push the global minima of the regularized loss to be close to
the origin rather than the initialization. In addition, the gradient noises will also push the parameters
towards random directions rather than the initialization. Therefore, the closeness to initialization in
the parameter space no longer holds due to weight decay and gradient noises, and standard NTK
analysis is not applicable anymore. To overcome this problem, we take a distributional approach, and
show that with weight decay and gradient noises, the closeness to initialization in the distribution
space holds. This enables us to carry out a generalized NTK analysis.

*Throughout this paper, we define V and A without subscripts as the gradient/Laplacian operators with
respect to the full parameter collection (8, u).



4 Main Results

In this section we present our main results on the optimization and generalization of infinitely wide
two-layer neural networks trained with noisy gradient descent in Algorithm [T}

We first introduce the following two assumptions, which are required in both optimization and
generalization error analyses.

Assumption 4.1. The data inputs and responses are bounded: ||x;||2 < 1, |y;| < 1foralli € [n].

Assumption [4.1]is a natural and mild assumption. Note that this assumption is much milder than the
commonly used assumption ||x;||2 = 1 in the neural tangent kernel literature [16} 2} 39]. We would
also like to remark that the bound 1 is not essential, and can be replaced by any positive constant.

Assumption 4.2. The activation function has the form h(6,x) = h(67x), where h(-) is a three-
times differentiable function that satisfies the following smoothness properties:

A(2)] < G1, [W(2)] < Gay [B'(2)| < Gy, |(21(2))| < Ga, [W"(2)] < G5,

where (i1, . . ., G5 are absolute constants, and we set G = max{Gy, ..., G5} to simplify the bound.

h(0,x) = 1(0Tx) is of the standard form in practical neural networks, and similar smoothness

assumptions on E() are standard in the mean field literature [28} 27]. Assumptionis satisfied by
many smooth activation functions including the sigmoid and hyper-tangent functions.

4.1 Optimization Guarantees

In order to characterize the optimization dynamics defined by PDE (3.4), we need the following
additional assumption.

Assumption 4.3. The Gram matrix of the neural tangent kernel defined in is positive definite:
Amin(H(po)) = A > 0.

Assumption |4.3|is a rather weak assumption. In fact, Jacot et al. [20] has shown that if ||x;||2 = 1 for
all i € [n], Assumption[4.3|holds as long as each pair of training inputs X1, . .. ,X,, are not parallel.

Now we are ready to present our main result on the training dynamics of infinitely wide neural
networks.

Theorem 4.4. Let \y = ?gA /n and suppose that PDE (3.4) has a unique solution p;. Under

Assumptions 4.1} .2 and if
o> 8/ A3+ AAT-\PR7Y, (4.1)

where R = min {\/d + 1, [poly (G, 1og(1//\0))]_1/\3}, then for all ¢ € [0, +00), the following
result hold:

L(ps) < 2exp(—2a2X\2t) + 24202072\ %,
Dxr(pellpo) < 4A5a7°A5 " + 4470720 Y,
where A1 = 2G(d + 1) + 4G+v/d + 1 and Ay = 16Gvd + 1 + 4G.

Theorem shows that the loss of the neural network converges linearly up to O(A\?Ay 404*2)
accuracy, and the convergence rate depends on the smallest eigenvalue of the NTK Gram matrix. This
matches the results for square loss in the neural tangent kernel regime [[16]. However, we would like
to emphasize that the algorithm we study here is noisy gradient descent, and the objective function
involves a weight decay regularizer, both of which cannot be handled by the standard technical tools
used in the NTK regime [2} [16} [15]40]. Theorem @] also shows that the KL-divergence between
p¢ and pg is bounded and decreases as « increases. This is analogous to the standard NTK results
[L6l 2, 39] where the Euclidean distance between the parameter returned by (stochastic) gradient
descent and its initialization is bounded, and decreases as the network width increases. The condition
(4.1 requires a sufficiently large scaling factor «, which is also analogous to the large scaling
requirement in standard NTK analysis. It has been shown in [32] 140] that as long as the training
data inputs are non-parallel to each other, Apin (H(po)) = Q(n~2). Therefore for non-parallel data,

Theorem 4 4| requires o« = Q(n?d).



The results in Theorem {.4] can also be compared with an earlier attempt by Mei et al. [27]], which
uses mean-field analysis to explain NTK. While Mei et al. [27] only reproduces the NTK-type results
without regularization, our result holds for a more general setting with weight decay and noisy
gradient. Another work by Tzen and Raginsky [36] uses mean-field analysis to study the lazy training
of two-layer network. They consider a very small variance in parameter initialization, which is quite
different from the practice of neural network training. In contrast, our work uses standard random
initialization, and exactly follows the lazy training setting with scaling factor « [13]]. Moreover,
Tzen and Raginsky [36] only characterize the properties of the optimal solution without finite-time
convergence result, while we characterize the whole training process with a linear convergence rate.

4.2 Generalization Bounds

Next, we study the generalization performance of the neural network obtained by minimizing the
energy functional Q(p). For simplicity, we consider the binary classification problem, and use the
0-1 loss £%1(y',y) := 1{y'y < 0} to quantify the errors of the network, where 1{-} denotes the
indicator function.

The following theorem presents the generalization bound for neural networks trained by Algorithm T}

Theorem 4.5. Suppose that the training data {(x;, y;)}7, are i.i.d. sampled from an unknown but
fixed distribution D, and there exists a true distribution pe With D, 2 (pue|[po) < o0, such that

Y= /uh(G,x)ptme(H,u)dOdu

for all (x,y) € supp(D). Let p* be the minimizer of the energy functional (3.5). Under Assump-
tions and if @« > v/nA > 0, then for any 6 > 0, with probability at least 1 — 6,

Bl (£, ),0)] < (86 + 1y 2x:eelin) g, [logC/D)

n

Theorem [.5] gives the generalization bound for the global minimizer of the energy functional
Q(p) obtained by noisy gradient descent with weight decay. The assumption on p¢ye in The-
orem E essentially assumes that the target function is in the function class F = {f(x) =
J uh(6,X)piue (0, w)dOdu, Dy 2(pirue|[po) < +o0}. We can see that the generalization bound
gives a standard 1/+/n error rate as long as pyye has a constant X2 -divergence to py. Moreover, the
x2-divergence D, 2 (pyuel|po) also quantifies the difficulty for a target function defined by pi. to
be learnt. The larger D,z (pyue||po) is, the more examples are needed to achieve the same target
expected error.

Our generalization bound is different from existing NTK-based generalization results [24} |1} 3} [10],
which highly rely on the fact that the learned neural network weights are close to the initialization.
Therefore, these generalization error bounds no longer hold with the presence of regularizer and are
not applicable to our setting. In addition, Bach [5] studied the generalization bounds for two-layer
homogeneous networks and their connection to the NTK-induced RKHSE] Our result based on the
KL-divergence regularization is different from their setting and is not covered by their results.

S Proof Sketch of the Main Results
In this section we present a proof sketch for Theorems 4.4 and 4.5
5.1 Proof Sketch of Theorem [4.4]

We first introduce the following definition of 2-Wasserstein distance. For two distributions p and p’
over R4 we define

1/2
Walpp) = it [ ezl
YET (p,p’) JRd+1 xR+1

where I'(p, p’) denotes the collection of all measures on R? x R? with marginals p and p’ on the first
and second factors respectively.

3 Although it is not named “neural tangent kernel”, the kernel function studied in [3] is essentially NTK.



We also introduce the perturbation region B(po, R) := {p|/Wa(p, po) < R} based on the Wasserstein
distance to the initialization, where R defined in Theorem [4.4] gives the perturbation radius. We
would like to highlight that compared with standard NTK-based analyses [, 13} [10] which are based
on a perturbation region around initial weight parameter, our proof is based upon the 2-Wasserstein
neighborhood around pgy. Such an extension is essential to handle weight decay and gradient noises
and is one of our key technical contributions.

The proof of Theorem [.3|can be divided into the following three steps.

Step 1: Landscape properties when p; is close to p,. We first consider the situation when the
distribution p; is close to initial distribution pg.

Lemma 5.1. Under Assumptions and for any distribution p with Ws(p, po) < R, we
have Apin(H(p)) > A/2, where R is defined in Theorem[4.4]

Lemma [5.1| shows that when p; is close to pg in 2-Wasserstein distance, the Gram matrix at p; is
strictly positive definite. This further implies nice landscape properties around p;, which enables our
analysis in the next step.

Step 2: Loss and regularization bounds when p, is close to pg. With the results in Step 1, we
establish loss and regularization bounds when p; stays in B(pg, R) for some time period [0, t*], with
t* = inf{t > 0: Wa(pt,po) > R}. We have t* = +oo if the {t > 0: Wa(ps,po) > R} = (0. The
following lemma shows that the loss function decreases linearly in the time perioud [0, t*].

Lemma 5.2. Under Assumptions and[4.3] for any ¢ < t*, it holds that

vV L(p) < exp(—aQ)\gt) + Al)\a_1>\62,

where A; is defined in Theorem [4.4

Besides the bound on L(p;), we also have a bound on the KL-divergence between p; and py, as is
given in the following lemma.

Lemma 5.3. Under Assumptions and[4.3] for any t < t*,
Dxu(pil[po) < 44507205 " +4470a 2\ Y,
where A; and A, are defined in Theorem 4.4}

Here we would like to remark that the bound in Lemma [5.3] does not increase with time ¢, which is an
important feature of our result. This is achieved by jointly considering two types of bounds on the
KL-divergence between p; and py: the first type of bound is on the time derivative of Dxy (p¢, po)
based on the training dynamics described by (3.4), and the second type of bound is a direct KL-
divergence bound based on the monotonicity of the energy functional Q(p;). The detailed proof of
this lemma is deferred to the appendix.

Step 3: Large scaling factor a ensures distribution closeness throughout training. When « is
sufficiently large, p; will not escape from the perturbation region. To show this, we utilize the
following Talagrand inequality (see Corollary 2.1 in Otto and Villani [31]] and Theorem 9.1.6 in
Bakry et al. [6]), which is based on the fact that in our setting pg is a Gaussian distribution.

Lemma 5.4 (Otto and Villani [31]]). The probability measure po(6,u) oc exp[—u?/2 — ||0]|3/2]
satisfies following Talagrand inequality

Wa(p,po) < 24/ Dxr(pl|po)-

The main purpose of Lemmal[5.4]is to build a connection between the 2-Wasserstein ball around pq
and the KL-divergence ball.

We are now ready to finalize the proof. Note that given our results in Step 2, it suffices to show that
t* = +o00, which is proved based on a reduction to absurdity.

Proof of Theorem[{.4] By the definition of t*, for any ¢ < ¢*, we have

_ _ _ _a\1/2
Wi(pi, po) < 2Dkn(pillpo)/? < 2(442a7225* + 44202054 % < R/2,



where the first inequality is by Lemma[5.4] the second inequality is by Lemma[5.3] ,.and the third
inequality is due to the choice of « in (@.1)).

This deduces that the set {¢ > 0 : Wa(ps,po) > R} is empty and t* = oo, because otherwise
Wa(ps+, Do) = R by the continuity of 2-Wasserstein distance. Therefore the results of Lemmas
and|[5.3|hold for all ¢ € [0, +00). Squaring both sides of the inequality in Lemma 5.2]and applying
Jensen’s inequality gives

L(ps) < 2exp(—2a%M\3t) + ZA%)\Qa_Q)\(TL.

This completes the proof. O

5.2 Proof Sketch of Theorem

For any M > 0, we consider the following class of infinitely wide neural network functions
characterized by the KL-divergence to initialization

Fin(M) = {f(p,x) : Dxv(pllpo) < M}. .1
Our proof consists of the following two steps.

Step 1: A KL-divergence based Rademacher complexity bound. Motivated by the KL-divergence
regularization in the energy functional Q(p), we first derive a Rademacher complexity bound for the
function class Fxr (M), which is given as the following lemma.

Lemma 5.5. Suppose that |h(0,x)| < G for all 8 and x, and M < 1/2. Then

%n(fKL(M)) S QG()(\/?.

Lemma 5.3]is another key technical contribution of our paper. Different from previous NTK-based
generalization error analysis that utilizes the approximation of neural network functions with linear
models [22} [10], we use mean-field analysis to directly bound the Rademacher complexity of neural
network function class. At the core of the proof for Lemmal[5.3]is an extension of Meir and Zhang
[29] for discrete distributions to continuous distributions, which is of independent interest.

Step 2: Expected 0-1 loss bound over gy, (M ). We bound the expected 0-1 loss by the square root
of the empirical square loss function and the Rademacher complexity.

Lemma 5.6. For any 6 > 0, with probability at least 1 — §, the following bound holds uniformly
over all f € Fxr(M):

Eol" (/0. )] < VESIFGO — 07 + 4% (Fia (30)) + 6/ 2202

The bound in Lemma 5.6 utilizes the property of square loss instead of margin-based arguments [[7].
In this way, we are able to obtain a tighter bound, as our setting uses square loss as the objective.

We now finalize the proof by deriving the loss and regularization bounds at p* and plugging them
into Lemma

Proof of Theorem@.3| Let D = D, 2 (Pyuel|Po) < 00. Define

. oa—1 1
p= “Po + — * Dtrue-
o «

Then we have [ p(6,u)dudf = 1, p(#,u) > 0, meaning that p is a well-defined density function.
The training loss of p can be calculated as follows:

2 2
1
L(p) =Eg [oz/uh(@, x)p(u, 0)dudd — y} =Eg (O +a- Y- y) =0. (5.2)
Moreover, by the fact that KL-divergence is upper bounded by the y2-divergence, we have

a—1 ptrue(aau)
o apo(0,u)

2 —
Dx1.(Pllpo) < Dy2(Pl|po) = / [ - 1} po(0,u)d0du = a~?D,  (5.3)



where the last equation is by the definition of x2-divergence. Now we have

Q(r") < Q(p) = L(p) + ADxe(pl[po) < a™?AD,
where the first inequality follows by the optimality of p*, and we plug (5.2), (5.3) into the definition
of the energy function Q(p) in to obtain the second inequality. Applying the definition of Q(p)
again gives the following two bounds:

L(p*) = Es[|f(p*,x) — yl’] £ a™*AD, (5.4)

Dxw.(p*[|po) < a™2D. (5.5)

By (5.3), we have f(p*,x) € Fi(a~2D). Therefore, applying Lemmawith M = a~2D gives
log(2/4)

Ep[t™ (f(r", %), )] < VEs[[£(p", %) = ] + 498 (Fi (72 D)) + 61 == =
< Va2AD +8Gay a_ZD + 64/ log;i/‘”
< (8G+1)\/§+6 %,

where the second inequality follows from (5.4) and Lemma5.3] and the third inequality follows from
the assumption that & > +/nA. This finishes the proof. O

6 Conclusion

In this paper, we demonstrate that the neural tangent kernel based regression can characterize
neural network training dynamics in a general setting where weight decay and gradient noises are
implemented. This leads to the linear convergence of noisy gradient descent up to certain accuracy.
Compared with existing analysis in the neural tangent kernel regime, our work points out an important
observation that as long as the distribution of parameters stays close to the initialization, it does not
matter whether the parameters themselves are close to their initial values. We also establish a novel
generalization bound for the neural network trained by noisy gradient descent with weight decay
regularization.

Broader Impact

Deep learning has achieved tremendous success in various real-world applications such as image
recognition, natural language processing, self-driving cars and disease diagnosis. However, many
deep learning models are not interpretable, which greatly limits their application and can even cause
danger in safety-critical applications. This work aims to theoretically explain the success of learning
neural networks, and can help add transparency to deep learning methods that have been implemented
and deployed in real applications. Our result makes deep learning more interpretable, which is crucial
in applications such as self-driving cars and disease diagnosis. Moreover, our results can potentially
guide the design of new deep learning models with better performance guarantees.

As a paper focusing on theoretical results, no risk can be directly caused. However, if the theoretical
results are over-interpreted and blindly used to design deep learning models for specific applications,
bad performance may be expected as there is still some gap between theory and practice.
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