# **Supplementary Materials**

 ${f Xu\ Liu^{1,2*}\ Chengtao\ Li^3}\ {f Jian\ Wang^4}\ {f Jingbo\ Wang^5}\ {f Boxin\ Shi^{6\dagger}\ Xiaodong\ He^{2\dagger}}^1$  The University of Tokyo  $\ ^2{
m JD\ AI\ Research}\ ^3{
m MIT}\ ^4{
m Snap\ Inc.}\ ^5{
m CUHK}\ ^6{
m Peking\ University}$ 

## A Overview

This supplementary material provides the details of the experiment in the paper. We introduce the details of 3D object detection in Section B and details of ScanNet voxel labeling in Section C.

# **B** The Experiment on VoteNet

We introduce the implementation details and additional ablation studies of 3D detection in this part.

#### **B.1** Implementation Details

**Architecture.** We adopt the framework of VoteNet [2], which can be divided into three parts. The backbone, voting and clustering module, and proposal module. Only the backbone is replaced with our method of Group Contextual Encoding PointNet++ (GCE PointNet++) in our experiment.

The configuration of the GCE PointNet++ is shown in Table 1. The numbers are explained as follows. The GCE layer has a receptive field determined by radius r, MLP network of  $MLP[c_1,...,c_k]$  and n subsampled points. These parameters are inherited from SA layers. Additionally, we use K to represent the number of code words and G to represent the number of groups in the GCE Block. In short, the GCE layer can be characterized by  $(n,r,K,G,[c_1,...,c_k])$ . It should also be noticed that the number of  $c_k$  is multiplied 3 times in Table 1, which refers to the " $C \times 3$ " in our experiment. We can change the expression of " $\times 3$ " in the table to " $\times 2$ " and " $\times 1$ " to get the configuration of  $C \times 2$  and  $C \times 1$  respectively.

Feature Propagation (FP) layers upsample the input point sets to output point set via interpolation and then pass the feature through MLP layers specified by  $[c_1, ..., c_k]$ 

| Layer Name   Input Layer   Type |            | Output Size | Layer Params           |                                                |  |
|---------------------------------|------------|-------------|------------------------|------------------------------------------------|--|
| SA1'                            | Raw Input  | GCE         | (2048,3+128×3)         | (2048, 0.2, 8, 12, [64, 64, 128×3])            |  |
| SA2′                            | $SA1^{7}$  | GCE         | $(1024, 3+256\times3)$ | $(1024, 0.4, 8, 12, [128, 128, 256 \times 3])$ |  |
| SA3′                            | SA2′       | GCE         | $(512, 3+256\times3)$  | $(512, 0.8, 8, 12, [128, 128, 256 \times 3])$  |  |
| SA4′                            | SA3′       | GCE         | $(256, 3+256\times3)$  | $(256, 1.2, 8, 12, [128, 128, 256 \times 3])$  |  |
| FP1                             | SA3', SA4' | FP          | $(512, 3+256\times3)$  | $[256,256\times3]$                             |  |
| FP2                             | SA2', SA3' | FP          | $(1024, 3+256\times3)$ | $[256,256\times3]$                             |  |

Table 1: The configuration of GCE PointNet++ in our experiment of 3D Detection.

**Training and Inference.** We adopt the same data augmentation methods with VoteNet [2]. Here we also adopted the same optimizer, Adam Optimizer [1], which is utilized with an initial learning rate 0.001. Learning rate is scheduled to be decayed by the factor of 0.1 after 80 epochs and another

<sup>\*</sup>This work is done in JD AI Research

<sup>†</sup>Corresponding authors: shiboxin@pku.edu.cn, xiaodong.he@jd.com

0.1 after 120 epochs. There are 180 epochs in total, which is the same with VoteNet[2]. The whole model is trained on a single Nvidia Titan-X GPU.

During inference, the points of the entire scene are taken as the input. With a *single shot pass*, the region proposals are generated by the framework and further post-processed by 3D NMS method.

## **B.2** Additional Ablation Studies

**Group Number** G. We investigate the performance w.r.t the group number G on the dataset of SUN-RGBD v1. The G should be an divisor of G and the results are illustrated in Table 2. The items of the first row of  $G \times G$ , means the channel number is unchanged, has revealed that when G is small, for instance, G = G, the performance is close to encoding layer G, or G = G. When G is too large, the Channel per group will be reduced, the improvements by group division will be then dropped. And the optimal G or defined as  $G^*$  will be an number between G and in this case is G.

We also conducted experiments by increasing the output channel  $2\times$  and  $3\times$ , denoted by  $C\times 2$  and  $C\times 3$  in Table 2. It should be noted that 12 is indivisible by  $C\times 2$  and  $C\times 1$ , therefore these items are blank in the table.

The result shows that the optimal choice of G grows in linear relationship with C. For example, when channel number is unchanged, the  $G^*=4$ , and this value is 8,12 when the channel number is multiplied  $2\times$  and  $3\times$  respectively. In this experiment, we choose " $C\times 3$ , G=12 as the default setting.

Table 2: Ablation studies of Group Number and Channel factor on Sun RGB-D V1, K is set to be 8.

| G                                        | 1    | 2    | 4    | 8    | 12   | 16   |
|------------------------------------------|------|------|------|------|------|------|
| $C \times 1 \\ C \times 2 \\ C \times 3$ | 54.6 | 54.9 | 55.4 | 54.6 | _    | 54.9 |
| $C \times 2$                             | 55.2 | 55.5 | 55.8 | 56.8 | _    | 55.4 |
| $C \times 3$                             | 55.8 | 55.8 | 55.4 | 56.7 | 57.1 | 57.0 |

**More results w.r.t.** K and G. The performance of the original Encoding layer (G=1) will saturate quickly with the code words. However, the results in the Table 3 show that our method  $(C \times 3, G=2)$  and  $(C \times 3, G=4)$  can lead to the increase on accuracy without saturation when the number of code words is increased up to  $(C \times 3, G=4)$ ).

Table 3: Ablation studies of SA2' layer w.r.t. G and K on Sun RGB-D V1. C is fixed to be  $C \times 3$ .

| K                                                                 | 8    | 16   | 24   | 32          |  |
|-------------------------------------------------------------------|------|------|------|-------------|--|
| $C \times 3, G = 1$<br>$C \times 3, G = 2$<br>$C \times 3, G = 4$ | 55.8 | 55.5 | 56.2 | 55.4        |  |
| $C \times 3, G = 2$                                               | 55.8 | 56.2 | 56.4 | <b>56.7</b> |  |
| $C \times 3, G = 4$                                               | 55.4 | 55.6 | 56.3 | 56.6        |  |

The performance on different seed layers. Similar to Table 8 of VoteNet [2], we also showed the performance of different seed layers for the benchmark of SUN-RGBD and ScanNet in Table 4 and in Table 5 respectively. We can infer from these results that the GCE block can improve the performance significantly on these benchmarks.

On the benchmark of SUN-RGBD, we found that the performance of FP2 layer is less satisfying than FP1 layer. Similar result is also shown in the original VoteNet [2] that the performance of FP2 layer is better than FP3 layer, implying FP operation is not an optimal choice for decoding layer. The methods to design a suitable decoding layer for point convolution could be a future research topic.

Table 4: Ablation studies of PointNet++ and our module with different seed layers, evaluated on SUN-RGBD

| Seed Layer      | SA2/SA2′     | SA3/SA3′     | SA4/SA4′     | FP1                 | FP2              |
|-----------------|--------------|--------------|--------------|---------------------|------------------|
| PointNet++ Ours | 51.2<br>57.1 | 56.3<br>58.0 | 55.1<br>59.3 | 56.6<br><b>60.7</b> | <b>57.7</b> 59.1 |
| $\Delta$        | 5.9          | 1.7          | 4.2          | 4.1                 | 1.4              |

Table 5: Ablation studies of PointNet++ and our module with different seed layers, evaluated on ScanNet.

| Seed Layer | SA2/SA2′ | SA3/SA3' | SA4/SA4′ | FP1  | FP2  |
|------------|----------|----------|----------|------|------|
| PointNet++ | 51.2     | 54.3     | 47.4     | 56.6 | I    |
| Ours       | 56.3     | 58.3     | 53.9     | 59.0 | 60.8 |
| Δ          | 5.1      | 4.0      | 6.5      | 2.4  | 2.2  |

# C Experimental Details on ScanNet Voxel Labeling

In the experiment, we followed the previous data processing methods [3; 4], the points are uniformly sampled and divided into the block with the size of  $1.5m \times 1.5m$ . There are 8192 points sampled on-the-fly during the training process. The architecture is built upon the Pointnet++ [4], we replace the SA modules with GCE blocks and choose  $K=8, G=12, C\times 3$  as the default setting.

## References

- [1] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
- [2] Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection in point clouds. arXiv preprint arXiv:1904.09664 (2019)
- [3] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 652–660 (2017)
- [4] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in neural information processing systems. pp. 5099–5108 (2017)
- [5] Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A.: Context encoding for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7151–7160 (2018)
- [6] Zhang, H., Xue, J., Dana, K.: Deep ten: Texture encoding network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 708–717 (2017)