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A Overview

This supplementary material provides the details of the experiment in the paper. We introduce the
details of 3D object detection in Section B and details of ScanNet voxel labeling in Section C.

B The Experiment on VoteNet

We introduce the implementation details and additional ablation studies of 3D detection in this part.

B.1 Implementation Details

Architecture. We adopt the framework of VoteNet [2], which can be divided into three parts. The
backbone, voting and clustering module, and proposal module. Only the backbone is replaced with
our method of Group Contextual Encoding PointNet++ (GCE PointNet++) in our experiment.

The configuration of the GCE PointNet++ is shown in Table 1. The numbers are explained as follows.
The GCE layer has a receptive field determined by radius r, MLP network of MLP [c1, ..., ck] and
n subsampled points. These parameters are inherited from SA layers. Additionally, we use K to
represent the number of code words and G to represent the number of groups in the GCE Block. In
short, the GCE layer can be characterized by (n, r,K,G, [c1, ..., ck]). It should also be noticed that
the number of ck is multiplied 3 times in Table 1, which refers to the “C × 3” in our experiment. We
can change the expression of “×3” in the table to “×2” and “×1” to get the configuration of C × 2
and C × 1 respectively.

Feature Propagation (FP) layers upsample the input point sets to output point set via interpolation
and then pass the feature through MLP layers specified by [c1, ..., ck]

Table 1: The configuration of GCE PointNet++ in our experiment of 3D Detection.

Layer Name Input Layer Type Output Size Layer Params

SA1′ Raw Input GCE (2048,3+128×3 ) (2048, 0.2, 8, 12, [64, 64, 128×3])
SA2′ SA1′ GCE (1024, 3+256×3) (1024, 0.4, 8, 12, [128,128,256×3])
SA3′ SA2′ GCE (512, 3+256×3) (512, 0.8, 8, 12, [128,128,256×3])
SA4′ SA3′ GCE (256, 3+256×3) (256, 1.2, 8, 12, [128,128,256×3])
FP1 SA3′, SA4′ FP (512, 3+256×3) [256,256×3]
FP2 SA2′, SA3′ FP (1024, 3+256×3) [256,256×3]

Training and Inference. We adopt the same data augmentation methods with VoteNet [2] . Here
we also adopted the same optimizer, Adam Optimizer [1], which is utilized with an initial learning
rate 0.001. Learning rate is scheduled to be decayed by the factor of 0.1 after 80 epochs and another
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0.1 after 120 epochs. There are 180 epochs in total, which is the same with VoteNet[2]. The whole
model is trained on a single Nvidia Titan-X GPU.

During inference, the points of the entire scene are taken as the input. With a single shot pass, the
region proposals are generated by the framework and further post-processed by 3D NMS method.

B.2 Additional Ablation Studies

Group Number G. We investigate the performance w.r.t the group number G on the dataset of
SUN-RGBD v1. The G should be an divisor of C and the results are illustrated in Table 2. The items
of the first row of C × 1 , means the channel number is unchanged, has revealed that when G is small,
for instance, G = 2, the performance is close to encoding layer [6; 5], or G = 1. When G is too large,
the Channel per group will be reduced, the improvements by group division will be then dropped.
And the optimal G or defined as G∗ will be an number between 1 and C and in this case is 4.

We also conducted experiments by increasing the output channel 2× and 3×, denoted by C × 2 and
C × 3 in Table 2. It should be noted that 12 is indivisible by C × 2 and C × 1, therefore these items
are blank in the table.

The result shows that the optimal choice of G grows in linear relationship with C. For example,
when channel number is unchanged, the G∗ = 4, and this value is 8, 12 when the channel number is
multiplied 2× and 3× respectively. In this experiment, we choose “C × 3, G = 12 as the default
setting.

Table 2: Ablation studies of Group Number and Channel factor on Sun RGB-D V1, K is set to be 8.

G 1 2 4 8 12 16

C × 1 54.6 54.9 55.4 54.6 _ 54.9
C × 2 55.2 55.5 55.8 56.8 _ 55.4
C × 3 55.8 55.8 55.4 56.7 57.1 57.0

More results w.r.t. K and G. The performance of the original Encoding layer (G = 1) will saturate
quickly with the code words. However, the results in the Table 3 show that our method (C× 3, G = 2
and C × 3, G = 4) can lead to the increase on accuracy without saturation when the number of code
words is increased up to 32.

Table 3: Ablation studies of SA2′ layer w.r.t. G and K on Sun RGB-D V1. C is fixed to be C × 3.
K 8 16 24 32

C × 3, G = 1 55.8 55.5 56.2 55.4
C × 3, G = 2 55.8 56.2 56.4 56.7
C × 3, G = 4 55.4 55.6 56.3 56.6

The performance on different seed layers. Similar to Table 8 of VoteNet [2], we also showed the
performance of different seed layers for the benchmark of SUN-RGBD and ScanNet in Table 4 and in
Table 5 respectively. We can infer from these results that the GCE block can improve the performance
significantly on these benchmarks.

On the benchmark of SUN-RGBD, we found that the performance of FP2 layer is less satisfying
than FP1 layer. Similar result is also shown in the original VoteNet [2] that the performance of FP2
layer is better than FP3 layer, implying FP operation is not an optimal choice for decoding layer. The
methods to design a suitable decoding layer for point convolution could be a future research topic.

Table 4: Ablation studies of PointNet++ and our module with different seed layers, evaluated on
SUN-RGBD

Seed Layer SA2/SA2′ SA3/SA3′ SA4/SA4′ FP1 FP2

PointNet++ 51.2 56.3 55.1 56.6 57.7
Ours 57.1 58.0 59.3 60.7 59.1

∆ 5.9 1.7 4.2 4.1 1.4
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Table 5: Ablation studies of PointNet++ and our module with different seed layers, evaluated on
ScanNet.

Seed Layer SA2/SA2′ SA3/SA3′ SA4/SA4′ FP1 FP2

PointNet++ 51.2 54.3 47.4 56.6 58.6
Ours 56.3 58.3 53.9 59.0 60.8

∆ 5.1 4.0 6.5 2.4 2.2

C Experimental Details on ScanNet Voxel Labeling

In the experiment, we followed the previous data processing methods [3; 4], the points are uniformly
sampled and divided into the block with the size of 1.5m× 1.5m. There are 8192 points sampled
on-the-fly during the training process. The architecture is built upon the Pointnet++ [4], we replace
the SA modules with GCE blocks and choose K = 8, G = 12, C × 3 as the default setting.
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