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Abstract

Normalization operations are widely used to train deep neural networks, and they
can improve both convergence and generalization in most tasks. The theories for
normalization’s effectiveness and new forms of normalization have always been hot
topics in research. To better understand normalization, one question can be whether
normalization is indispensable for training deep neural networks? In this paper,
we analyze what would happen when normalization layers are removed from the
networks, and show how to train deep neural networks without normalization layers
and without performance degradation. Our proposed method can achieve the
same or even slightly better performance in a variety of tasks: image classification
in ImageNet, object detection and segmentation in MS-COCO, video classification
in Kinetics, and machine translation in WMT English-German, etc. Our study may
help better understand the role of normalization layers and can be a competitive
alternative to normalization layers. Codes are available athttps://github.com/
hukkai/rescaling.

1 Introduction

Deep neural networks have greatly advanced the benchmarks in many artificial intelligence appli-
cations, such as image recognition [[19], speech recognition [1]], and natural language processing
[32]], etc. However, training effective deep neural networks is often non-trivial, and beset by many
problems, one of most annoying of which might be that of vanishing or exploding gradients, which
directly relates to the problem of vanishing or exploding variance of a signal (i.e. an input) as it passes
through the network [13]]. Batch Normalization (BN) [[17] greatly mitigates this problem. Since the
introduction of BN, several variants have been proposed that apply the underlying principle to a wider
range of tasks: Layer Normalization for recurrent neural networks [2]], Instance Normalization (IN)
[33]] for stylization, Group Normalization (GN) [36] for small-batch training, etc. Normalization
operations are, by now, default components of the state of the art in many tasks.

Despite the popularity and success of normalization, the theory behind the effectiveness of such
operations in neural networks is not yet fully understood. The original motivation provided in [[17]]
is that BN can reduce internal covariate shift. Other studies [29, 22| 4, [38|] also show several other
advantages provided by normalization in terms of loss landscape, regularization, etc. However,
most theoretical analyses require assumptions about the data/feature distribution, and the developed
theories are only evaluated on small datasets. Analyzing the optimization and generalization of
normalization in deep networks is still an open problem.

*Equal contribution.
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Since the effectiveness of normalization is still almost a black box, a natural question arises: is it
indispensable for training deep neural networks? There are, actually, two parts to this question: 1) Can
training of non-normalized models be stable? 2) Can we train non-normalized models and achieve the
same performance as the corresponding normalized models? The answer to the first question is clear.
The simplest solution is to train the network with very a small learning rate (although this may lead
to bad local minimum). A better solution is Fix-up initialization [40]]. With this careful initialization,
residual networks can be trained with large learning rate and limited performance degradation.

This paper focuses on the second question. By analyzing what would happen when normalization lay-
ers are removed from the networks, we show how to train deep neural networks without normalization
layers and without performance degradation.

We focus on the residual network (ResNet) [14], since residual learning tends to have better per-
formance when the network is very deep. Our method starts with solving the vanishing/exploding
variance problem (which is the main problem solved by normalization). Note that good initialization
[[L3]] can mitigate this problem in a conventional non-residual network. However, the problem of
explosion returns with residual connections of the form y; = x; + F(x;). We propose RescaleNet to
handle this problem, with the new formulation y; = «;x; + 5;F (x;) where «; and §; are carefully
selected constants. Concomitantly, we propose a novel network bias setting to compensate for the
common problem of “dead” neurons that arise in un-normalized networks.

We validate our method on a wide range of tasks. On ImageNet, our un-normalized RescaleNet
models can achieve the same or slightly better performance than the corresponding normalized
models (ResNet, ResNext) with the same training settings. Our un-normalized RescaleNet variant
on ResNet50 has 0.3% lower error than its BN/GN ResNet50 counterpart. Our method can also
apply to conventional non-residual networks. Our 19 layer VGG [30] model without normalization
achieves a top-1 validation error rate of 25.0%, which is 2.6% lower than PyTorch’s pre-trained model
[26]. Our method also shows consistent improvement on Mask R-CNN for COCO object detection
and segmentation [20]], 3D convolutional networks for Kinetics video classification [18]], and deep
transformers for WMT English-German machine translation [34]. In cases where normalization
operations may cause problems, our method can be a competitive alternative.

2 Related Work

Normalization is believed to be essential for training deep neural networks. Batch Normaliza-
tion (BN) [[17] enables training with a large learning rate and largely solves the gradient explo-
sion/vanishing problem. Layer Normalization (LN) [2] computes normalization statistics from all
summed inputs to the neurons in a layer, and can stabilize the hidden state dynamics in a recur-
rent network. Instance Normalization (IN) [33]] computes the statistics for each channel in each
datum independently. Group Normalization [36] computes normalization statistics over groups
of channels, making it effective for small batch settings. Switchable Normalization proposes a
learning-to-normalize framework that switches between BN, LN, and IN. Weight normalization [28]]
is a reparameterization of the weights to separate the direction and length of weights.

Good Initialization is essential for non-normalized networks. Xavier Initialization [[11] estimates
the standard deviation of initial parameter values on the basis of the number of input and output
channels in a layer. He initialization [13] extends the formula to the ReL.U activation, making it
possible to train deeper networks. However, these methods do not work for residual networks [[15]].
Goyal et al. [12]] finds initializing the residual branches by zero can ease optimization. Two recent
studies, Fixup Init[40] and Skiplnit [7]] are based on this observation. Our method is different from
these studies: it does not benefit from zero initialization. Besides initialization, scaling the hidden
layers is also commonly used to control the activation magnitude [9] [3]].

3 Preliminaries

We begin by briefly discussing two key challenges in training ResNets, to motivate our work. At
its core, a ResNet computes its output through incremental additive connections, obtained from a
sequence of residual blocks. Let x be the input to the net and a; be the output after the I*" residual
connection. Let F; be the corresponding residual block. The [*" residual connection is formulated
as x; = x;—1 + Fi(a;—1). Each residual block F; in turn is a multilayer network, typically a



convolutional network or even an MLP, with weights (filters) W; ;, and biases by i, k = 1--- K;
(where K| is the depth of ;). Activations are generally ReL.Us, as will be assumed in this paper.

ResNets typically also include normalization layers within and between residual blocks, however
since our objective is to develop a framework that does not require them, we will assume they are not
present. We will refer to ResNets that do not include normalization layers as “plain” ResNets.

3.1 The problem of exploding variance

As previously reported in several papers, random initialization of weights within a multi-layer network
can result in unstable (exploding or vanishing) variances of the activations with increasing depth, and
a variety of initialization strategies have been proposed to deal with the issue [10}|13}[37]]. Specifically,
for RELU-activation networks, Kaiming initialization of parameters [[13]] stabilizes the variances,
keeping them constant through the layers. In the context of ResNets, the variance of the input and
output of residual blocks will remain identical with this initialization, i.e. Var(F;(x;—1)) = Var(xz;_1)
(where Var(z) refers to the vector of variances of the individual components of x).

However, this leads to a new problem in a plain ResNet: as explained in [40], the correlations between
x; and F;(x;—1) are small (also see Appendix A.1), and at each residual connection we get

Var(z;) = Var(x;_1 + F(x;—1)) ~ Var(x;_1) + Var(F;(x;_1)) = 2Var(xz;_1).

Thus the variance doubles at each residual block, and increases exponentially with the number of
residual blocks, leading to an identical problem in the backward pass during training. Although [40]
do provide a solution, this sometimes comes at the cost of a minor loss of performance.

3.2 The “Dead ReLU” Problem in Plain Networks

In a ReLU-activation network, some fraction of neurons never get activated, and always produce
zero output regardless of the input. This “Dead Relu” problem is generally believed to be related
to improper initialization with large gradients. Instead, we have the following proposition: for a
deep rectifier neural network, even with careful initialization using current techniques [10, [13]], dead
ReLUs occur in significant numbers right at the outset after initialization and never recover.

Consider one linear layer: y, = Wyag + bg, xr = ReLU(yx_1). Suppose W, are initialized with
He Initialization [13]): wfj ~ N(0,2/d), by = 0. Assume the elements of &} have expectation cy.

d
E(fyeli) = EQY  whlax];) = ckWF, where W) =" wj;, (1)
j=1

where the notation [v]; for any vector v represents the i component of the vector. Since x,

comes from a ReLU layer, ¢ is positive (or non-negative). Once initialized, the weights are no
longer random. W} is a hence a single sample drawn from a Gaussian: (0, 2), with a significant
probability of being negative or even highly negative. Consequently, the PDF of many components of
yy, will be centered around a large negative value, as a result of which that component will be wiped
out by the subsequent ReLLU activation (and never recover since the derivatives too will now be 0).

A consequence of the dead ReLU problem is that a very large fraction of neurons in a ReLU network
can become ineffective at the very outset of training. For instance in our simulations in Appendix
A.2, nearly 40% of the neurons in the 20*" layer of a deep ReL.U-activation network are potentially
dead or otherwise unable to model non-linearity at initialization.

4 RescaleNet

We now introduce RescaleNet, our variation on the residual architecture that does not require
normalization. First we introduce the basic formalism, and then discuss various extensions that all
provide additional benefits.

4.1 RescaleNet for Residual Learning

The problem of vanishing/exploding values is, arguably, the biggest challenge in training non-
normalized networks. Due to the additive combination of residual blocks, x; = x_1 + Fr(Tr—_1),



the problem of exploding variance stated in Section [3|cannot be resolved through initialization alone,
and the actual computations in the model must be modified. Instead, we propose the following
re-scaling:

T = apxp-1 + BeFr(Tr-1), (2
where a3 + 37 = 1.

Suppose Fy, includes no normalization and the weights are initialized by [13]], the inputs and outputs
of F}, have approximately equal variances: Var[F(xy—_1)] &~ Var[xj_1]. Assume (following Section
that there is little linear correlation between F (x,_1) and x;_1. We have:

Var[ay,] = of Var[wy 1] + 53 Var[Fy, (25, 1)] = Varlay, 1], 3)
ensuring stable variances, provided oy, and j are properly set.

Expanding the recursion of Equation [2|recursively, assuming L residual blocks in all, we can write:

xp = Haz xo + Zﬁk H o Fi(@p-1)- 4)

k=1 i=k+1

The optimal coefficients should ensure that different residual blocks have the same weights:

L L
vk A K B ] o= J] o )

i=k+1 i=k'+1

Solving Equationwith a2 + B2 = 1, we get (see Appendix A.3): a = /(k—1+c¢)/(k +c),
Br = 1/Vk + ¢, where c is a hyper-parameter. To see which hyper-parameter c is better, we re-write
Fr(xr—1) as Fr(xk—1,0)) where Oy, is the parameter in this residual block:

k—1+4+c
xp = ki_'_ifb‘kq + k+ ——Fk(Tk-1,0k) (6)
It is sufficient to overcome the problem of unstable variances and gradients in un-normalized nets
with the basic formalism of Equation@ However, it it does not necessarily mean that the network is
trainable. If the gradient is too large, the output of the network may still overflow. Consider a loss
function ¢(w) which is being minimized w.r.t. a parameter w using gradient decent. Let 7 be the
learning rate, we have w; 11 = w; — nV{(w;). After one update step, the change to the loss is:

Al = lwigr) — Hwy) = £ (wy — nVE(wy)) — Hw) = —l| V(w3 +O0?). (D

If then length of the gradient is too large, we need a correspondingly small learning rate 5. Otherwise,
a big change to the loss would make it overflow.

. ol OF;
In our network (EquatlonH) let Dan be the derivative of the loss w.r.t & and 76, be the derivative
Tk k
of the residual branch F w.r.t to parameter ©;. We can assume the derivatives maintain a similar
magnitude in different layers by using He Initialization and our rescaling scheme. The square

summation of all parameters’ gradient is:
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The hyper-parameter should be neither too small nor too large. For example, a small hyper-parameter,
say ¢ = 1, make gradient unbounded: ||V/||3 = O(In L). We choose ¢ = L, the number of residual
blocks, which makes the square summation of all parameters’ gradient ||V/||3 less dependent on the
network depth. The residual connection of Equation [f]is now changed to to:

k—1+1L
=\ —F——FTi— —F ,0 9
T 7 Tp—1 + k+L i (Th—1,Ok) ©))
We will refer to this network formalism as RescaleNet. The basic RescaleNet formalism of Equation
[is sufficient to overcome the problem of unstable variances and gradients in un-normalized nets.
However its performance can be further improved through the extensions given below.



4.2 Scalar multipliers

The choice of ¢ influences how the weight given to different layers. A smaller ¢, say ¢ = 1, gives
higher weight to the deeper residual branches. A larger ¢, gives higher weight to the shallow
layers (usually there are still a few layers between the input and the residual blocks). However,
the importance of shallow and deep layers change during training. In the early stage of training,
the shallow layers learns most and the deep layers do not learn much [39]. Without good features
from shallow layers, deep layers cannot learn well. As the training going, deeper layers turn more
important since they have many more dimensions/parameters and are more close to the loss function.

To match the training dynamic, we select a relatively big ¢ = L and include a learnable multiplier
initialized to 1 at each residual block. Let my be the learnable multiplier. The network can en-weight
deeper layers by learning a larger multiplier. The final residual learning equation is:

[k—1+1L m
T = wwk—l + T%fk(wkfl) (10)

By default, my, should be a vector (similar to the weights of BN). However, we find scalar multipliers
are betterﬂ Scalar multipliers can have more updates than vector multipliers (the gradient of scalar
multipliers are accumulated from all dimensions). The final learned scalar multipliers can be up to
O(L), however the final learned vector multipliers ranges from 1 to 4, which may not be big enough
to up-weight deeper layers.

A larger multipliers may break our previous theories about stable variance. However, we find the
convolution weights also shrink during training due to weight decay. The decrease in weights and
increase in learnable multipliers compensate for each other, making the variance of residual block
outputs in an acceptable range. A detailed study about such dynamic could be a good future work.

4.3 Bias Initialization

In models that include normalization layers, the preceding linear layer usually has no bias since it
may be canceled by the mean reduction operation of normalization. When normalization is removed
from the network, we must consider a proper setting for the bias term. The common setting is to put
bias after the matrix multiplication, i.e. y = Wx + b, and initialize the bias as zero. However, as
discussed in Section [3.2] this can result in a large fraction of dead ReLUs, effectively losing much of
the modelling capacity of the network.

Instead, we apply the bias before the matrix multiplication, i.e. y = W (x + b), and initialize the bias
in a data-dependent manner (in ReLU networks), as the negative of the mean of the first mini-batch
of data used during training. We find bias before the matrix multiplication is much easier to optimize.
Data-dependent initialization can greatly mitigate the dead ReLU problem: all neurons have both
positive and negative outputs since the mean of the first batch of data is subtracted.

5 Experiments

5.1 ImageNet Classification

We experiment in the ImageNet classification dataset [8]]. The dataset contains 128k training images
and 50k validation images that are labeled with 1000 categories.

Implementation details. We follow the official PyTorch implementations [25]. During training,
we adopt random resized crop with a 224 x 224 crop size, and random horizontal flip for data
augmentation. We use SGD to train the models for 100 epochs. We use a weight decay of 0.0001 for
all weight layers, and no weight decay for the bias and multipliers. We report the top-1 classification
error on the 224 x 224 center-crop in the validation set. All results are averaged over 5 runs.

The default setting is to train the model with a batch size of 256 and an initial learning rate of 0.1.
The learning rate is decreased at 30, 60, 90 epochs. To accelerate training, we also try to train the
model with a batch size of 1024 and increase the learning rate by 4 times. To match the performance

>Zhang et al. [40] also used scalar multipliers, but they did not emphasize scalar multipliers are different
from, and much better than vector multipliers.



of batch size 256, we use gradual warmup [12] for 5 extra epochs. The performance with batch size
1024 is about 0.1% lower than with batch size 256. Unless otherwise stated, we use batch size 1024.

Ablation Study. Our baseline RescaleNet model for ablation study includes all the components
of Section .3} Equation [I0] for residual connections (with hyper-parameter c¢ set to L), the data-
dependent bias, and a learnable scalar multiplier. Table 1| shows the following ablation studies:

1. The choice of hyper-parameter c: as discussed in Section[d.3] ¢ controls the relative contributions
of deep and shallow layers. We compare ¢ = L (baseline) with ¢ = 1 and ¢ = L2. As show in
Table[1|(a), the results are not sensitive to ¢, and the baseline setting is slightly better (but has a
theoretical guarantee!).

2. The effectiveness of the multiplier: we compare three variants of the multiplier: no multiplier, a
scalar multiplier (baseline) and a vector multiplier.

3. Bias: we compare three cases — bias applied prior to multiplication by weights (Pre bias), and
initialized in a data-dependent manner (Data Init) (Section @ baseline), Pre bias initialized to O
(Zero Init), and a data-initialized bias applied after weight multiplication (Post bias).

(a) Hyper-parameter ¢ (b) Multiplier Setting (c) Bias Setting

Method Accuracy  Method Accuracy  Method Accuracy
c=1L 76.6 % Scale multiplier 76.6% Pre bias + Data Init 76.6%
c=1 76.4%  No multiplier 74.2% Pre bias + Zero Init 76.4%
c=1L? 76.3%  Vector multiplier 74.8% Post bias + Data Init 76.1%

Table 1: Ablation Study on ImageNet with ResNet backbone (first line is the baseline)

Comparison with non-normalized models. We compare our method with two related studies on
non-normalized models: Fixup-Init [40]] and Skiplnit [[7]]. Table [2]shows ImageNet Results with the
ResNet50 backbone. Results without citations are based on our implementation. Since normalization
has a strong regularisation effect, non-normalized models suffer from overfitting. We consider two
kinds of extra regularisation: 1) Mixup data augmentation with a coefficient o = 0.7. The coefficient
is selected by cross-validation on Fixup-Init models [40]. 2) Adding spatial dropout with a drop rateE]
p = 0.03 to convolution layers in conv4_x and conv5_x of the ResNet50 backbone and dropout with
a drop rate p = 0.3 before the last linear layer. RescaleNet surpasses other non-normalized models
by a significant margin. One thing worth mentioning is that RescaleNet is able to train well with
the default ResNet50 training setting. However, the other two methods require special training
settings: Fixup-Init reduces the learning rate of some parameters by 10 times; SkipInit reduces the
learning by a factor of 2 every 5 epochs in the middle of training.
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Figure 1: Training (left) and validation (right) accuracy(%) on ImageNet using ResNet50

Comparison with normalized models. We choose RescaleNet + Dropout as our baseline model and
compare with some normalization methods. Table 3| shows the results on ImageNet validation dataset.

3We choose the dropout rate heuristically. The regular batch size for BN is 32 images per GPU, thus the
variance of noise introduced from batch statistics is about 1/32 ~ 0.03 of the batch variance.
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Figure 2: Visualization of weights from ResNet and RescaleNet during and after training

Method Regularization = Accuracy Method Accuracy(%)
None [40] 72.4% Batch Normalization [17]] 76.4
Fixup-Init Mixup [40] 76.0% Layer Normalization 74.7
p Dropout 75.5% Instance Normalization [33]] 71.6
Group Normalization 75.9
_ None [[7] 74.9% . L

SkiplInit Dropout [7] 756% Switchable Normalization [21]] 76.9
None 74.3% RescaleNet 76.58+0.08
RescaleNet Mixup 76.4% Filter Response Norm 77.2
Dropout 76.6% RescaleNet + Cosine LR 77.2£0.06

Table 2: ResNet50 validation accuracies on Table 3: ResNet50 Validation accuracies on ImageNet

ImageNet for non-normalization methods. compared with normalization methods.

Since Filter Response Normalization (FRN) uses cosine learning rate decay [12] for optimization, we
also include the corresponding result for RescaleNet. Our method’s performance is better than the
traditional normalization method (BN, GN, etc), and very close to the performance of the state of the
art methods (SN, FRN).

Figure [I]shows the accuracy curves. RescaleNet has a rapid convergence in the first 60 epochs, but
BN/GN models catch up a little in the last 40 epochs. Figure[2](a) shows how the weights percentile in
Rescale50 (RescaleNet version of ResNet50) and ResNet50-BN models vary during training (conv3.5
is the last convolution in the 3™ stage). Figure (b) shows the histograms of the weights. The weights
are standardized and we print the initial standard deviation of the weights on top of the figures. As
shown in the figure, both weights in Rescale50 and ResNet50-BN models have a healthy distribution.

When the batch size becomes smaller, the performance of RescaleNet does not drop since it does
not require batch statistics. If the batch size is 1, we can update the parameters every 256 backward
passes, which is equivalent to training the model with a batch size of 256. However, the validation
accuracy of Switchable Norm would drop by 1.3% when the batch size is reduced to 1.

Performance on more architectures. To validate the generalization ability of the proposed method,
we compare RescaleNet with the corresponding normalized model on a series of architectures. The
results are shown in Table @ Though the re-scaling itself does not apply to conventional nets
without residual connections, the pre-weight bias strategy does apply and also proves to be very
effective. Table[5]shows the result on VGG-19. By only applying the pre-weight bias strategy, the
non-normalized model can almost match the performance of the BN model.

Architecture BN model(%) Rescale model(%) Architecture Accuracy(%)
ResNet101 77.4 77.53+0.08 vanilla VGG 19 74.4
ResNeXt101 79.3 79.45+0.05 VGG 19 + BN 75.1
SE-ResNet50 76.7 77.2240.11 VGG 19 + Prebias 75.0+0.12
Table 4: Validation accuracy of BN and RescaleNet Table 5: VGG19 validation
models on ImageNet. accuracies on ImageNet.



To seek the best possible performance of our method, we also train our method with several training
procedure refinements. Following [16]], we use the ResNet-D architecture, apply label smoothing and
mixup in addition to the dropout regularization as discussed, and train for 200 epochs with warmup.
We achieve a top-1 accuracy of 78.93% on the ImageNet validation dataset. The corresponding BN
model achieves a top-1 accuracy of 79.15%), i.e., only 0.22% improvement with BN enabled.

5.2 Experiments on More Tasks

Object Detection and Segmentation. These vision tasks take higher-resolution images as inputs,
thus the batch size is very small (2 or 4 images per GPU). We adopt Mask R-CNN with a Feature
Pyramid Network (FPN) backbone as the detection model, and compare the RescaleNet backbone with
the corresponding BN/GN backbone. Our codes are based on the official PyTorch Implementation
[27]. The models are trained in the COCO train2017 set and evaluated on the COCO val2017 set. We
report the standard COCO metrics of Average Precision (AP), AP50, and AP75 , for bounding box
detection (AP ) and instance segmentation (AP™*¥). All models are trained for 180k iterations
with a batch size of 16 (8 GPUs, 2 images per GPU).

Following [[14]], the BN layer is turned into a linear layer: y = vy(z — p)/o + 3 since the small
batch size will decrease the performance if batch normalization is performed. The parameters of
the backbones are initialized from the corresponding ImageNet classification pre-trained models.
For fair comparisons, the pre-trained models for different methods (BN/GN and Rescale) have close
performance on the ImageNet validation dataset. We apply pre-bias to all convolution layers and
linear layers in the heads. Following [36], we use the 4conv1fc head indead of 2fc head. As shown in
Table[6] RescaleNet model’s performance is always better than the BN/GN model.

Model APbbox Angox Apggox APmask AP%aSk AP7m5ask

ResNet50 BN 2X 38.6 59.8 42.1 34.5 56.4 36.3
ResNet50 GN 2X 40.3 61.0 44.0 35.7 57.9 37.7
RescaleNet50 2X 40.4 60.8 441 359 57.7 37.9

ResNet50GN 3X 40.8 61.6 44.4 36.1 58.5 38.2
RescaleNet50 3X 41.0 61.6 45.1 36.9 58.8 39.6

ResNet101 BN 2X 40.9 61.9 44.8 36.4 58.5 38.7
ResNet101 GN 2X 41.8 62.5 45.1 36.8 59.2 39.0
RescaleNet 101 2X  41.8 62.7 45.2 37.0 59.2 39.3

Table 6: Detection and segmentation results in COCO using Mask R-CNN and FPN.

Video classification. We further evaluate anther vision task: video classification on the Kinetics
dataset. We adopt the Inflated 3D ResNet50 [5]. In training, we sample a 32-frame clip with a stride
of 4 frames from each video. In evaluation, we sample 10 clips uniformly, and the final prediction is
the averaged softmax scores of all clips. All models are trained in the same setting as in [35] for 100
epochs with a batch size of 64 (8 GPUs, 8 videos per GPU). Table[7] shows the results.

method  accuracy method BLEU method BLEU

BN [36] 73.3% Layer Norm [40] 34.2% Layer Norm [24] 29.3%

GN [36] 73.0% Fixup Init [40] 34.5% Fixup Init [40] 29.3%

Rescale 73.7 % Rescale 35.0% Rescale 29.6%
Table 7: Top-1 accuracy Table 8: Machine translation Table 9: Machine translation
on Kinetics Validation. on IWSLT DE-EN. on IWSLT DE-EN.

Machine Translation. Finally, we evaluate our method in transformer [34]], a state of the art
architecture in language models. We remove all Layer Norms in transformer, and re-scale all residual
connections using methods discussed in Section[d] Following [40]], we choose the machine translation
task and test on two datasets: IWSLT 2014 German-English (de-en) [6]] and WMT 2016 English-
German (en-de) [24]. We use the fairseq library [23]] as our code base, and follow the same settings
as [40]]. Table|8|and E] show the results on two datasets. A higher BLEU is better.



6 Conclusion

In this work, we investigated how to train deep neural networks without normalization layers and
without performance degradation. We discussed the exploding variance and "Dead ReLLU" problems
in neural networks. We then proposed RescaleNet, a variation on the residual architecture that does
not require normalization. We further proposed several simple extensions to improve its performance.
We demonstrated the effectiveness of our method on a wide range of tasks: image classification, object
detection and segmentation, video classification, and machine translation. Our method is competitive
to normalization methods, thus investigating RescaleNet facilitates the theories of normalization. In
future work, we will have more detailed comparisons between RescaleNet and normalization models
(BN) in many aspects, for example loss landscape and training dynamics.
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Broader Impact

Our research studies a lower level problem of deep learning, i.e., the architecture of neural networks.
Researchers who are interested in the functionalities of normalization or more generally, the training
of deep neural networks, may get some insights from our paper. Further, our method can be used to
train neural networks with small batch size, thus researchers with limited computation resources may
benefit from this.

Since our research does not involve any specific high-level Al applications, we do not think there
would be any people being put at disadvantage from this research to the best of our knowledge. The
meaning of our research more lies in terms of theory, thus we cannot see any bad consequences of a
failure of the system.

We follow the most common settings in the deep learning community to process data and the
task/method does not leverage biases in the data.
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