
7 Appendix

A.1 The input and output of the residual block are weakly correlated With the formulation of
residual connections, we have: Var([xk+1]i) = Var([xk]i)+Var([Fk(xk)]i)+Cov([xk]i, [Fk(xk)]i).
With He initialization [13] , the output variance of Fk can be approximately equal to the input variance:
Var([Fk(xk)]i) ⇡ Var([xk]i).

To evaluate the covariance term, Cov([xk]i, [Fk(xk)]i), we assume that any two coordinates in xk

are uncorrelated. With this assumption, the covariance term is about O(1/
p
d) small. We only need

to prove the one layer case: F(x) = Wx. The elements of W can be sampled from Gaussian:
wij ⇠ N (0, 1/d) to match the input/output variance.

Cov([xk]i, [Fk(xk)]i) = Cov([xk]i,
dX

j=1

wij [xk]j) =
dX

j=1

wijCov([xk]i, [xk]j) = wiiVar([xk]i). (11)

The last equation holds since we assume any two coordinates in xk are uncorrelated. By Eq 11,
Var([(xk+1)]i) ⇡ (2 + wii)Var([xk]i). Recall that wii ⇠ N (0, 1/d), with a probability at least
1� exp(�d/4), 2 + wii > 2� 1/

p
2. In common ResNet, d � 32, which makes the residual block

output variance increases exponentially with a very high probability.

If there are multiple layers in the residual block Fk, ReLU activations would further decrease (at
least not increase) the correlation between [x]i and [Fk(xk)]i. We have have the following claim:

Proposition 1. Correlations between xk and Fk(xk) are about O(
p
d) small.

(a) Percentage of four categories in a 50 layer network.(b) Histogram of two neurons’ response in the 5th layer.
Figure 3: Visualization of the Dead ReLU problem immediate after initialization.

A.2 The dead ReLU problem To verify the extent of the dead ReLU problem, we ran an exper-
iment on a deep fully-connected ReLU-activation network. The input dimension, as well was the
output dimension of all layers was 1024. We used He initialization for all fully-connected layers. The
inputs were drawn from a standard Gaussian: x 2 R1024 ⇠ N (0, 1). The outputs of the k

th layer
before activation are:

xk = Wk

⇣
ReLU

�
Wk�1 · · ·ReLU(W1x)

�⌘
2 R1024

. (12)

We generate 4096 pieces of inputs from standard Gaussian, and examine each layer’s outputs of
the network directly after initialization, i.e., no training process. Let [xk]j be the j

th neurons in the
k

th layer, and it has 4096 outputs from the 4096 inputs. We divide all neurons into three disjoint
categories:

all positive : If all 4096 entries of [xk]j are positive,
all negative : If all 4096 entries of [xk]j are negative,

nonlinear regime : If there are both positive and negative entries in [xk]j .

12



Any neuron in either all positive category or all negative category is labelled as being in the
linear regime since the ReLU activation does not work for this neuron.

The percentage of neurons that fall into each the four categories against the layer index is shown in
Figure 3 (a). The dead neurons in the 10th layer have reached a proportion that cannot be ignored.
About 40% of the neurons in the 20th layer (e.g. VGG models) do not have the ability to capture
non-linear relations, immediately after initialization. Figure 3 (b) shows the histogram of two neurons’
response in the 5th layer. The two neurons lose nonlinear representation ability immediate after
initialization.

A.3 Deriving the optimal weights Let k0 in Equation 5 be k + 1:

�k

LY

i=k+1

↵i = �k+1

LY

i=k+1+1

↵i =) �k↵k+1 = �k+1. (13)

Recall ↵2
k+1 = 1� �

2
k+1, we have �

2
k(1� �

2
k+1) = �

2
k+1, which turns to be:

1

�2
k+1

� 1

�2
k

= 1 =) 1

�2
k

= k + c. (14)

Here c is a constant.

A.4 Fixed residual scaling This subsection was initially in the main body. However we feel that
this part is a little complicated and the method in this part makes reviewers confusing. We feel that
this subsection is not the nature of our proposed method and the improvement is a bit marginal.
Therefore we decide to regard this part as an optional trick. and move it to the appendix to reflect the
reviewer version of our paper.

Equation 16, combined with the initialization from [13], ensure the variance of the input and output of
any residual block remain identical, and consequently, the norms of the gradient of the loss w.r.t. the
output and input of each residuals section are equal in length as well (since gradient back propagation
through the block mirrors the forward propagation). However, since the 1/

p
k + L term in Equation

16 is different for each residual block, the norm of the gradient through each residual block Fk will
decrease with the depth of the block (while the gradient of the main signal will increase).

Consider a loss function `(w) which is being minimized w.r.t. a parameter w using gradient decent.
Let ⌘ be the learning rate. After one update step, the change to the loss is:

�` = `(w � ⌘
@`

@w
)� `(w) = �⌘k @`

@w
k22 +O(⌘2). (15)

Assuming ⌘ is small and the O(⌘2) terms can be ignored, we see that the decrease in loss is
proportional to the squared length of the gradient. For the RescaleNet of Equation 6, therefore, the
contribution from the last residual block to the loss reduction (scaled by 1/

p
2L) is only half of the

contribution from the first residual block (scaled by 1/
p
L+ 1).

This is a consequence of having variable weights for the residual blocks. However, we note that
maintaining the variance of xk can also be achieved if we fix the weight of the residual block,
�k, and let Var(Fk(xk�1)) shrink instead. This is achieved through a modification of the He
initialization, whereby we initialize all residual weights for Fk() by drawing from a Gaussian
distribution N (0, 2

d (
L

k+L )
2/N ), where d is the number of weights for each neuron/filter, and N is

the number of layers in Fk(). This ensures that Var(Fk(xk�1)) = L
k+LVar(xk�1). The residual

connection of Equation 6 is now changed to to:

xk =

r
k � 1 + L

k + L
xk�1 +

1p
L
Fk(xk�1) (16)

13


