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Abstract

We study the dynamics of optimization and the generalization properties of
one-hidden layer neural networks with quadratic activation function in the over-
parametrized regime where the layer width m is larger than the input dimension d.
We consider a teacher-student scenario where the teacher has the same structure
as the student with a hidden layer of smaller width m∗ ≤ m. We describe how
the empirical loss landscape is affected by the number n of data samples and the
width m∗ of the teacher network. In particular we determine how the probability
that there be no spurious minima on the empirical loss depends on n, d, and m∗,
thereby establishing conditions under which the neural network can in principle
recover the teacher. We also show that under the same conditions gradient descent
dynamics on the empirical loss converges and leads to small generalization error,
i.e. it enables recovery in practice. Finally we characterize the time-convergence
rate of gradient descent in the limit of a large number of samples. These results are
confirmed by numerical experiments.

1 Introduction

Neural networks are a key component of the machine learning toolbox. Still the reasons behind their
success remain mysterious from a theoretical prospective. While sufficiently large neural networks
can in principle represent a large class of functions, we do not yet understand under what conditions
their parameters can be adjusted in an algorithmically tractable way for that purpose. For example,
under worst case assumptions, some functions cannot be tractably learned with neural networks [1,2].
We also know that there exist settings with adversarial initializations where neural networks fail in
generalization to new samples, while the same setting from random initial conditions succeeds [3].
And yet, in many practical settings, neural networks are trained successfully even with simple local
algorithm such as gradient descent (GD) or stochastic gradient descent (SGD).

The problem of learning the parameters of a neural network is two-fold. First, we want that their
training on a set of data via minimization of a suitable loss function succeed in finding a set of
parameters for which the value of the loss is close to its global minimum. Second, and more
importantly, we want that such a set of parameters also generalizes well to unseen data. Theoretical
guarantees have been obtained in many settings by a geometrical analysis of the loss showing that
only global minima are present, see e.g. [4, 5]. In particular it has been shown that network over-
parametrization can be beneficial and lead to landscapes without spurious minima in which GD or
SGD converge [6–10]. However, over-parametrized neural networks successfully optimized on a
training set do not necessarily generalize well – for example neural networks can achieve zero errors
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in training without learning any rule [11]. It is therefore important to understand when zero training
loss implies good generalization.

It is know empirically that deep neural networks can learn functions that can be represented with a
much smaller (sometimes even shallow) neural network [12–14], but that learning the smaller network
without first learning the larger one is computationally harder [6]. Our work provides a theoretical
justification for this empirical observation by providing an explicit and rigorously analyzable case
where this happens.

Main contributions: In this work we investigate the issues of training and generalization in the
context of a teacher-student set-up. We assume that both the teacher and the student are one-hidden
layer neural network with quadratic activation function and quadratic loss. We focus on the over-
parametrized or over-realizable case where the hidden layer of the teacher m∗ is smaller than that of
the student m. We assume that the hidden layer of the student m is larger than the dimensionality d,
m > d, in that case:

• We show that the value of the empirical loss is zero on all of its minimizers, but that the
set of minimizers does not reduce to the singleton containing only the teacher network in
general.

• We derive a critical value αc = m∗ + 1 of the number of samples n per dimension d above
which the set of minimizers of the empirical loss has a positive probability to reduce to
the singleton containing only the teacher network in the limit n, d→∞ with n/d ≥ αc—
i.e. we derive a sample complexity threshold above which the minimizer can have good
generalization properties. The formula is proven for a teacher with a single hidden unit
m∗ = 1 (a.k.a. phase retrieval).

• We study gradient descent flow on the empirical loss starting from random initialization
and show that it converges to a network that can achieve perfect generalization above this
sample complexity threshold αc.

• We quantify the nonasymptotic convergence rate of gradient descent in the limit of large
number of samples and show that the loss is bounded from above at all times byC1/(1+C2t)
for some constants C1, C2 > 0. We also evaluate the asymptotic convergence rate and
identify two different regimes according to the input dimension and the number of hidden
units, showing that in one case the loss converges as O(t−2) as t→∞ while in the second
case it converges exponentially.

• We show how the string method can be used to probe the empirical loss landscape and find
minimum energy paths on this landscape connecting the initial weights of the student to
those of the teacher, possibly going through flat portion or above energy barrier. This allows
one to probe features of this landscape not accessible by standard GD.

In Sec. 2 we formally define the problem and derive some key properties that we use in the rest
of the paper. In Sec. 3 we analyze the training and the generalization losses from the geometrical
prospective, and derive the formula for the sample complexity threshold. In Sec. 4 we show that
gradient descent flow can find good minima for datasets above this sample complexity threshold, and
we characterize its convergence rate. In Sec. 6 we present our results using the string method to probe
the loss landscape. Finally in the appendix we give the proofs and some additional numerical results.

Related works: One-hidden layer neural networks with quadratic activation functions in the over-
parametrized regime were considered in a range of previous works [8,9,15–17]. Notably it was shown
that all local minima are global when the number of hidden units m is larger than the dimension d and
that gradient descent finds the global optimum [8, 15, 16], and also when the number of hidden units
m >

√
2n with n being the number of samples [15, 17]. Most of these results were established for

arbitrary training data of input/output pairs, but consequently these works did not establish condition
under which the minimizers reached by the gradient descent have good generalization properties.
Indeed, it is intuitive that over-parametrization renders the optimization problem simpler, but it
is rather non-intuitive that it does not destroy good generalization properties. In [15], under the
assumption that the input data is Gaussian i.i.d., a O(1/

√
n) generalization rate was established.

However the generalization properties of neural networks with number of samples comparable to the
dimensionality is mostly left open.
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Much tighter (Bayes-optimal) generalization properties of neural networks were established for
data generated by the teacher-student model, for the generalized linear models in [18], and for one
hidden layer much smaller than the dimension in [19]. However, these results were only shown
to be achievable with approximate message passing algorithms and the performance of gradient-
descent algorithm was not analyzed. Also studying over-parametrization with analogous tightness
of generalization results is an open problem and has been achieved only for the one-pass stochastic
gradient descent [20].

A notable special case of our setting is when the teacher has only one hidden unit, in which case the
teacher network is equivalent to the phase retrieval problem with random sensing matrix [21]. For
this case the performance of message passing algorithms is well understood and requires a number
of samples linearly proportional to the dimension, n > 1.13d in the high-dimensional regime for
perfect generalization [18]. For randomly initialized gradient descent the best existing rigorous
result for the phase retrieval requires dpoly(log d) number of samples [22]. The performance
of the gradient-descent in the phase retrieval problem is studied in detail in a concurrent work
[23], showing numerically that without overparametrization randomly initialized gradient descent
needs at least n ≈ 7d samples to find perfect generalization. In the present work we show that
overparametrized neural networks are able to solve the phase retrieval problem with n > 2d samples
in the high-dimensional limit. This improves upon [22] and falls close to the performance of
the approximate message passing algorithm that is conjectured optimal among polynomial ones
[18]. But most interesting is the comparison between our results for the phase retrieval obtained
by overparametrized neural networks αc = 2, and the results from [23] who show that without
overparametrized considerably larger α is needed for gradient descent to succeed to learn the same
function. This comparison provides a theoretical justification for how overparametrization helps
gradient descent to find good generalization properties with fewer samples. We stress that the same
property would not apply to the message passing algorithms. We could speculate that more of the
properties of overparametrization observed in deep learning are limited to the gradient-descent-based
algorithms and would not hold for other algorithmic classes.

Closely related to our work is Ref. [24] in which the authors consider the same teacher-student
problem as we do. The main difference is that they only consider teachers that have more hidden units
than the input dimension, m∗ ≥ d, while we consider arbitrary m∗. As we show below the regime
where m∗ < d turns out to be interesting as it affects nontrivially the critical number of samples
nc needed for recovery and leads to a more complex scenario in which nc depends also on m∗—in
particular taking m∗ < d allows for recovery below the threshold d(d+ 1)/2, which is one of our
main results.

2 Problem formulation

Consider a teacher-student scenario where a teacher network generates the dataset, and a student
network aims at learning the function of the teacher. The teacher has weights w∗i ∈ Rd, with
i = 1, . . . ,m∗. We will keep the teacher weights generic in most of the paper and will specify them
when needed, in particular for the simulations where we consider two specific teachers: one with
{w∗i }i≤m∗ i.i.d. Gaussian with covariance identity, and one with {w∗i }i≤m∗ orthonormal.

The student’s weights are wj ∈ Rd, with j = 1, . . . ,m andm ≥ d. Given an input x ∈ Rd, teacher’s
and student’s outputs are respectively

f∗(x) =
1

m∗

m∗∑
i=1

|x ·w∗i |2, and f(x) =
1

m

m∑
j=1

|x ·wj |2, (1)

where we fixed the second layer of weights to 1/m∗ and 1/m, respectively. The teacher produces n
outputs yk = f∗(xk) from random i.i.d. Gaussian samples xk ∼ ν = N (0, Id), k = 1, . . . , n. Given
this dataset, we define the empirical loss

Ln(w1, . . . ,wm) =
1

4
Eνn

∣∣∣ 1

m∗

m∗∑
i=1

|x ·w∗i |2 −
1

m

m∑
j=1

|x ·wj |2
∣∣∣2 (2)

where Eνn denotes expectation with respect to the empirical measure νn = n−1
∑n
k=1 δxk

. As usual,
the population loss is obtained by taking the expectation of (2) with respect to ν.
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The student minimizes the empirical loss (2) using gradient descent, ẇi(t) = −m∂wiLn. Explicitly

ẇi(t) = Eνn
[

tr (X(A∗ −A(t)))Xwi(t)
]
. (3)

where we introduced the following d× d matrices

A(t) =
1

m

m∑
i=1

wi(t)w
T
i (t), A∗ =

1

m∗

m∗∑
i=1

w∗i (w∗i )T , X = xxT . (4)

We can now see that a closed equation for A(t) can be derived from (3), and this new equation
reduces the effective number of weights from O(dn) to O(d2) without affecting neither the dynamics
nor the other properties of the teacher and student since f∗(x) = tr(XA∗) and f(x) = tr(XA):
Lemma 2.1. The GD flow (3) of the weights {wi}i≤m on the empirical loss induces the following
evolution equation for A(t):

Ȧ = −A∇En(A)−∇En(A)A = Eνn [tr (X(A∗ −A)) (AX +XA)], (5)

where∇ denotes gradient with respect to A and En(A) is twice the empirical loss (2) rewritten in
terms of A:

En(A) =
1

2
Eνn |tr (X(A−A∗))|2 . (6)

It is also possible to write the equivalent of this lemma for the population loss:
Lemma 2.2. The GD flow of the weights {wi}i≤m on the population loss reads

ẇi(t) = tr(A∗ −A(t))wi(t) + 2(A∗ −A(t))wi(t). (7)

and it induces the following evolution equation for A(t):

Ȧ = −A∇E(A)−∇E(A)A = 2 [(tr(A∗ −A))A+ (A∗ −A)A+A(A∗ −A)] . (8)

where E(A) is twice the population loss written in terms of A:

E(A) = tr
(
(A−A∗)2

)
+

1

2
(tr(A−A∗))2 . (9)

Expression (9) for the population loss was already given in [24]. Lemmas 2.1 and 2.2 are proven
in Appendices A.1 and A.2, respectively. In Appendix A.3 we also show that (5) and (8) are the
continuous limit of proximal schemes on En and E, respectively, relative to a specific Bergman
divergence.

3 Geometrical Considerations and Sample Complexity Threshold

The empirical loss En(A) is quadratic, hence convex, with minimum zero. In addition A = A∗ is a
minimizer since En(A∗) = 0. The main question we want to address next is when is this minimizer
unique.

Since the trace is a scalar product in the vector space of d× d matrices in which symmetric matrices
form a d(d + 1)/2 dimensional subspace, the empirical loss En(A) will be strictly convex in this
subspace iff we span it using d(d+ 1)/2 linearly independent Xk = xkx

T
k [24]. Yet, if we restrict

considerations to matrices A that are also positive semidefinite, we need less data to guarantee that
A = A∗ is the unique minimizer of En(A), at least in some probabilistic sense:
Theorem 3.1 (Single unit teacher). Consider a teacher with m∗ = 1 and a student with m ≥ d
hidden units respectively, so that A∗ has rank 1 and A has full rank. Given a data set {xk}nk=1 with
each xk ∈ Rd drawn independently from a standard Gaussian, denote byMn,d the set of minimizer
of the empirical loss constructed with {xk}nk=1 over symmetric positive semidefinite matrices A, i.e.

Mn,d =
{
A = AT , positive semidefinite such that En(A) = 0

}
. (10)

Set n = bαdc for α ≥ 1 and let d→∞. Then

lim
d→∞

P
(
Mbαdc,d 6= {A∗}

)
= 1 if α ∈ [0, 2] (11)

whereas
lim
d→∞

P
(
Mbαdc,d = {A∗}

)
> 0 if α ∈ (2,∞). (12)
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In words, this theorem says that it exists a threshold value αc = 2 such that for any n > nc = bαdc
there is a finite probability that the empirical loss landscape trivializes and all spurious minima
disappear in the limit as d→∞. For n ≤ nc however, this is not the case and spurious minima exist
with probability 1 in the limit. Therefore, the chance to learn A∗ by minimizing the empirical loss
from a random initial condition is zero if α ∈ [0, 2) but it becomes positive if α > 2. The proof of
Theorem 3.1 is presented in Appendix A. This proof shows that we can account for the constraint that
A be positive definite by making a connection with the classic problem of the number of extremal
rays of proper convex polyhedral cones generated by a set of random vectors in general position.
Interestingly, this proof also gives a criterion on the data set {xk}nk=1 that guarantees that the only
minimizer of the empirical loss be A∗: it suffices to check that the proper convex polyhedral cones
constructed with the data vectors have a number of extremal rays that is less than n.

Heuristic extension for arbitrary m∗. The result of Theorem 3.1 can also be understood via a
heuristic algebraic argument that has the advantage that it applies to arbitrarym∗. The idea, elaborated
upon in Appendix A.5, is to count the number of constraints needed to ensure that the only minimum
of the empirical loss is A = A∗, taking into account that (i) A has full rank and A∗ has rank m∗
and (ii) both A and A∗ are positive semidefinite and symmetric, so that the number of negative
eigenvalues of A−A∗ can at most be m∗. If we use a block representation of A−A∗ in which we
diagonalize the block that contains the direction associated with the eigenvectors of A − A∗ with
nonnegative eigenvalues, and simply count the number of nonzero entries in the resulting matrix
(accounting for its symmetry), for m∗ < d we arrive at

nc = d(m∗ + 1)− 1
2m
∗(m∗ + 1) (13)

while for m∗ ≥ d we recover the result n = d(d+ 1)/2 already found in [9, 24]. Setting nc = αcd
and sending d→∞, this gives the sample complexity threshold

αc = (m∗ + 1) (14)

which, for m∗ = 1, agrees with the result in Theorem 3.1. The sample complexity threshold is
confirmed in Fig. 1 via simulations using gradient descent (GD) on the empirical loss—we explain
this figure in Sec. 4 after establishing that the GD dynamics converges.

2 4 6 8 10 12 14
teacher hidden units

2

3

4

5

6

7

8

9

c

d = 4
d = 8
d = 16
d = +
simulations

Figure 1: Dynamical phases of the student performance with a teacher having a number of hidden
units given on the x-axis. The solid lines show the theoretical prediction in (13) for the sample
complexity threshold and the points are obtained by extrapolation from simulations with GD. In
the simulations we consider a teacher with i.i.d. Gaussian weights and we report other cases in the
Appendix.

4 Convergence of Gradient Descent on the Empirical Loss

Let us now analyze the performance of gradient descent over the empirical loss. As shown in
Appendix A.6, we can prove that:
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Figure 2: Convergence rates increasing the number of hidden units in the teacher m∗. The figures
show log-average of 100 simulations with d = 8 and from left to right m∗ = 2, 4, 8, 16, respectively.
The individual simulations are shown in transparency. The dotted line is the quadratic decay and
serves as reference. The figure shows that, if α > αc and m∗ > d− 1 the convergence rate becomes
faster than quadratic, and in fact exponential as derived in Sec. 4.

Theorem 4.1. Let {wi(t)}mi=1 be the solution to (3) for the initial data {wi(0)}mi=1. Assume that
m ≥ d and each wi(0) is drawn independently from a distribution that is absolutely continuous with
respect to the Lebesgue measure on Rd. Then

A =
1

m

m∑
i=1

wi(t)w
T
i (t)→ A∞ =

1

m

m∑
i=1

w∞i (w∞i )T as t→∞ (15)

and A∞ is a global minimizer of the empirical loss, i.e.

En(A∞) = 2Ln(w∞1 , . . . ,w
∞
n ) = 0. (16)

In a nutshell this theorem can be proven using the equivalence between the formulation using the
weights with the GD flow in (3) over the loss Ln in (2) and that using A with the evolution equation
in (5) and the associated loss En in (6). We can invoke the Stable Manifold Theorem [25] to assert
that the solution (3) must converge to a local minimum of Ln; as soon as m ≥ d and A(0) has full
rank, this minimum must be a minimum of En, which means that it must be the global since En is
convex. Note also that Theorem 4.1 can be generalized to time-discretized version of the GD flow
using the results in Ref. [7]

Combined with Theorem 3.1, Theorem 4.1 indicates that, when m∗ = 1 and d is large, the probability
that A∞ 6= A∗ is high when n/d ≥ 2, whereas the probability that A∞ = A∗ becomes positive for
n/d > 2. If we generalize this analysis to the case m∗ > 1 and d large, we expect that GD will
recover the teacher only if n ≥ nc with nc given by (13).

These results are confirmed by numerical simulations in Fig. 1 where we plot αc = nc/d as a function
of the number of teacher hidden units m∗ for different values of d. The four colors represent different
input dimensions d = 4, 8, 16,∞. We use circles to represent the numerical extrapolation of αc
obtained by several runs of GD flow on different instances of the problem, using the procedure
described in Appendix B. Consistent with Theorem 4.1, the extrapolation confirms that GD flow is
able match the sample complexity threshold predicted by the theory.

5 Convergence Rate of Gradient Descent on the Population Loss

Theorems 4.1 leaves open is the convergence rate of A(t) towards A∞. This question is hard to
answer for GD on the empirical loss, but it can be addressed for GD on the population loss.
Theorem 5.1. Let {wi(t)}mi=1 be the solution to (7) for the initial data {wi(0)}mi=1. Assume that
m ≥ d and each wi(0) is drawn independently from a distribution that is absolutely continuous with
respect to the Lebesgue measure on Rd. Then

A(t) =
1

m

m∑
i=1

wi(t)w
T
i (t)→ A∗ as t→∞ (17)
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and we have the following nonasymptotic bound on the convergence rate of the population loss (9):

∃C > 0 : ∀t ≥ 0 E(A(t)) ≤ E(A(0))

1 + 2CE(A(0))t
(18)

In addition E(A(t)) decays faster than 1/t as t→∞, i.e. E(A(t)) = o(1/t) and

lim
t→∞

tE(A(t)) = 0. (19)

This theorem is proven in Appendix A.7. The proof uses the convexity of E(A) and deals with
the added complexity of the factors A multiplying ∇E in (8). The argument also uses a stochastic
representation formula for A−1(t) given in Lemma A.2 which is interesting in its own right. We
stress that (18) holds even when m∗ < d, i.e. when A∗ is rank deficient, which is the difficult case for
analysis since the factors A multiplying∇E in (8) converge to A∗ and hence become only positive
semidefinite (as opposed to positive definite) as t→∞.

Theorem 5.1 holds for arbitrary initial conditions A(0) with full rank. If the initial weights
wi(0) are drawn independent from a standard Gaussian distribution in Rd, we know that A(0) =
m−1

∑m
i=1 wi(0)wT

i (0)→ Id almost surely as m→∞ by the Law of Large Numbers. Therefore it
makes sense to consider the GD flow (8) on the population loss when A(0) = Id. In that case, we
have:
Theorem 5.2. Let A(t) be the solution to (8) for the initial condition A(0) = Id. Denote by U∗
an orthogonal matrix whose columns are the eigenvectors of A∗, so that A∗ = U∗Λ∗(U∗)T with
Λ∗ = diag(λ∗1, . . . , λ

∗
d). Let Λ(t) = (U∗)TA(t)U∗ so that Λ(0) = Id. Then Λ(t) remains diagonal

during the dynamics and the evolution of its entries is given by

λ̇i = 2

d∑
j=1

(λ∗j − λj)λi + 4(λ∗i − λi)λi, λi(0) = 1, i = 1, . . . , d. (20)

In addition the population loss is given by

E[A(t)] =

d∑
j=1

(λj(t)− λ∗j )2 +
1

2

( d∑
j=1

λj(t)− λ∗j
)2
. (21)

This theorem is proven in Appendix A.8. The equations in (20) can easily be solved numerically. A
formal asymptotic analysis of their solution when d is large is also possible, as shown next. This
analysis characterizes the asymptotic convergence rate of the eigenvalue to the target, which can be
used to obtain an asymptotic convergence rate of the loss that is more precise than (19): Specifically,
it shows that E(A(t)) eventually decays as 1/t2 when m∗ < d and exponentially fast in t when
m∗ ≥ d.

5.1 Formal asymptotic analysis of (20)

Case m∗ � d. Then d −m∗ eigenvalues of A∗ are zero, and without loss of generality we can
order {λi}i≤d so that the zero eigenvalues of A∗ are last. Denoting ε(t) = 1

d−m∗

∑d
i=m∗+1 λi(t),

for m∗ < d (20) then reads

λ̇i = 2
( m∗∑
j=1

(λ∗j − λj)− (d−m∗)ε
)
λi + 4(λ∗i − λi)λi, i = 1, . . . ,m∗ (22)

ε̇ = 2
( m∗∑
j=1

(λ∗j − λj)− (d−m∗)ε
)
ε− 4

d−m∗
d∑

j=m∗+1

λ2j , ε(0) = 1. (23)

We will call the first m∗ eigenvalues λi informative eigenvalues and the remaining d−m∗ (captured
by ε(t)) non-informative eigenvalues. We make two observations. Since λi(0) = ε(0) = 1, initially
the leading order term in the equation for the uninformative eigenvalues ε(t) is

ε̇ ≈ −2dε2 ⇒ ε(t) ≈ 1

1 + 2dt
t� 1/d (24)
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Substituting this solution into (22) we deduce

d

dt
log λi ≈ −2dε(t) ≈ − 2d

1 + 2dt
⇒ λi(t) ≈

1

1 + 2dt
(25)

(24) and (25) imply an initial decreases in time of both non-informative and the informative eigenval-
ues. However, when 2d/(1 + 2dt) becomes of order one or smaller, the other terms in equation (22)
take over and allow the informative eigenvalues to bounce back up. This happens at at time t0 = O(1)
in d. Afterwards the informative eigenvalues emerge from the non-informative ones with an exponen-
tial growth, λj(t) ∼ 1

2de
(2m∗+4)t. As a result, these informative eigenvalues eventually match the

eigenvalues of the teacher at a typical time of order tJ ∼ 1
2m∗+4 log(2d). This analysis also implies

a quadratic decay in time of the loss at long times

E(A(t)) ∼ 1/(16t2) as t→∞. (26)

In Sec. B we give additional details comparing the asymptotic analysis to the real dynamics when
m∗ ≤ d but not necessarily much smaller. This analysis can e.g. be done quite explicitly when the
unit in the teacher are orthonormal. It indicates that ε(t) ≈ 1/[1 + 2(2 + d−m∗)t] at all times, and
as a result shows that

E[A(t)] ≈ 1

4

(
d−m∗

1 + 2(2 + d−m∗)t

)2

(27)

at all times.

Case with m∗ ≥ d� 1. Then (20) can be written as

d

dt
log λi = 4λ∗i + 2

d∑
j=1

λ∗j − 4λi − 2

d∑
j=1

λj , i = 1, . . . , d (28)

which gives an exponential convergence to the target A∗, and consequently an exponential conver-
gence in the population loss. For example, let us specialize to the case of a teacher with orthonormal
hidden vectors, λ∗j = 1 for j = 1, . . . ,min(m∗, d). The eigenvalues will converge to their target
value as |λj(t)− λ∗j | ∼ 1

2de
−(2d+4)t. Consequently the loss (21) will converge to zero exponentially

in this case
E[A(t)] ∼ 1

2d
e−2(2d+4)t as t→∞. (29)

The results above are confirmed in the numerics. The cases when m∗ < d and m∗ ≥ d are shown
by the first two and last two panels in Fig. 2, respectively. When m∗ < d the decay of the empirical
loss is quadratic, consistent with (26). In contrast, when m∗ ≥ d, the absence of non-informative
eigenvalues removes the dominating terms in the loss (21). Therefore the loss is dominated by the
informative eigenvalues and decays exponentially, consistent with (29). This can be clearly observed
in Fig. 2, where the four panels show the population loss using teachers with m∗ = 2, 4, 8, 16 and
d = 8. The black dotted shows the quadratic asymptotic decay predicted in (26). The last two panels
of the sequence show the exponential decay as predicted predicted in (29)

Fig. 3 shows the training and the population loss observed in the simulation using input dimension
d = 8 and a teacher with m∗ = 1 hidden unit. In this case our analysis suggests that the typical
realization will converge to zero generalization error if α > αc = 1.875. This can be observed on the
right panel of the Fig. 3. We used a dashed line to represent the gradient in the population loss (8)
and used a dotted line to represent the approximated result (27), observing the two being almost
indistinguishable in the figure.

6 Probing the Loss Landscape with the String Method

Finally, let us show that we can use the string method [26–28] to probe the geometry of the training
loss landscape and confirm numerically Theorem 3.1. The string method consists in connecting the
student and the teacher with a curve (or string) in matrix space, and evolve this curve by GD while
controlling its parametrization. In practice, this can be done efficiently by discretizing the string into
equidistant images or points (with the Frobenius norm as metric), and iterating upon (i) evolving these
images by the descent dynamics, and (ii) reparamterizing the string to make the images equidistant
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Figure 3: Training loss (left figure) and population loss (right figure) for d = 8 andm∗ = 1. The plots
show the average in log-scale of 100 simulation for each value of α and the individual realizations
are shown in transparency. The results are compared with the descent in the population loss Eq. (8)
(dashed pink line) and its approximation Eq. (27) (black dotted line).
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Figure 4: Results from the application of the string method. Training loss (solid line) and population
loss (dashed line) evaluated across a string discretized with 100 images. Moving from left to right
panels, the number of samples in the dataset increases, respectively n = 8, 12, 16, 20, while the
teacher always has m∗ = 1 hidden units. The critical size to obtain a smooth landscape in average
is n = 2d− 1, which is confirmed by the string reaching zero empirical loss at a finite value of the
population loss, or not. Each string is mediated in log-scale over 10 realizations.

again. At convergence the string will identify a minimum energy path between A(0) and A∗ which
will possibly have a flat portion at zero empirical loss if this loss can be minimized by GD before
reaching A∗. That is, along the string, the student A reaches the first minimum A∞ by GD, and,
if A∞ 6= A∗, then move along the set of minimizers of the empirical loss until it reaches A∗. The
advantage of the method is that by replacing the physical time along the trajectory by the arclenght
along it, it permits to go to infinite times (when A = A∞) and beyond (when A∞ 6= A∗), thereby
probing features of the loss landscape not accessible by standard GD. (Of course it requires one to
know the target A∗ in advance, i.e. the string method cannot be used instead of GD to identify this
target in situations where it is unknown.)

In Fig. 4 we compare the strings obtained for input dimension 4 (red), 6 (purple), end 8 (blue).
The strings are parametrized by 100 points represented on the horizontal axes. Moving from the
leftmost to the rightmost panels in Fig. 4 the number of samples in the dataset increases, namely
n = 8, 12, 16, 20. Gradually all the d represented will reach the critical size 2d− 1 and will have a
landscape with a single minimum, the informative one. Observe that for relatively small sample sizes,
there is low correspondence between the topology of the training loss landscape and the population
loss one. As the size increases we notice that correlation increases until the two are just slightly apart.

9



Acknowledgments and Disclosure of Funding

We thank Joan Bruna and Ilias Zadik for precious discussions. SSM acknowledges the Courant
Institute for the hospitality during his visit. We acknowledge funding from the ERC under the
European Union’s Horizon 2020 Research and Innovation Programme Grant Agreement 714608-
SMiLe. We also acknowledge IPAM support from the National Science Foundation (Grant No.
DMS-1440415).

Broader Impact

Our work is theoretical in nature, and as such the potential societal consequence are difficult to
foresee. We anticipate that deeper theoretical understanding of the functioning of machine learning
systems will lead to their improvement in the long term.

References

[1] Avrim Blum and Ronald L Rivest. Training a 3-node neural network is np-complete. In
Advances in neural information processing systems, pages 494–501, 1989.

[2] Emmanuel Abbe and Colin Sandon. Provable limitations of deep learning. arXiv preprint
arXiv:1812.06369, 2018.

[3] Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and
sgd can reach them. arXiv preprint arXiv:1906.02613, 2019.

[4] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

[5] Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer CNN: Don’t be afraid of spurious local minima. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1339–1348, Stockholmsmäs-
san, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[6] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in neural information processing systems, pages 855–863, 2014.

[7] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on learning theory, pages 1246–1257, 2016.

[8] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the op-
timization landscape of over-parameterized shallow neural networks. IEEE Transactions on
Information Theory, 65(2):742–769, 2018.

[9] Luca Venturi, Afonso S Bandeira, and Joan Bruna. Spurious valleys in one-hidden-layer neural
network optimization landscapes. Journal of Machine Learning Research, 20(133):1–34, 2019.

[10] Stefano Sarao Mannelli, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborova. Passed
& spurious: Descent algorithms and local minima in spiked matrix-tensor models. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 4333–
4342, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[11] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[12] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural
information processing systems, pages 2654–2662, 2014.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[14] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

10



[15] Simon Du and Jason Lee. On the power of over-parametrization in neural networks with
quadratic activation. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1329–1338, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[16] Benjamin D Haeffele and René Vidal. Global optimality in tensor factorization, deep learning,
and beyond. arXiv preprint arXiv:1506.07540, 2015.

[17] Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2603–2612. JMLR. org, 2017.

[18] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Optimal
errors and phase transitions in high-dimensional generalized linear models. Proceedings of the
National Academy of Sciences, 116(12):5451–5460, 2019.

[19] Benjamin Aubin, Antoine Maillard, Florent Krzakala, Nicolas Macris, Lenka Zdeborová, et al.
The committee machine: Computational to statistical gaps in learning a two-layers neural
network. In Advances in Neural Information Processing Systems, pages 3223–3234, 2018.

[20] Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová.
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student
setup. In Advances in Neural Information Processing Systems, pages 6979–6989, 2019.

[21] James R Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758–2769,
1982.

[22] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random initial-
ization: Fast global convergence for nonconvex phase retrieval. Mathematical Programming,
176(1-2):5–37, 2019.

[23] Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, Pierfrancesco
Urbani, and Lenka Zdeborová. Complex dynamics in simple neural networks: Understanding
gradient flow in phase retrieval. 2020.
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