
A Missing Proofs

A.1 Proof of Theorem 1, Intra Order-preserving Functions

Theorem 1. A continuous function f : Rn → Rn is intra order-preserving, if and only if f(x) =
S(x)−1Uw(x) with U being an upper-triangular matrix of ones and w : Rn → Rn being a
continuous function such that

• wi(x) = 0, if yi = yi+1 and i < n,

• wi(x) > 0, if yi > yi+1 and i < n,

• wn(x) is arbitrary,
where y = S(x)x is the sorted version of x.

Proof of Theorem 1. (→) For a continuous intra order-preserving function f(x), let w(x) =
U−1S(x)f(x). First we show w is continuous. Because f is intra order-preserving, it holds that
S(x) = S(f(x)). Let f̂(x) := S(f(x))f(x) be the sorted version of f(x). The above implies
w(x) = U−1f̂(x). By Lemma 1, we know f̂ is continuous and therefore w is also continuous.

Lemma 1. Let f : Rn → Rn be a continuous intra order-preserving function. S(f(x))f(x) is a
continuous function.

Next, we show that w satisfies the properties listed in Theorem 1. As w(x) = U−1f̂(x), we can
equivalently write w as

wi(x) =

{
f̂i(x)− f̂i+1(x) 1 ≤ i < n

f̂n(x) i = n.

Since f̂ is the sorted version of f , it holds that wi(x) ≥ 0 for 1 ≤ i < n. Also, by the definition of
the order-preserving function, wi(x) can be zero if and only if yi = yi+1, where y = S(x)x. These
two arguments prove the necessary condition.

(←) For a given w(x) satisfying the condition in the theorem statement, let v(x) = Uw(x).
Equivalently, we can write vi(x) =

∑n−i
j=0 wn−j(x) and vi(x) − vi+1(x) = wi(x), ∀i ∈ [n]. By

construction of w, one can conclude that v(x) is a sorted vector where two consecutive elements
vi(x) and vi+1(x) are equal if and only if yi = yi+1. Therefore, f(x) = S(x)−1v(x) has the same
ranking as x. In other words, f is an intra order-preserving function. The continuity of f follows
from the lemma below and the fact that v is continuous when w is continuous. Lemma 2.

Lemma 2. Let v : Rn → Rn be a continuous function in which vi(x) and vi+1(x) are equal if and
only if yi = yi+1, where y = S(x)x. Then f(x) = S(x)−1v(x) is a continuous function.

�

A.1.1 Deferred Proofs of Lemmas

Proof of Lemma 1. Let Pn = {P1, . . . , PK} be the finite set of all possible n × n dimensional
permutation matrices. For each k ∈ [K], define the closed set Nk = {x : S(x)x = Pkx}. These sets
are convex polyhedrons since each can be defined by a finite set of linear inequalities; in addition,
they together form a covering set of Rn. Note that S(x) = Pk is constant in the interior int(Nk), but
S(x) may change on the boundary ∂(Nk) which corresponds to points where a tie exists in elements
of x (for such a point S(x) 6= Pk). Nonetheless, by definition of the set Nk, we have S(x)x = Pkx
for all x ∈ Nk, which implies that S(x) and Pk can only have different elements for indices where
elements of x are equal.

To prove that f̂(x) := S(f(x))f(x) is continuous, we leverage the fact that f̂(x) = S(x)f(x) for
intra order-preserving f . We will first show that f̂(x) = Pkf(x) for x ∈ Nk and any k ∈ [K], which
implies f̂ is continuous on Nk when f is continuous. To see this, consider an arbitrary k ∈ [K]. For
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x ∈ int(Nk) in the interior, we have S(x) = Pk and therefore f̂(x) = Pkf(x). For x ∈ ∂Nk on the
boundary, we have

f̂(x) = S(x)f(x) = Pkf(x).

The last equality holds because the difference between S(x) and Pk are only in the indices for which
elements of x are equal, and the order-preserving f preserves exactly the same equalities. Thus, the
differences between permutations S(x) and Pk do not reflect in the products S(x)f(x) and Pkf(x).

Next, we show that f̂(x) = Pkf(x) = Pk′f(x) for x ∈ ∂Nk ∩ ∂Nk′ . While Pk 6= Pk′ , the
intersection ∂Nk ∩ ∂Nk′ contains exactly points x such that the index differences in Pk and Pk′
correspond to same value in x. Because f is order-preserving, by an argument similar to the previous
step, we have Pkf(x) = Pk′f(x) for x ∈ ∂Nk ∩ ∂Nk′ .
Together these two steps and the fact that {Nk} is covering set on Rn show that f̂ is a piece-wise
continuous function on Rn when f is continuous on Rn. �

Proof of Lemma 2. In order to show the continuity of f(x), we use a similar argument as in Lemma 1
(see therein for notation definitions). For any k ∈ [K], it is also trivial to show that f is continuous
over the open set int(Nk) since f(x) = P−1k v(x). We use the same argument as Lemma 1 to show
it is also a continuous for any point x ∈ ∂(Nk)

f(x) = S(x)−1v(x) = P−1k v(x).

The last equality holds because P−1k and S(x)−1 can only have different elements among elements
of y = S(x)x with equal values, and v preserves exactly these equalities in y. Finally, the proof can
be completed by piecing the results of different Nk together.

�

A.2 Proof of Theorem 2, Order-invariant Functions

Theorem 2. A continuous, intra order-preserving function f : Rn → Rn is order-invariant, if and
only if f(x) = S(x)−1Uw(y), where U , w, and y are in Theorem 1.

To prove Theorem 2, we first study the properties of order invariant functions in Appendix A.2.1.
We will provide necessary and sufficient conditions to describe order invariant functions, like what
we did in Theorem 1 for intra order-preserving functions. Finally, we combine these insights and
Theorem 1 to prove Theorem 2 in Appendix A.2.2.

A.2.1 Properties of Order Invariant Functions

The goal of this section is to prove the below theorem, which characterizes the representation of order
invariant functions using the concept of equality-preserving.
Definition 6. We say a function f : Rn → Rn is equality-preserving, if fi(x) = fj(x) for all x ∈ Rn
such that xi = xj for some i, j ∈ [n]

Theorem 4. A function f : Rn → Rn is order-invariant, if and only if f(x) = S(x)−1f̄(S(x)x) for
some function f̄ : Rn → Rn that is equality-preserving on the domain {y : y = S(x)x, for x ∈ Rn).

Theorem 4 shows an order invariant function can be expressed in terms of some equality-preserving
function. In fact, every order invariant function is equality-preserving.
Proposition 1. Any order-invariant function f : Rn → Rn is equality-preserving.

Proof. Let Pij ∈ Pn denote the permutation matrix that only swaps ith and jth elements of the input
vector; i.e. y = Pijx⇒ yi = xj ,yj = xi,yk = xk, ∀x ∈ Rn, i, j, k ∈ [n], and k 6= i, j. Thus, for
an order-invariant function f : Rn → Rn and any x ∈ Rn such that xi = xj , we have

f(Pijx) = Pijf(x)⇒ fi(Pijx) = fj(x)⇒ fi(x) = fj(x) (∵ Pijx = x for x such that xi = xj).

�

We are almost ready to prove Theorem 4. We just need one more technical lemma, whose proof is
deferred to the end of this section.
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Lemma 3. For any P ∈ Pn and an equality-preserving f : Rn → Rn, S(x)f(x) = S(Px)P f(x).

Proof of Theorem 4. (→) For an order-invariant function f : Rn → Rn, we have f(Px) = P f(x) by
Definition 3 for any P ∈ Pn. Take P = S(x). We then have the equality f(x) = S(x)−1f(S(x)x).
This is an admissible representation because, by Proposition 1, f is equality-preserving.

(←) Let f(x) = S(x)−1f̄(S(x)x) for some equality-preserving function f̄ . First, because f̄
is equality preserving and f is constructed through the sorting function S, we notice that f(x) is
equality-preserving. Next, we show f is also order invariant:

f(Px) = S(Px)−1f̄(S(Px)Px)

= S(Px)−1f̄(S(x)x) (∵ S(Px)Px = S(x)x by choosing f(x) = x in Lemma 3)

= S(Px)−1S(x)f(x) (∵ definition of f(x))

= S(Px)−1S(Px)P f(x) (∵ Lemma 3)
= P f(x).

�

A.2.2 Main Proof

Proof of Theorem 2. (→) From Theorem 1 we can write f(x) = S(x)−1Uw(x). On the other hand,
from Theorem 4 we can write f(x) = S(x)−1f̄(y) for some equality-preserving function f̄ . Using
both we can identify w(x) = U−1f̄(y) which implies that w is only a function of the sorted input y
and can be equivalently written as w(y).

(←) For w with the properties in the theorem statement, the function f(x) = S(x)−1Uw(y) satisfies
the conditions of Theorem 1; therefore f is intra order-preserving. To show f is also order-invariant,
we write f(x) = S(x)−1f̄(y) where f̄(y) = Uw(y). Because f̄i(y) =

∑n−i
j=0 wn−j(x), we can

derive with the definition of w that

yi = yi+1 ⇒ wi(y) = 0⇒ f̄i(x) = f̄i+1(x).

That is, f̄(y) is equality-preserving on the domain of sorted inputs. Thus, f is also order-invariant. �

A.2.3 Deferred Proof of Lemmas

Proof of Lemma 3. To prove the statement, we first notice a fact that S(x) = S(Px)P , for any
P ∈ Pn and x ∈ X := {x ∈ Rn : xi 6= xj ,∀i, j ∈ [n], i 6= j}. Therefore, for x ∈ X, we have
S(x)f(x) = S(Px)P f(x).

Otherwise, consider some x ∈ Rn \ X. Without loss of generality4, we may consider n > 2 and x
such that x1 = x2 > xk for all k > 2; because f is equality-preserving, we have f1(x) = f2(x).

To prove the desired equality, we will introduce some extra notations. We use subscript i:j to extract
contiguous parts of a vector, e.g. x2:n = [x2, . . . ,xn] and f2:n(x) = [f2(x), . . . , fnx)] (by our
construction of x, x2:n is a vector where each element is unique.) In addition, without loss of
generality, suppose P ∈ Pn shifts index 1 to some index i ∈ [n]; we define P̄ ∈ {0, 1}n−1×n−1 by
removing the 1st column and the ith row of P (which is also a permutation matrix). Using this notion,
we can partition S(P̄x2:n) ∈ {0, 1}n−1×n−1 as

S(P̄x2:n) =

[
B1 B2

B3 B4

]
where B1 ∈ R1×i−1, B2 ∈ R1×n−i, B3 ∈ Rn−2×i−1, and B4 ∈ Rn−2×n−i. This would imply that
S(Px) ∈ {0, 1}n×n can be written as one of followings e>i

B1 0 B2

B3 0 B4

 or

B1 0 B2

e>i
B3 0 B4

 (1)

4This choice is only for convenience of writing the indices.
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where ei is the ith canonical basis.

To prove the statement, let y = P f(x). By the definition of P̄ , we can also write y as

y =

[
y1:i−1
yi

yi+1:n

]
=

(P̄ f2:n(x))1:i−1
f1(x)

(P̄ f2:n(x))i:n−1

 (2)

Let us consider the first case in (1). We have

S(Px)P f(x) =

[
yi

B1y1:i−1 +B2yi+1:n

B3y1:i−1 +B4yi+1:n

]
=

[
yi

S(P̄x2:n)P̄ f2:n(x)

]
=

[
f1(x)

S(x2:n)f2:n(x)

]
= S(x)f(x)

where the second equality follows from (2), the third from the fact we proved at the beginning for
the set X, and the last equality is due to the assumption x1 = x2 > xk and the equality-preserving
property that f1(x) = f2(x). For the second case in (1), based on the same reasoning above, we can
show

S(Px)P f(x) =

[
(S(x2:n)f2:n(x))1

f1(x)
(S(x2:n)f2:n(x))2:n−1

]
,

Because x1 = x2, we have (S(x2:n)f2:n(x))1 = f1(x) = f2(x). Thus, S(Px)P f(x) = S(x)x. �

A.3 Proof of Theorem 3, Diagonal Functions

Theorem 3. A continuous, intra order-preserving function f : Rn → Rn is diagonal, if and only if
f(x) = [f̄(x1), . . . , f̄(xn)] for some continuous and increasing function f̄ : R→ R.

We first prove some properties of diagonal intra order-preserving functions, which will be used to
prove Theorem 3.
Proposition 2. Any intra order-preserving function f : Rn → Rn is equality-preserving.

Proof. This can be seen directly from the definition of intra order-preserving functions. �

Corollary 2. The following statements are equivalent

1. A function f : Rn → Rn is diagonal and equality-preserving.

2. f(x) = [f̄(x1), . . . , f̄(xn)] for some f̄ : R→ R.

3. A function f : Rn → Rn is diagonal and order-invariant.

Proof. (1 → 2) Let f(x) = [f1(x1), . . . , fn(xn)] be a diagonal and equality-preserving function.
One can conclude that f1(x) = · · · = fn(x) for all x ∈ R.

(2→ 3) Let u = Px for some permutation matrix P ∈ Pn. Then f(Px) = [f̄(u1), . . . , f̄(un)] =
P [f̄(x1), . . . , f̄(xn)] = P f(x).

(3→ 1) True by Proposition 1. �

Proof of Theorem 3. (→) By Proposition 2, an intra order-preserving function f is also equality-
preserving. Therefore, by Corollary 2 it can be represented in the form f(x) = [f̄(x1), . . . , f̄(xn)]
for some f̄ : R → R. Furthermore, because f(x) is intra order-preserving, for any x ∈ Rn with
x1 > x2, it satisfies f1(x1) > f2(x2); that is, f̄(x1) > f̄(x2). Therefore, f̄ is an increasing function.
Continuity is inherited naturally.

(←) Because fi(x) = f̄(xi) and f̄ is an increasing function, it follows that f is intra order-
preserving

xi = xj ⇒ fi(x) = fj(x) and xi > xj ⇒ fi(x) > fj(x).

�
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Finally, we prove that diagonal intra order-preserving functions are also order-invariant. This fact
was mentioned in the paper without a proof.

Corollary 3. A diagonal intra order-preserving function is also order-invariant.

Proof. Intra order-preserving functions are equality-preserving by Proposition 2. By Corollary 2 an
diagonal equality-preserving function is order-invariant. �

B Continuity and Differentiability of the Proposed Architecture

In this section, we discuss properties of the function f(x) = S(x)−1UD(y)m(x). In order to learn
the parameters of m with a first order optimization algorithm, it is important for f to be differentiable
with respect to the parameters of m. This condition holds in general, since the only potential sources
of non-differentiable f , S(x)−1 and y are constant with respect to the parameters of m. Thus, if m
is differentiable with respect to its parameters, f is also differentiable with respect to the parameters
of m.

Next, we discuss continuity and differentiability of f(x) with respect the input x. These properties
are important when the input to function f is first processed by a trainable function g (i.e. the final
output is computed as f ◦ g(x)). This is not the case in post-hoc calibration considered in the paper,
since the classifier g here is not being trained in the calibration phase.

We show below that when w(x) = D(y)m(x) satisfies the requirements in Theorem 1, the function
f(x) = S(x)−1UD(y)m(x) is a continuous intra order-preserving function.

Corollary 4. Let σ : R → R be a continuous function where σ(0) = 0 and strictly positive on
R \ {0}, and let m be a continuous function where mi(x) > 0 for i < n, and arbitrary for md(y).
Let D(y) denote a diagonal matrix with entries Dii = σ(yi − yi+1) for i < n and Dnn = 1. Then
w(x) = D(y)m(x) is a continuous function and satisfies the following conditions

• wi(x) = 0, for i < n and yi = yi+1

• wi(x) > 0, for i < n and yi > yi+1

• wn(x) is arbitrary,

where y = S(x)x is the sorted version of x.

Proof. First, because y = S(x)x is a continuous function (by Lemma 1 with f(x) = x), w(x) =
D(y)m(x) is also a continuous function. Second, because ‖x‖ < ∞, we have m(x) < ∞
due to continuity. Therefore, it follows that wi(x) = σ(yi − yi+1)mi(x) satisfies all the listed
conditions. �

To understand the differentiability of f , we first see that f may not be differentiable at a point where
there is a tie among some elements of the input vector.

Corollary 5. For w in Corollary 4, there exists differentiable functions m and σ such that f(x) =
S(x)−1Uw(x) is not differentiable globally on Rn.

Proof. For the counter example, let m : R3 → R3 be a constant function m(x) = [1, 1, 1]>, and
σ(a) = a2. It is easy to verify that they both satisfy the conditions in Corollary 4 and are differentiable.
We show that the partial derivative ∂f1(x)

∂x3
does not exists at x = [2, 1, 1]>. With few simple steps

one could see f1(x + αe3) for α ∈ (−∞, 1] is

f1(x + αe3) =

{
σ(1) + σ(−α) + 1 α ≤ 0

σ(1− α) + σ(α) + 1 0 < α ≤ 1
(3)

Though this function is continuous, the left and right derivatives are not equal at α = 0 so the function
is not differentiable at x = [2, 1, 1]>. �
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The above example shows that f may not be differentiable for tied inputs. On the other hand, it is
straightforward to see function f is differentiable at points where there is no tie. More precisely, for
the points with tie in the input vector, we show the function f is B-differentiable, which is a weaker
condition than the usual (Frechét) differentiability.

Definition 7. [2] A function f : Rn → Rm is said to be B(ouligand)-differentiable at a point x ∈ Rn,
if f is Lipschitz continuous in the neighborhood of x and directionally differentiable at x.

Proposition 3. For f : Rn → Rn in Theorem 1, let w(x) be as defined in Corollary 4. If σ and m
are continuously differentiable, then f is B-differentiable on Rn.

Proof. Let Pn = {P1, . . . , PK} be the finite set of all possible n × n dimensional permutation
matrices. For each k ∈ [K], define the closed set Nk = {x : S(x)x = Pkx}. These sets are convex
polyhedrons since each can be defined by a finite set of linear inequalities; in addition, they together
form a covering set of Rn.

If there is no tie in elements of vector x, then x ∈ int(Nk) for some k ∈ [K]. Since the sorting
function S(x) has the constant value Pk in a small enough neighborhood of x, the function f is
continuously differentiable (and therefore B-differentiable) at x.

Next we show that, for any point x ∈ Rn with some tied elements, the directional derivative of f
along an arbitrary direction d ∈ Rn exists. For such x and d, there exists a k ∈ [K] and a small
enough δ > 0 such that x,x + εd ∈ Nk for all 0 ≤ ε ≤ δ. Therefore, we have f(x′) = f̂(x′) for all
x′ ∈ [x,x+ δd], where f̂k(x) = P−1k UD(Pkx)m(x). Let f̂ ′k(x;d) denote the directional derivative
of f̂k at x along d. By the equality of f̂k and f in [x,x + δd], we conclude that the directional
derivative f ′(x;d) exists and is equal to f̂ ′(x;d).

Finally, we note that f is Lipschitz continuous, since it is composed by pieces of Lipschitz continuous
functions f̂k for k ∈ [K] (implied by the continuous differentiability assumption on σ and m). Thus,
f is B-differentiable. �

C Learning Increasing Functions

We follow the implementation of [10] for learning increasing functions in the diagonal subfamily.
The idea is to learn an increasing function f̄(x) : R → R using a neural network, which can be
realized by learning a strictly positive function f̄ ′(x) and a bias f̄(0) ∈ R and constructing the
desired function f̄ by the integral f̄(x) =

∫ x
0
f̄ ′(t)dt+ f̄(0). In implementation, the derivative f̄ ′ is

modeled by a generic neural network and the positiveness is enforced by using a proper activation
function in the last layer. In the forward computation, the integral is approximated numerically using
Clenshaw-Curtis quadrature [1] and the backward pass is performed by Leibniz integral rule to reduce
memory footprint. We the use official implementation of the algorithm provided by [10].

D Datasets, Hyperparameters, and Architecture Selection

The size of the calibration and the test datasets, as well as the number of classes for each dataset, are
shown in Table 3. We note that the calibration sets sizes are the same as the previous methods [3, 5].

Table 3: Statistics of the Evaluation Datasets.

Dataset #classes Calibration set size Test dataset size
CIFAR-10 10 5000 10000

SVHN 10 6000 26032
CIFAR-100 100 5000 10000

CARS 196 4020 4020
BIRDS 200 2897 2897

ImageNet 1000 25000 25000
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Table 4: Hyperparameters learned by cross validation. For DIAG, OI, OP, and UNCONSTRAINED we show
the network architectures learned by cross validation. The number of units in each layer are represented by a
sequence of numbers, e.g. (10, 20, 30, 40) represents a network with 10 input units, 20 and 30 units in the first
and second hidden layers, respectively, and 40 output units. We perform multi-fold cross-validation and select
the architecture with lowest NLL on validation set.

Dataset Model DIAG OI OP UNCONSTRAINED
CIFAR10 ResNet 110 (1,10,10,1) (10,150,150,10) (10,2,2,10) (10,500,10)
CIFAR10 Wide ResNet 32 (1,2,2,1) (10,10,10,10) (10,2,2,10) (10,150,150,10)
CIFAR10 DenseNet 40 (1,2,2,1) (10,50,50,100 (10,2,2,10) (10,150,150,10)

SVHN ResNet 152 (SD) (1,20,20,1) (10,10,10,10) (10,50,50,10) (10,500,10)
CIFAR100 ResNet 110 (1,10,10,1) (100,100,100,100) (100,150,150,100) (100,500,100)
CIFAR100 Wide ResNet 32 (1,1,1) (100,100,100,100) (100,2,2,100) (100,500,100)
CIFAR100 DenseNet 40 (1,1,1) (100,10,10,100) (100,2,2,100) (100,500,500,100)

CARS ResNet 50 (pre) (1,50,1) (196,10,196) (196,2,2,196) (196,500,196)
CARS ResNet 101 (pre) (1,20,20,1) (196,100,100,196) (196,20,20,196) (196,500,196)
CARS ResNet 101 (1,50,1) (196,50,50,196) (196,100,100,196) (196,500,196)
BIRDS ResNet 50 (NTS) (1,50,50,1) (200,150,150,200) (200,50,50,200) (200,500,200)

ImageNet ResNet 152 (1,10,10,1) (1000,150,150,1000) (1000,2,2,1000) (1000,150,1000)
ImageNet DenseNet 161 (1,10,1) (1000,100,100,1000) (1000,2,2,1000) (1000,150,1000)
ImageNet PNASNet5 large (1,20,20,1) (1000,50,50,1000) (1000,100,100,1000) (1000,100,1000)

We follow the experiment protocol in [5] and use cross validation on the calibration set to find the
best hyperparameters and architectures for all the methods. We found that [5] have improved their
performance via averaging output predictions of models trained on different folds. We follow the
same approach to have fair comparisons. Our criteria for selecting the best architecture is the NLL
value. We perform 3 fold cross validation for ImageNet and 5 folds for all the other datasets. We
limit our architecture to fully connected networks and vary the number of hidden layers as well as the
size of each layer. We allow networks with up to 3 hidden layers in all the experiments. In CIFAR-10,
SVHN, and CIFAR-100 with fewer classes, we test networks with {1, 2, 10, 20, 50, 100, 150} units
per layer and for the larger CARS, BIRDS, and ImageNet datasets, we allow a wider range of
{2, 10, 20, 50, 100, 150, 500} units per layer. We use the similar number of units for all the hidden
layers to reduce the search space. We use ReLU activation for all middle hidden layers and Softplus
on the last layer when strict positivity is desired. We utilize L-BFGS [7] for small scale optimization
problems when the computational resources allow (temperature scaling and diagonal intra order-
preserving (DIAG) methods on CIFAR and SVHN datasets) and use Adam [4] optimizer for other
experiments. Table 4 summarize cross validation learned hyperparameter for each method.

Although the functions learned in Table 4 are more complicated than linear transformations used in
the baselines, they are not too complex to slow down computation as the calibration network size
is negligible compared to the backbone network used in the experiments. In our experiments, all
methods take less than 0.5 milliseconds/sample in forward path and their differences are negligible.

We use the pre-computed logits of these networks provided by [5] for CIFAR, SVHN, and ImageNet
with DenseNet and ResNet 5. In addition, we use the publicly available state-of-the-art models
for PNASNet5-large and ResNet50 NTSNet [11] 6 for ImageNet and BIRDS datasets, respectively.
Furthermore, we trained different ResNet type models on CARS dataset using the standard pytorch
training script. The ResNet models with (pre) are initialized with pre-trained ImageNet weights. We
will release these models for future research.

The effect of weight regularization on different metrics for MS and DIR methods is illustrated
in Fig. 5. This shows that simply regularizing the off diagonal elements of a linear layer has limited
expressiveness to achieve good calibration especially in the case that number of classes is large.

E More Experiments and Discussions

Reliability Diagrams. In Fig. 4 of the paper, we show the reliablity diagrams and diagnoal functions
leanred by TS and DIAG in ResNet 152 and PNASNet5 large on ImageNet dataset. Fig. 6 and 7
illustrate the reliability diagrams for different calibration algorithms in all the models. In general

5https://github.com/markus93/NN_Calibration
6https://github.com/osmr/imgclsmob/blob/master/pytorch/README.md
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Figure 5: Accuracy, ECE, and NLL plots in MS and DIR for ResNet 152 on ImageNet with different
regularization weights. In the plots, x-axis shows the log scale regularization and y-axis shows the
accuracy, ECE, and NLL of different methods, respectively. The value of the bias regularizer is found
by cross validation and kept constant for visualization purpose. Changing the bias regularizer has
little effect on the final shape of the plots.

Table 5: Scores and rankings of different methods for Brier.

Dataset Model Uncal. TS DIR MS DIAG OI OP
CIFAR10 ResNet 110 0.011027 0.009796 0.009775 0.009764 0.009672 0.009631 0.009753
CIFAR10 Wide ResNet 32 0.010477 0.009244 0.008881 0.008892 0.009266 0.009213 0.009255
CIFAR10 DenseNet 40 0.012747 0.011004 0.010971 0.010971 0.011004 0.011106 0.010993

SVHN ResNet 152 (SD) 0.002976 0.002911 0.002933 0.002987 0.002922 0.002933 0.002965
CIFAR100 ResNet 110 0.004537 0.003924 0.003913 0.003913 0.003935 0.003891 0.003902
CIFAR100 Wide ResNet 32 0.004327 0.003554 0.003542 0.003511 0.003554 0.003542 0.003554
CIFAR100 DenseNet 40 0.004917 0.004013 0.004001 0.004001 0.004013 0.004013 0.004026

CARS ResNet 50 (pretrained) 0.0006675 0.0006664 0.0006632 0.0006797 0.0006611 0.0006643 0.0006746
CARS ResNet 101 (pretrained) 0.0006266 0.0006255 0.0006233 0.0006557 0.0006222 0.0006201 0.0006233
CARS ResNet 101 0.0011316 0.0011295 0.0011233 0.0011547 0.0011181 0.0011233 0.0011192
BIRDS ResNet 50 (NTSNet) 0.0010356 0.0009955 0.0009884 0.0010407 0.0009773 0.0009721 0.0009742

ImageNet ResNet 152 0.0003387 0.0003324 0.0003336 0.0003324 0.0003291 0.0003302 0.0003313
ImageNet DenseNet 161 0.0003257 0.0003214 0.0003214 0.0003181 0.0003192 0.0003203 0.0003214
ImageNet PNASNet5 large 0.0002556 0.0002617 0.0002525 0.0002473 0.0002452 0.0002441 0.0002484

Average Relative Error 1.0007 0.9365 0.9303 0.9365 0.9241 0.9292 0.9314

DIAG method outperforms other methods in calibration in most of the regions. OP and OI methods
also achieve good calibration performance on this dataset and are slightly better than temperature
scaling, while MS and DIR methods do not reduce the calibration error as much.

Calibration Set Size. In this experiment, we gradually increase the calibration set size from 10% to
100% of its original size to create smaller calibration subsets. Then, for each calibration subset, we
train different post-hoc calibration methods and measure their accuracy, NLL, and ECE. The results
are illustrated in Fig. 8. In overall, the performance of non intra order-preserving methods, i.e. DIR
and MS, are more sensitive to the size of the calibration set while intra order-preserving methods
maintain the accuracy and are more stable in terms of NLL and ECE.

Brier Score, NLL, and Classwise-ECE. As shown in Table 5, our OI is the best method in 5 out
14 models with respect to the Brier score. MS also wins in 4 models. However, it performs poorly
on CARS and BIRDS datasets. Our DIAG has the best average relative error. Overall, both OI and
DIAG perform well on this metric. The DIR is the third best method on this metric and is slightly
worse than OI in average relative error.

Results of different methods regarding the NLL metric are shown in Table 6. MS is the best method
when the number of classes is less than or equal to 100 on this metric. Its performance degrades as
the number of classes grows. This is typically due to the excessive number of parameters introduced
by this method. Surprisingly, TS is the best method in SVHN with ResNet 152 (SD) model but its
performance is very similar to the DIAG. The reason is that this model has a very high accuracy and
the original model is actually already well calibrated. So, the single parameter TS would be enough
to improve the calibration slightly. Our DIAG is the best method on datasets with larger number of
classes and our OI is also comparable to it. Both these method have the best average ranking and
DIAG has the best relative error on NLL.

Finally, Table 7 compares different methods in Classwise-ECE. While there is no single winning
method on Classwise-ECE when the number of classes is less than 200, DIR is the best method on
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Figure 6: Reliability diagrams and learned diagonal functions. See Fig. 4 for the explanation of each
diagram and axis.
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Figure 8: Accuracy, NLL, and ECC vs. calibration set size for CIFAR and CARS datasets. For each experiment,
we use from 10% to 100% of the calibration set to learn the pos-hoc calibration function and compute the
accuracy, NLL, and ECC of the learned calibration functions. Compared to MS and DIR, intra order-preserving
methods’ (DIAG, TS, OI, and OP) performance degrades less with reducing the calibration set size.
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Figure 8: Accuracy, NLL, and ECE vs. calibration set size for CIFAR, CARS, BIRDS datasets.
For each experiment, we use from 10% to 100% of the calibration set to train pos-hoc calibration
functions and plot their accuracy, NLL, and ECE. Compared to DIR and MS, performance of the
intra order-preserving methods (TS, DIAG, OI, and OP) degrades less with reducing the calibration
set size.
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Table 6: NLL.

Dataset Model Uncal. TS DIR MS DIAG OI OP
CIFAR10 ResNet 110 0.358277 0.209265 0.205113 0.203751 0.206744 0.204882 0.209546
CIFAR10 Wide ResNet 32 0.381707 0.191483 0.182032 0.181651 0.192215 0.191694 0.193326
CIFAR10 DenseNet 40 0.428217 0.225093 0.223712 0.222401 0.225514 0.230976 0.227985

SVHN ResNet 152 (SD) 0.085427 0.078611 0.080385 0.081006 0.078872 0.079923 0.080104
CIFAR100 ResNet 110 1.693717 1.091694 1.096075 1.073701 1.100916 1.079662 1.083753
CIFAR100 Wide ResNet 32 1.802157 0.944533 0.952886 0.932731 0.949284 0.943122 0.950015
CIFAR100 DenseNet 40 2.017407 1.057132 1.059093 1.050841 1.059724 1.061275 1.076266

CARS ResNet 50 (pretrained) 0.329937 0.318134 0.323816 0.319045 0.312341 0.315932 0.317933
CARS ResNet 101 (pretrained) 0.305367 0.293293 0.297144 0.297885 0.285731 0.288972 0.304446
CARS ResNet 101 0.611857 0.586194 0.595046 0.586835 0.573851 0.577742 0.583193
BIRDS ResNet 50 (NTSNet) 0.746767 0.565694 0.612395 0.630556 0.549152 0.545081 0.562883

ImageNet ResNet 152 0.988487 0.942084 0.950815 0.957866 0.925531 0.928502 0.939353
ImageNet DenseNet 161 0.943957 0.909285 0.912146 0.905783 0.889371 0.895522 0.906324
ImageNet PNASNet5 large 0.802407 0.757616 0.739555 0.715224 0.655501 0.656742 0.695953

Average Relative Error 1.0007 0.7664 0.7726 0.7685 0.7491 0.7512 0.7653

Table 7: Classwise ECE.

Dataset Model Uncal. TS DIR MS DIAG OI OP
CIFAR10 ResNet 110 0.098467 0.043445 0.039504 0.036152 0.037913 0.034541 0.044356
CIFAR10 Wide ResNet 32 0.095307 0.047754 0.029472 0.029211 0.054626 0.047473 0.049185
CIFAR10 DenseNet 40 0.114307 0.039774 0.036872 0.036781 0.038773 0.045755 0.051826

SVHN ResNet 152 (SD) 0.019404 0.018492 0.019885 0.020886 0.014781 0.018583 0.021287
CIFAR100 ResNet 110 0.416447 0.200953 0.186391 0.202705 0.219666 0.199772 0.202374
CIFAR100 Wide ResNet 32 0.420277 0.185734 0.179511 0.179662 0.186365 0.193976 0.184843
CIFAR100 DenseNet 40 0.470267 0.186643 0.186302 0.191125 0.186141 0.198666 0.187524

CARS ResNet 50 (pretrained) 0.173533 0.185137 0.170942 0.183126 0.168911 0.182175 0.175674
CARS ResNet 101 (pretrained) 0.165034 0.171866 0.159142 0.174057 0.166925 0.164343 0.155091

CARS ResNet 101 0.263002 0.272346 0.263333 0.274477 0.265945 0.264884 0.250971

BIRDS ResNet 50 (NTSNet) 0.249013 0.263697 0.229201 0.256396 0.250735 0.250694 0.240312
ImageNet ResNet 152 0.318467 0.308864 0.300611 0.308955 0.313726 0.306423 0.300812
ImageNet DenseNet 161 0.309927 0.303095 0.294031 0.298072 0.306596 0.302484 0.299593
ImageNet PNASNet5 large 0.313567 0.255876 0.237971 0.242832 0.250045 0.246344 0.244933

Average Relative Error 1.0007 0.7526 0.7041 0.7343 0.7292 0.7404 0.7435

this metric in ImageNet and in overall. In the next section, we discuss a hidden bias in Classwise-ECE
metric that might become problematic. It seems Classwise-ECE might promote uncertainty in the
output regardless of the actual accuracy of the model. This suggests there might be more investigation
required for this metric and a practitioner should be cautious about these numbers.

E.1 Is Classwise-ECE a Proper Scoring Rule Calibration Metric?

It is known that ECE is not a proper scoring rule and thus there exist trivial solutions which yield
optimal scores [9]. In this section, we show the same holds for Classwise-ECE metric. Classwise-
ECE is “defined as the average gap across all classwise-reliability diagrams, weighted by the number
of instances in each bin:

Classwise-ECE =
1

k

k∑
j=1

m∑
i=1

Bi,j
n
|yj(Bi,j)− p̂j(Bi,j)| (4)

where k, m, n are the numbers of classes, bins and instances, respectively, |Bi,j | denotes the size of
the bin, and p̂j(Bi,j) and yj(Bi,j) denote the average prediction of class j probability and the actual
proportion of class j in the bin Bi,j .” [5].

While the above definition of Classwise-ECE intuitively makes sense, we show that this metric fails
to represent the quality of a predictor in a common degenerate case e.g. in a balanced dataset with k
classes one could achieve a perfect Classwise-ECE by scaling down the logits with a large enough
positive scalar. A large enough temperature value increases the uncertainty of the model and brings
all the class probabilities close to 1/k while maintaining the accuracy of the model. As the result,
in all the classwise-reliability diagrams every data point falls into the bin that contains confidence
values around 1/k. Since the dataset is balanced, the actual proportion of class j in that bin will also
be 1/k so the model exhibits a perfect Classwise-ECE.
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Table 8: Temperature scaling effect on Classwise-ECE. A large temperature value improves the Classwise-ECE
in most of the cases. The subscript numbers represent the rank compared to the values in Table 7. We remark
that the purpose of this experiment is not to improve the performance but rather highlight the need for studying
Classwise-ECE metric in the future works.

Dataset Model Uncal. Uncal./1000
CIFAR10 ResNet 110 0.09846 0.000211
CIFAR10 Wide ResNet 32 0.09530 0.001261
CIFAR10 DenseNet 40 0.11430 0.001431

SVHN ResNet 152 (SD) 0.01940 0.331238
CIFAR100 ResNet 110 0.41644 0.000801
CIFAR100 Wide ResNet 32 0.42027 0.001991
CIFAR100 DenseNet 40 0.47026 0.002821

CARS ResNet 50 (pretrained) 0.17353 0.160481
CARS ResNet 101 (pretrained) 0.16503 0.161083
CARS ResNet 101 0.26300 0.150671
BIRDS ResNet 50 (NTSNet) 0.24901 0.058311

ImageNet ResNet 152 0.31846 0.110741
ImageNet DenseNet 161 0.30992 0.110741
ImageNet PNASNet5 large 0.31356 0.109601

We remark that this problem does not happen with ECE, because ECE is computed with regard to the
accuracy of the bins. While all the data points still fall inside the bin that contains the confidence
value 1/k, the accuracy of this bin would be equal to the accuracy of the model. Thus, there would
be mismatch between the confidence and the accuracy of the bin, which results to a high ECE.

To validate this insight, we scale down the uncalibrated logit values by a large scalar number and
see how it affects Classwise-ECE in Table 8. It shows this simple hack drastically improves the
Classwise-ECE value of the uncalibrated models and outperforms the methods in Table 7 by large
margin in most of the cases. Note that we can not achieve perfect Classwise-ECE because the datasets
are not perfectly balanced.

We are concerned that this issue with Classwise-ECE might bias future work to lean towards merely
increasing the uncertainty of predictions without actually calibrating the model in a meaningful way.
To avoid this, Classwise-ECE metric should be always used with other proper scoring rule metrics
(e.g., NLL or Brier) in evaluation. As we discuss in the next section, this issue would not happen
when bins are dynamically chosen to ensure the number of data points in each bin remains equal.

E.2 Debiased ECE and a Fix to Classwise-ECE

We believe that the issue mentioned above is due to the binning scheme used in estimating Classwise-
ECE which allows all the data points fall into a single bin. Nixon et al. [8] propose an adaptive
binning scheme that guarantees the number of data points in each bin remains balanced; therefore,
it does not exhibit the same issue as Classwise-ECE. In addition to the binning scheme, Kumar et
al. [6] introduce debiased ECE and multiclass marginal calibration error metrics that are debiased
versions similar to the ECE and Classwise-ECE metrics, respectively. The idea is to subtract an
approximate correction term to reduce the biased estimate of the metrics. For the completeness, we
present debiased ECE and multiclass marginal calibration error for all the methods in Table 9 and
Table 10, respectively. While the results in debaised ECE are similar to ECE, comparing the results
in Table 7 and Table 10 shows DIAG is performing better in terms of multiclass marginal calibration
error and outperforms DIR in average relative error.

Overall, although the intra order-preserving models are the winning methods among most of the
ever-increasing calibration metrics, one should carefully pick the calibration method and the metric
depending on their application.
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Table 9: Debiased ECE [6].

Dataset Model Uncal. TS DIR MS DIAG OI OP
CIFAR-10 ResNet 110 0.090707 0.019244 0.019275 0.017163 0.015732 0.000001 0.022826
CIFAR-10 Wide ResNet 32 0.086617 0.008092 0.009433 0.009584 0.017176 0.001941 0.010735
CIFAR-10 DenseNet 40 0.103407 0.011952 0.012283 0.012664 0.011301 0.024106 0.023095

SVHN ResNet 152 (SD) 0.019225 0.008922 0.009794 0.009393 0.006171 0.022696 0.034297
CIFAR-100 ResNet 110 0.226997 0.020042 0.028423 0.030545 0.055966 0.006261 0.029034
CIFAR-100 Wide ResNet 32 0.248277 0.010312 0.019095 0.030186 0.014984 0.005451 0.014083
CIFAR-100 DenseNet 40 0.265237 0.000001 0.000001 0.028096 0.000001 0.004324 0.012655

CARS ResNet 50 (pre) 0.023276 0.009002 0.025127 0.016054 0.000001 0.016115 0.013633
CARS ResNet 101 (pre) 0.021816 0.019563 0.024197 0.015042 0.019644 0.021365 0.012711

CARS ResNet 101 0.042805 0.026543 0.015181 0.037284 0.025422 0.047666 0.048217
BIRDS ResNet 50 (NTS) 0.471177 0.040544 0.055455 0.072246 0.015181 0.016502 0.031043

ImageNet ResNet 152 0.077457 0.021574 0.052475 0.060996 0.000661 0.009412 0.018043
ImageNet DenseNet 161 0.065987 0.020084 0.045425 0.048886 0.009981 0.011582 0.019243
ImageNet PNASNet5 large 0.068206 0.096207 0.057285 0.035804 0.012733 0.007131 0.012722

Avgerage Relative Error 1.0007 0.3573 0.4306 0.4095 0.2131 0.3372 0.4064

Table 10: Marginal Calibration Error [6].

Dataset Model Uncal. TS DIR MS DIAG OI OP
CIFAR-10 ResNet 110 0.008597 0.003052 0.003716 0.003635 0.003464 0.002181 0.003363
CIFAR-10 Wide ResNet 32 0.015167 0.014083 0.004101 0.004322 0.014426 0.014165 0.014104
CIFAR-10 DenseNet 40 0.011327 0.006024 0.004171 0.005832 0.006013 0.007296 0.006865

SVHN ResNet 152 (SD) 0.002272 0.002453 0.004265 0.005416 0.001781 0.003874 0.006917
CIFAR-100 ResNet 110 0.003157 0.001291 0.001855 0.002336 0.001443 0.001412 0.001514
CIFAR-100 Wide ResNet 32 0.003567 0.002664 0.002222 0.001991 0.002706 0.002685 0.002573
CIFAR-100 DenseNet 40 0.004177 0.002666 0.002221 0.002635 0.002614 0.002593 0.002342

CARS ResNet 50 (pre) 0.000636 0.000582 0.000351 0.000907 0.000605 0.000593 0.000593
CARS ResNet 101 (pre) 0.000433 0.000444 0.000444 0.000927 0.000412 0.000341 0.000466
CARS ResNet 101 0.001141 0.001141 0.001736 0.002307 0.001141 0.001185 0.001174
BIRDS ResNet 50 (NTS) 0.009347 0.001394 0.001486 0.001415 0.001383 0.001322 0.001301

ImageNet ResNet 152 0.000406 0.000382 0.000341 0.000427 0.000382 0.000382 0.000382
ImageNet DenseNet 161 0.000417 0.000393 0.000351 0.000382 0.000393 0.000393 0.000393
ImageNet PNASNet5 large 0.000397 0.000326 0.000251 0.000282 0.000282 0.000294 0.000305

Average Relative Error 1.0007 0.7503 0.7352 0.9966 0.7251 0.7784 0.8985
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