
- We would like to start by thanking the authors for their comments and suggestions.1
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- We also believe that these two elements are the most important points that should be augmented. We will add an3

extended discussion about the condition C1 and its relation to the conditional Fisher information matrix and a detailed4

discussion with respect to previous work as a conclusion. This will be possible using the 9th page in the camera-ready5

version of the paper6
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- In this paper, we have chosen to focus solely on the theoretical aspects of this algorithm as we believe that a serious8

and exhaustive numerical study of the algorithm’s performance deserves a dedicated study. For pairwise and binary9

variables, [12] shows that RISE beats conditional likelihood and is fast to run (although in [12], the optimization is10

performed using a second-order method which is much less efficient than what we propose). We expect GRISE to be a11

very efficient algorithm in practice as it contains RISE as a special case.12

- The efficient way to verify the identifiability condition is currently in the Appendix D1 and not in the main text. If13

space permits, we will put it back in the main text.14

- Thank you for the list of typos, we will amend them in the final submission.15
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- It may look like our paper is a straightforward generalization of [17], but only superficially. This is the result of a17

deliberate choice on our part to find a compromise to facilitate the comprehension of this study for readers who are18

both familiar and unfamiliar with the field. We understand that this choice may have the unfortunate consequence of19

downplaying the innovations presented in this paper. For instance, the local learnability condition looks like it is similar20

to the restricted strong convexity condition from [17] but this is not the case. Strong convexity (restricted or not) is21

related to the notion of curvature of a function and is therefore linked to the standard Euclidian `2-norm. It turns out22

that the GRISE loss function is not strongly convex independently of the dimension of the problem (this implies in turns23

that the number of samples cannot be log p according to the standard theory). With the local learnability condition, we24

are showing that by looking at the problem using different types of geometry (in our case it is mostly the `∞ geometry)25

we can bypass this issue. This approach has been demonstrated using GRISE, but it is in fact an important result in26

itself for it is applicable to the analysis of any estimator that minimizes an empirical risk. We also provide a recipe27

to efficiently verify this new concept of convexity that is easily applicable to other cost functions. With respect to28

other innovations presented in this paper, we would also mention Algorithm 1 which uses a recursive call to GRISE. A29

straightforward generalization of [17] will not work for reconstructing graphical models precisely because such a loss30

function is not strongly convex independently of the dimension.31

- The parameter γ̂ is a prior on on the strength of the parameters of the problem. This implies that it should be bigger32

than the actual γ of the system. So unlike the λ from [17], γ̂ does not depend on the size of the system or on the33

number of samples. Ideally one would like to take γ̂ = γ, but γ is an unknown quantity a priori. This implies that in34

practice we would chose γ̂ much larger than the expected γ. Happily we show that this has only a limited impact on35

the sample complexity and the runtime of the algorithm as they both scale polynomially with γ̂ while it is exponential36

in γ (which is the best one can hope for). Regardless of the size of the problem, in practice one would not expect γ37

to be bigger than 15 as it means that the intrinsic randomness of the variables is less than 1ppm. There are several38

reasons for switching from a penalty (the λ form) to a constraint (the γ form). The main reason is that the penalty is39

designed to enforce sparsity and is adapted to graphical models with bounded degrees. By proposing a constrained40

version, we can reconstruct graphical models irrespective of their degree while in [17] dense graphs can require up41

to O(p4 log(p)) samples. Another reason is that the very nice property of λ in [17] being independent of some of the42

problem parameters is lost for more general models. In fact λ becomes dependant of the parameter γ for graphical43

models that are not pairwise and binary.44

- The graphical models considered here can have a more general form (arbitrary order, arbitrary alphabet, arbitrary45

parameterization, arbitrary graph structure) while in [17] it is only applicable to pairwise models with bounded degrees46

with binary variables using monomial basis functions. The tools for the analysis may looks superficially similar to [17]47

at first glance but are in fact based on a radically new concept that does not use convexity.48
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- In our study we focus essentially on the theoretical aspect of GM learning (we believe that the current paper is already50

very dense). We plan to perform an exhaustive numerical study of this algorithm in a future work.51

- In algorithm 1, L is not exactly an input parameter for it is determined by the family of models that is under52

consideration and is given by the highest order of the basis functions in the family.53


