Efficient Learning of Discrete Graphical Models

Marc Vuffray, Sidhant Misra, Andrey Y. Lokhov
Theoretical Division,
Los Alamos National Laboratory, USA
{vuffray, sidhant, lokhov}@lanl.gov

Abstract

Graphical models are useful tools for describing structured high-dimensional
probability distributions. Development of efficient algorithms for learning graphical
models with least amount of data remains an active research topic. Reconstruction
of graphical models that describe the statistics of discrete variables is a particularly
challenging problem, for which the maximum likelihood approach is intractable.
In this work, we provide the first sample-efficient method based on the Interaction
Screening framework that allows one to provably learn fully general discrete
factor models with node-specific discrete alphabets and multi-body interactions,
specified in an arbitrary basis. We identify a single condition related to model
parametrization that leads to rigorous guarantees on the recovery of model structure
and parameters in any error norm, and is readily verifiable for a large class of
models. Importantly, our bounds make explicit distinction between parameters
that are proper to the model and priors used as an input to the algorithm. Finally,
we show that the Interaction Screening framework includes all models previously
considered in the literature as special cases, and for which our analysis shows a
systematic improvement in sample complexity.

1 Introduction

Representing and understanding the structure of direct correlations between distinct random variables
with graphical models is a fundamental task that is essential to scientific and engineering endeavors. It
is the first step towards an understanding of interactions between interleaved constituents of elaborated
systems [11]; it is key for developing causal theories [6]; and it is at the core of automated decision
making [8], cybersecurity [5] and artificial intelligence [19].

The problem of reconstruction of graphical models from samples traces back to the seminal work
of [7] for tree-structured graphical models, and as of today is still at the center of attention of the
learning community. For factor models defined over general hypergraphs, the learning problem
is particularly challenging in graphical models over discrete variables, for which the maximum
likelihood estimator is in general computationally intractable. One of the earlier tractable algorithms
that has been suggested to provably reconstruct the structure of a subset of pairwise binary graphical
models is based on inferring the sparsity pattern of the so-called regularized pseudo-likelihood
estimator, equivalent to regularized logistic regression in the binary case [16]. However, additional
assumptions required for this algorithm to succeed severely limit the set of pairwise binary models
that can be learned [15]. After it was proven that reconstruction of any discrete graphical models
with bounded degree can be done in polynomial time in the system size [4], Bresler showed that it is
possible to bring the computational complexity down to quasi-quadratic in the number of variables
for Ising models (pairwise graphical models over binary variables); however, the resulting algorithm
has non-optimal sample requirements that are double-exponential in other model parameters [3]. The
first computationally efficient reconstruction algorithm for sparse pairwise binary graphical models
with a near-optimal sample complexity with respect to the information theoretic lower bound [17],
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called RISE, was designed and analyzed in [18]. The algorithm RISE suggested in this work is based
on the minimization of a novel local convex loss function, called the Interaction Screening objective,
supplemented with an ¢; penalty to promote sparsity. Even though it has been later shown in [13]
that regularized pseudo-likelihood supplemented with a crucial post-processing step also leads to a
structure estimator for pairwise binary models, strong numerical and theoretical evidence provided in
that work demonstrated that RISE is superior in terms of worst-case sample complexity.

Algorithms for learning discrete graphical models beyond pairwise and binary alphabets have been
proposed only recently in [9] and [12]. The method in [9] works for arbitrary models with bounded
degrees, but being a generalization of Bresler’s algorithm for Ising models [3], it suffers from similar
prohibitive sample requirements growing double-exponentially in the strength of model parameters.
The so-called SPARSITRON algorithm in [12] has the flavor of a stochastic first order method with
multiplicative updates. It has a low computational complexity and is sample-efficient for structure
recovery of two subclasses of discrete graphical models: multiwise graphical models over binary
variables or pairwise models with general alphabets. A recent follow-up work [20] considered an
5,1 constrained logistic regression, and showed that it provides a slight improvement of the sample
complexity compared to [12] in the case of pairwise models over non-binary variables.

In this work, we propose a general framework for learning general discrete factor models expressed in
an arbitrary parametric form. Our estimator termed GRISE is based on a significant generalization of
the Interaction Screening method of [18, 13], previously introduced for pairwise binary models. Our
primary insight lies in the identification of a single general condition related to model parameterization
that is sufficient to obtain bounds on sample complexity. We show that this condition can be reduced
to a set of local identifiability conditions that only depend on the size of the maximal clique of the
factor graph and can be explicitly verified in an efficient way. We propose an iterative algorithm called
SUPRISE which is based on GRISE and show that it can efficiently perform structure and parameter
estimation for arbitrary graphical models. Existing results in the literature on this topic [18, 9, 12, 20]
can be obtained as special cases of our general reconstruction results, which noticeably includes the
challenging case of multi-body interactions defined over general discrete alphabets. Our theoretical
guarantees can be expressed in any error norm, and explicitly includes distinction between bounds on
the parameters of the underlying model and the prior parameters used in the optimization; as a result
prior information that is not tight only has moderate effect on the sample complexity bounds. Finally,
we also provide a fully parallelizable algorithmic formulation for the GRISE estimator and SUPRISE

algorithm, and show that they have efficient run times of 6(pL) for a model of size p with L-order
interactions, that includes the best-known O(p?) scaling for pairwise models.

2 Problem formulation

In this Section, we formulate the general discrete graphical model selection problem that we consider
and describe conditions that makes this problem well-posed.

2.1 Parameterized family of models

We consider positive joint probability distributions over p variables o; € A; fori =1,...,p. The
set of variable indices i is referred to as vertices V = 1,...,p. Node-dependent alphabets A; are
assumed to be discrete and of size bounded by ¢ > 0. Without loss of generality, the positive
probability distribution over the p-dimensional vector g can be expressed as

u(o) = %exp (Z GI:fk(Qk)) ; (N

ke

where { f, k € K} is a set of basis functions acting upon subsets of variables g;, C ¢ that specify a
family of distributions and 6}, are parameters that specify a model within this family. The quantity Z
denotes the partition function and serves as a normalization constant that enforces that the p in (1) is
a probability distribution. For i € {1,...,p}, let K; C K denote the set of factors corresponding to
basis functions acting upon subsets g, that contain the variable o; and |K;| = K;.



Given any set of basis functions, we can locally center them by first defining for a given ¢ € [p], the
local centering functions

1
¢ik(9k\i) = m Z fi(ay), @)

oi€A;

where g\ ; denotes the vector g, without o, and define the locally centered basis functions,

gir(ay) = frlar) — din(am)- (3)

As their name suggests, the locally centered basis functions sum to zero ) . gix(c;,) = 0. To
ensure the scales of the parameters are well defined, we assume that ¢ are chosen or rescaled such
that all locally centered basis functions are normalized in the following sense:

max |gix(a;,)| < 1, 4
Iy

for all vertices ¢ € V and basis factor k£ € IC;. This normalization can always be achieved by choosing
bounded basis functions | fx (¢} )| < 1/2. An important special case is when the basis functions are
already centered, i.e. g;x(o,) = fr(o,). In this case the basis functions are directly normalized
max,, |fx(cy)| = 1. Note that one of the reasons to define the normalization in (4) in terms of the
centered functions g, instead of fj, is to avoid spurious cases where the functions fj have inflated
magnitudes due to addition of constants f;, <— fi + C. In Section A of the Supplementary Material,
we show that the other important reason to employ centered functions is that degeneracy of the local
parameterization with these functions translates to degeneracy of the global distribution in Eq. (1).

2.2 Model selection problem

For each i € [p], let T; C K; denote the set of target factors that we aim at reconstructing accurately
and let R; = IKC; \ 7; be the set of residual factors for which we do not need learning guarantees. The
target and residual parameters are defined similarly as 07~ = {0} | k € T;} and 0. = {0} | k € R;}
respectively. Given independent samples from a model in the family in Section 2.1, the goal of the
model selection problem is to reconstruct the target parameters of the model.

Definition 1 (Model Selection Problem). Given n i.i.d. samples ¢V, ... ¢ drawn from some
distribution 1(c) in Eq. (1) defined by 8%, and prior information on 8" given in form of an upper
bound on the £1-norm of the local sub-components

1651 <7, ©)
and a local constraint set V; C R¥¢ for each i € [p] such that

0; €Y, (6)

compute estimates 0 of 0% such that the estimates of the target parameters satisfy

~ % .
Iy, 050 < 2. viell g
where || - || denotes some norm of interest with respect to which the error is measured.

The bound on the ¢1-norm in (5) is a natural generalization of the sparse case where §* only has a
small number of non-zero components; in the context of parameter estimation in graphical models, the
setting of parameters bounded in the #;-norm has been previously considered in [12]. The constraint
sets ); are used to encode any other side information that may be known about the model.

2.3 Sufficient conditions for well-posedness
We describe some conditions on the model in (1) that makes the model selection problem in Defini-
tion 1 well-posed. We first state the conditions formally.

Condition 1. The model from which the samples are drawn in the model selection problem in
Definition 1 satisfies the following:



(C1) Local Learnability Condition for Graphical Models: There exists a constant p; > 0 such
that for every vertex i and any vector in the perturbation set v € X; C R¥: defined as

Xi={z=y, —y, | ¥,.¥, €Vislly, 1 <A lly,llh <7}, ®)
the following holds:

2
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ke,
where x. denotes the components k € T; of x, and || - || is the norm used in Definition 1.

(C2) Finite Maximum Interaction Strength: The following quantity -y is finite,

- 0% i . 10
v gglmgxl%; rgik(ay)| < 00 (10)

Condition (C1) consists in satisfying the inequality in Eq. (9) involving a quadratic form z’ I. x where
the matrix I has indices k, ¥’ € K; and is explicitly defined as Iy, x» = IE [gix(c},)gir (o)) This
matrix [ is in fact related to the conditional Fisher information matrix.

The conditional Fisher information matrix I with indices k, ¥’ € K; is derived from the conditional
distribution of o; given the remaining variables and reads,

Lo = E [gik(ak)gir ()] = E g, ) [E(m\g\i) 9k (2R B 5,16, ) (93 (Qk’)]] . an

We immediately see that the matrix / dominates the conditional Fisher information matrix in the
positive semi-definite sense, that is z " I(0*)z > 2" I(6*)z for all z € R¥+. Therefore, Condition
(C1) is satisfied whenever the conditional Fisher information matrix is non-singular in the parameter
subspace x . that we care to reconstruct and which is compatible with our priors, i.e. for z € &;. We
would like to add that the conditional Fisher information matrix is a natural quantity to consider in
this problem as we deliberately focus on using conditional statistics rather than global ones in order
to bypass the intractability of the global log-likelihood approach. We are strongly convinced that it
should appear in any analysis that entails conditional statistics.

Condition (C2) is required to ensure that the model can be recovered with finitely many samples. For
many special cases, such as the Ising model, the minimum number of samples required to estimate
the parameters must grow exponentially with the maximum interaction strength [17]. A more detailed
discussion about well-posedness and Conditions (C1) and (C2) can be found in Section A of the
Supplementary Material.

Conditions (CI) and (C2) differ from the concepts in [18] called restricted strong convexity property
and bound on the interaction strength, respectively, in a subtle but critical manner. Conditions (C/)
can be identified with restricted strong convexity only when the £5-norm is used in Eq. (9). We will
see later that the notion of restricted strong convexity is not required for the ¢.,-norm that appears
to be a natural metric for which the local learnability condition can be verified for general models.
Moreover, for general models it remains unclear whether the restricted strong convexity holds for
values of p; that are independent of the problem dimension p. Condition (C2) is a weaker assumption
than the bound on the interaction strength from [17] for it does not require an extra assumption on the
maximum degree of the graphical model.

3 Generalized interaction screening

In this Section, we introduce the algorithm that efficiently solves the model selection problem
in Definition 1 and provides rigorous guarantees on its reconstruction error and computational
complexity.

3.1 Generalized regularized interaction screening estimator

We propose a generalization of the estimator RISE, first introduced in [18] for pairwise binary
graphical models, in order to reconstruct general discrete graphical models defined in (1). The



generalized interaction screening objective (GISO) is defined for each vertex u separately and is
given by

1 n
Su(0.,) =~ > exp ( 3 ekguk@,(j’)) : (12)
t=1

ke,

where o), ..., o(™) are n i.i.d samples drawn from p(o) in Eq. (1), 8,, := (6}, )kex, is the vector of
parameters associated with the factors in /C,, and the locally centered basis functions g, are defined
as in Eq. (3). The GISO retains the main feature of the interaction screening objective (ISO) in [18]:
it is proportional to the inverse of the factor in (g ), except for the additional centering terms ¢,y
The GISO is a convex function of §,, and retains the “screening” property of the original ISO. The
GISO is used to define the generalized regularized interaction screening estimator (GRISE) for the
parameters given by

0,= argmin S,(0,), (13)

0,€Vu:ll0, I <7

where 7 and ), are the prior information available on ), as defined in (5) and (6).

3.2 Error bound on parameter estimation with GRISE

We now state our first main result regarding the theoretical guarantees on the parameters reconstructed
by GRISE. We call §,, an e-optimal solution of (13) if

Sa(8,) < i Sa(8,) + e 14
) < ) i<y Sn ) T (1

Theorem 1 (Error Bound on GRISE Estimates). Let o (1), e g (") be i.id. samples drawn according

to u(g) in (1). For some node u € V, assume that the model satisfies Condition 1 for some norm | - ||

and some constraint set V,,, and let o > 0 be the prescribed accuracy level. If the number of samples

satisfies

(1+7)%™
atpl

4K?
log(—*), (15)

then, with probability at least 1 — §, any estimate that is an e-minimizer of GRISE, with ¢ <
(puc®e)/(20(1 + 7)), satisfies |01, — 07 || < 5.

The proof of Theorem 1 can be found in Section B of the Supplementary Material.

2
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The computational complexity of finding an e-optimal solution of GRISE for a trivial constraint set
YV, =R¥KvisC C"Z# In(1 + K,,), where ¢, is an upper-bound on the computational complexity of
evaluating any g; (¢,) for & € K;, and C is a universal constant independent of all the parameters of
the problem, see Proposition 5 in Section C of the Supplementary Material. For a certain class of
constraint sets ),,, which we term parametrically complete, the problem can be solved in two steps:
first, finding a solution to an unconstrained problem, and then projecting onto this set. Note, however,
that in general the problem of finding e-optimal solutions to constrained GRISE can still be difficult
since the constraint set ),, can be arbitrarily complicated.

Definition 2. The constraint set ), is called a parametrically complete set if for all §,, € RIX«,

there exists @u € Y, such that for all o,,, we have

=z

Z nguk(gk) = Z Ekguk(gk)- (16)

ke ke
Any Ek € Yy satisfying (16) is called an equi-cost projection of 8,, onto V,, and is denoted by
0, € Py, (0,)- (17

The computational complexity of finding of an e-optimal solution of GRISE with parametrically

N ~unc

complete set is C' % In(1+XK,)+C(Py, (Qunc)), where C(Py, (8,, )) denotes the computational

complexity of the projection step, see Theorem 3 in Section C of the Supplementary Material.
As we will see, for many graphical models it is often possible to explicitly construct parametri-

cally complete sets for which the computational complexity of the projection step C(Py, (?Q\:inc)) is
insignificant compared to the computational complexity of unconstrained GRISE.



4 Structure identification and parameter estimation

In this Section we show that the structure of graphical models, which is the collection of maximal
subsets of variables that are associated through basis functions, as well as the associated parameters,
can be efficiently recovered. The key elements are twofold. First, we prove that for maximal cliques,
the Local Learnability Condition (LLC) in (CI) can be easily verified and yields a LLC constant
independent of the system size. Second, we leverage this property to design an efficient structure and
parameter learning algorithm coined SUPRISE that requires iterative calls of GRISE.

4.1 The structure of graphical models

The structure plays a central role in graphical model learning for it contains all the information about
the conditional independence or Markov property of the distribution u(c) from Eq (1). In order
to reach the definition of the structure presented in Eq. (21), we have to introduce graph theoretic
concepts specific to graphical models.

The factor graph associated with the model family is a bipartite graph G = (V, K, £) with vertex set
V, factor set KC and edges connecting factors and vertices,

E={(,k) CVXxK|o; €0} (18)

We see from Eq. (18) that the edge (4, k) exists when the variable o; associated with the vertex i is
an argument of the basis function fi(g;,) associated with the factor k. Note that this definition only
depends on the set of basis functions X and does not refer to a particular choice of model within
the family. The factor graph G* = (V, K*, £*) associated with a model, as defined in Eq. (1), is the
induced subgraph of G obtained from the vertex set V' and factor subset K* = {k € IC | 0} # 0}. We
also use the shorthand notation G* = G [(V, K*)] to denote an induced subgraph of G.

We define the neighbors of a factor k as the set of vertices linked by an edge to k£ and denote it by
Ok = {i € V| (i, k) € £}. The largest factor neighborhood size L = maxyex |0k| is called the
interaction order. Families of graphical models with L < 2 are referred to as pairwise models as
opposed to the generic denomination of L-wise models when L is expected to be arbitrary.

The set of maximal factors of a graph is the set of factors whose neighborhood is not strictly contained
in the neighborhood of another factor,

Moo (G) ={k € K| BK' € K s.t Ok C Ok'}. (19)

Notice that multiple maximal factors may have the same neighborhood. This motivates the defi-
nition of the set of maximal cliques which is contained in the powerset P())) and consists of all
neighborhoods of maximal factors,

Mai () = {c € P(V) | Ik € Myne () sit. ¢ = Ik} . (20)

The set of factors whose neighborhoods are the same maximal clique ¢ € M); (G) is called the span
of the clique defined as [c],, = {k € Mtac (G) | ¢ = Ok}. Finally, the structure $ of a graphical
model is the set of maximal cliques associated with the factor graph of the model,

$(G") = Mai (G7) - 1)

We would like to stress that the structure of a model is different from the set of maximal cliques of
the family of graphical models M.y; (G) as the former is constructed with the set of factors associated
with non-zero parameters while the latter consists of all potential maximal factors.

4.2 From local learnability condition to nonsingular parametrization of cliques

We show that the learning problem of reconstructing maximal cliques is well-posed in general and
especially for non-degenerate globally centered basis functions. To this end, we demonstrate that the
LLC in (C1) is automatically satisfied whenever the target sets 7; consist of factors corresponding to
maximal cliques of the graphical model family. Importantly, we prove that the LLC constant p; does
not depend on the dimension of the model for the /., >-norm but rather relies on the Nonsingular
Parametrization of Clique (NPC) by the basis functions. Similarly, we also guarantee that the LLC
holds for the ¢5-norm in the case of pairwise colorable models.



We introduce globally centered basis functions defined for any factor £ € K through the inclu-
sion—exclusion formula,

_1)lrl
@) =)+ S SRS fen), @)

reP(0k)\0 [Ar| o,

where A, = @ jer Aj;. It is straightforward to see that globally centered functions sum partially to

zero for any variables, i.e. Y, ., hi(gy) = 0 forall i € Ok. It is worth noticing that when the
functions fj are already globally centered, we have f = g = h. We would also like to point out that
unlike locally centered functions g;;, globally centered functions cannot in general be interchanged
with functions fj, without modifying conditional distributions. However they play an important
role in determining the independence of basis functions around cliques through the Nonsingular
Parametrization of Cliques (NPC) constant introduced below. Given a perturbation set X, as defined
in Eq. (8), the NPC constant is defined through the following minimization,

NPC . .
0= cmin | omin By | Y| > ahilen) | | (23)
c cli z, 2=
31 z €AY T\ i €A kelcl,,

where the vector z, € R/lss | belongs to X, the projection of the constraint X; C R¥: to the
components k € [c] sp and the expectation is with respect to the marginal distribution of o;. Note that
NPC constant only depends on L and not on the size of the system, and can be explicitly computed in
time O(K). A detailed discussion can be found in Section D of the Supplementary Material. The
importance of the NPC constant is highlighted by the following proposition that guarantees that the
LLC is satisfied for maximal factors in £ 2-norm as long as pRPC > 0.

Proposition 1 (LLC in ¢ 2-norm). For a specific vertex i € V, let the target set be maximal
factors with i as neighbor, i.e. T, = {k € Mg (G) | Ok > i}. For vectors in the perturbation set
z € X; C R¥:, define the {0 ,2-n0rm over components that are maximal factors as |21 | co2 =

MaXce My (9) 4 /> keld,, z2. Then for discrete graphical models with maximum alphabet size q,
co1

interaction order L and models with finite maximum interaction strength v as defined in Eq. (10), the
Local Learnability Condition (C1) is satisfied whenever the Nonsingular Parameterization of Cliques
NPC is nonzero and we have,

constant p;
’ exp(—29)\ 7!
> (}jxkgiugk)) > e () o 4

kelC; 4

Proposition 1 guarantees that the LLC can be satisfied uniformly in the size p of the model whenever
pNFC > 0. The proof of Proposition 1 can be found in Section D of the Supplementary Material.

For family of models whose factors involve at most L = 2 variables, the so-called pairwise models,
we can show that the LLC conditions for maximal factors also holds for the #5-norm. This LLC
conditions depends on the vertex chromatic number x of the model factor graph. We recall that a
vertex coloring of a graph G* = (V, KC*, £*) is a partition { S, },en € P(V) of the vertex set such that
no two vertices with the same color are connected to the same factor node, i.e. ¢,j € S, = ﬂk e K*
s.t. 4, j € Ok. The chromatic number is the cardinality of the smallest graph coloring.

Proposition 2 (LLC in ¢5-norm for pairwise models). For a specific vertex i € V, let the target set be
maximal factors with i as neighbor; i.e. T; = {k € Mg (G) | Ok > i}. Forz € X; C R¥, define

the {a-norm over components that are maximal factors |z 1|2 = /> e 3. Then for discrete

pairwise graphical models with maximum alphabet size q and models with chromatic number x and
finite maximum interaction strength y as defined in Eq. (10), the Local Learnability Condition (C1)
is satisfied whenever the NPC constant pNY'C is nonzero and we have,

2 NPC ( 2 )

- exp(—

E (Y wginley) | | > 2T 02, (25)
ke, X q

The reader will find the proof of Proposition 2 in Section D of the Supplementary Material.
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4.3 Structure unveiling and parameter reconstruction with interaction screening estimation

Algorithm 1: Structure Unveiling and Parameter Reconstruction with Interaction Screening
Estimation (SUPRISE)
// Step 1: Initialization of set of considered factors
KO« K ;
fort=0,...,L —1do
// Step 2: Reconstruct maximal factors bigger than L —t¢
Construct the induced sub-graph: Gt < G [(V, KY)];
for u € V do
Set target factors: 7, « {k € My, (GY) | Ok 2 u};
Set residual factors: Rf, < K%, \ Tt;

~t
Estimate §,, using GRISE with accuracy at least

e = pxpca’ exp(—(2L —1))/(20(1 +7)q" ") on the model defined by K7,, 7/, R},
and constraint set ), ;

end

// Step 3: Identify max cliques associated with zero parameters
Initialize set of removable factors: Nt < (;

for c € My (Qt) do

—avg(t t
Compute average reconstruction: szg( ) — {|c|_1 Yowecll)r | ke [C]Sp};

if 197, < a/2 then
| Update set of removable factors: N'* < N U []
end
end
Update considered factors: K+ «+ K8\ N,

sp ’

end
// Step 4: output structure and non-zero parameters of maximal factors

return § = M.;; (G [(V,K5)]) and 6, = {égvg@‘“ | k€ Miae (G [(V,ICL)])};

Suppose that we know @ > 0, a lower-bound on the minimal intensity of the parameters associated
with the structure in the sense that a < minces(g+) /2 ke 0:%. Then we can recover the
sp

structure and parameters associated with maximal factors of any graphical models using Algorithm 1,
coined SUPRISE for Structure Unveiling and Parameter Reconstruction with Interaction Screening
Estimation. SUPRISE that implements an iterative use of GRISE is shown to have a sample complexity
logarithmic in the system size for models with non-zero NPC constants. Our second main result is the
following Theorem 2, proved in Section D of the Supplementary Material, which provides guarantees
on SUPRISE.

Theorem 2 (Reconstruction and Estimation Guarantees for SUPRISE). Let (o) in (1) be the
probability distribution of a discrete graphical model with maximum alphabet size q, interaction
order L, finite maximum interaction strength y and smallest Nonsingular Parameterization of Cliques
constant greater than zero, i.e. pNpCc = Mingey pEPC > 0. Let g(l), ... ,g(") be i.i.d. samples
drawn according to p(c) and assume that

2 1 \2 ,4vL 4 LK2
n > oupen LA, (p_> ,
a"pPNpC 0
where K = max,cy K, is the maximal number of basis functions in which a variable can appear
and v > maxycy |05 ||1 is our £1-prior on the components of the parameters. Then the structure of
the general graphical model is perfectly recovered using Algorithm 1, i.e. $ = 8, with probability
1 — 4. In addition, the parameters associated with maximal factors are reconstructed with precision
~ 2 ~ 2
max.csg Zke[c] (Qk — 97;) < o?/4 for general models and with Y oees Zke[c] <9k - 9;) <
sp sp

x2a? /4 for pairwise models with chromatic number .

(26)



Table 1: Sample complexity and computational complexity of SUPRISE over special cases.

Model name | Inter. order | Alphabet size|Recovery type Sample complexity Algo. complexity
Ising 2 2 structure O (o *e* logp) O(p?)
Ising 2 2 £a-parameter O (x*a™*e*" logp) O(p?)
Binary L 2 structure O (a” 4 e*" Llog p) O(p")
Pairwise 2 q structure O (a_4q4612AY log(pq)) 5(}72)
Pairwise 2 q Ly-parameter | O (x*a~*g"e'*" log(pq)) O(p?)
General L q structure  |O (a‘4q2Le4W(L+1)L log(pq)) 6(pL)

The total computational complexity scales as (5(pK) for fixed L, o, v, 7 and d, if the constraint sets
Y. are parametrically complete.

As an application of Theorem 2, we show the sample and computational complexity of recovering
parameter values and the structure of some well-known special cases in Table 1. The parameter
« appearing in Table 1 is the precision to which parameters are recovered in the considered norm,
x is the chromatic number of the graph, L is the interaction order, ¢ is the maximum alphabet
size, v is the maximum interaction strength and p is the number of variables. At this point, it is
instructive to compare our sample complexity requirements to existing results. A direct application
of bounds of [12] and [20] to the case of pairwise multi-alphabet models that we consider below
yields O(exp(14+)) dependence, whereas SUPRISE has a complexity that scales as O(exp(127)). In
the case of binary L-wise models, while [12] shows the O(exp(O(~L))) scaling, SUPRISE enjoys
a sample complexity O(exp(4vyL)). The algorithm of [9] recovers a subclass of general graphical
models with bounded degree, but has a sub-optimal double-exponential scaling in -y, while SUPRISE
leads to recovery of arbitrary discrete graphical models with a single-exponential dependence in
and needs no bound on the degree. In terms of the computational complexity, SUPRISE achieves

the efficient scaling 6(pL) for models with the maximum interaction order L, which matches the

best-known 6(]92) scaling for pairwise models [12, 20]. In summary, SUPRISE generalizes, improves
and extends the existing results in the literature. The proofs for special cases can be found in Section E
of the Supplementary Material.

5 Conclusion and future work

A key result of our paper is the existence of a computationally efficient algorithm that is able to recover
arbitrary discrete graphical models with multi-body interactions. This result is a particular case of
the general framework that we have introduced, which considers arbitrary model parametrization
and makes distinction between the bounds on the parameters of the underlying model and the prior

parameters. The computational complexity O(p”) that we achieve is believed to be efficient for
this problem [12]. In terms of sample complexity, the information-theoretic bounds for recovery of
general discrete graphical models are unknown. In the case of binary pairwise models, the sample
complexity bounds resulting from our general analysis are near-optimal with respect to known
information-theoretic lower bounds [17]. It would be interesting to see if the 1/ o? factor in our
sample complexity bounds can be improved to 1/c? using an £;-norm penalty rather than an £;-norm
constraint, as it has been shown for the particular case of Ising models [13, 18].

Other open questions left for future exploration include the possibility to extend the analysis to
the case of graphical models with nonlinear parametrizations like in [10], and to graphical models
with continuous variables. It is particularly interesting to see whether the computationally efficient
and nearly sample-optimal method introduced in the present work could be useful for designing
efficient learning algorithms that can improve the state-of-the-art in the well-studied case of Gaussian
graphical models, for which it has been recently shown that the information-theoretic lower bound on
sample complexity is tight [14].



Broader impact

We believe that this work, as presented here, does not present any foreseeable societal consequence.
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