Supplementary Material

This document contains supplementary materials for the paper "Efficient Learning of Discrete
Graphical Models". Section A contains a detailed discussion about Conditions (C/) and (C2). In
Section B, the reader can find the proofs for the error bound on GRISE estimates. Section C contains
the proofs relatives to the computational complexity of GRISE and its efficient implementation. In
Section D, the reader can find the proofs in connection with the NPC constant and relative to structure
and parameter estimation with SUPRISE. Finally, Section E contains the proofs for the applications
of SUPRISE for structure and parameter estimation of iconic special cases.

A About well-posedness and local learnability conditions

A.1 About condition (C1)

To illustrate further why Condition (C/) is required, we look at a case where the local constraint
set is trivial, i.e. J; = R¥ and we consider a model that violates Condition (C!). This implies

that there exists a sequence z,, € X; such that 27 1(6*)z,, /| 27 ||* < pn with p, — 0. In the limit,

we can find a vector z such that z7 I(#*)z = 0 and |z || = 1. In other words, it implies that for
this model there exists a vertex ¢ and a perturbation vector z € A; such that - # 0 and for which

E {(Z ek, Thgik(a k))Q] = 0. Since the probability distribution in Eq. (1) is positive, it further

implies that for all configurations ¢ we have the functional equality ), . Txgix(c)) = 0. This
enables us to locally reparameterize the distribution:

exp (Z Qka(Qk)> = exp (c(g,g\i) + Z (05 — xk) fk(gk)> , 27)

keK; keK;

where ¢(z,0\;) = > pex, ThPik (T ;) is @ sum of locally centered functions that does not involve
the variable o;. At this point, we should distinguish between the two cases when the basis functions
fx are centered or not. When the basis functions are centered, i.e. f = g, the residual in Eq. (27)
is identically zero, ¢(z, g\i) = 0. Therefore, the probability distribution of the model in (1) can be
reparameterized entirely with 0; — 0 — x) for k € IC;. It implies, as x1. # 0, that there exists
two parameterization of the same models with different target parameters and the model selection
problem as stated in Definition 1 is ill-posed. In the case when the basis functions are not centered,
i.e. fr # g, it may not be possible to reparameterized the whole distribution of the model. However,
the conditional probability distribution P(c; | g\i) can be reparameterized as it is proportional to

exp (X yex, Oifrl(ar)) and exp (e, (05 — z1) fr(oy)) thanks to Eq. (27). Thereby, even if
the model is unlquely parameterized with 07, local methods based on 1ndependent neighborhood
reconstructions using conditional distributions will fail at selecting a unique model as shown in the
following example.

Example 1. Consider two family of models over two binary variables o, s € {—1,1}, parameterized
by 6 and 1),
tg(o,s) xexp (6ho(s — 1) + bas(c — 1) + 03(0 + 5)) , (28)
and
(0, 8) X exp (mos + n20 + 135) - (29)

Both models are equivalent through the invertible mapping my, = 61 + 02, 12 = 63 — 01 and
N3 = O3 — O5. However the model in Eq. (29) that has centered basis functions satisfies (C1) from
Condition 1, while the model in Eq. (28) that has non-centered basis functions does not. This implies
that the parameters 8 cannot be recovered by looking independently at conditional distributions as
they are degenerate in this basis,

P(o | s) xexp((01 + 62)os+ (65 — 01)0), (30)
P(s| o) xexp ((01 + O2)os + (03 — 62)s) . 31)

Indeed the change of parameters 01 — 01 + €, 83 — 05 — € and 03 — 63 + € leaves the conditional
distribution (30) unchanged while the change of parameters 01 — 01 — €, o — 02 + € and
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03 — 03 — € leaves the conditional distribution (31) unaffected. Note that there does not exist a
change of parameters that leaves both (30) and (31) unchanged. This is in agreement with the fact
that the model in Eq. (28) is uniquely parameterized and can be in principle recovered by looking
jointly at both conditional distributions.

For the specific models that we considered in Section E, the basis functions are always centered,
which implies that failure to satisfy (CI) means that the model selection problem is ill-posed.

A.2 About condition (C2)

The bound on the interaction strength in (C2) translates directly into a uniform bound on the
conditional probabilities of the models as shown in the following lemma.

Lemma 1 (Lower-Bounded Conditional Probabilities). Consider a graphical model with bounded
maximum interaction strength of v = max;cy | maxy ;o 05 gir(ay)|. Then for any two disjoint
subsets of vertices A, B C V the conditional probability of o 4 given g g is bounded from below,

ex
P(oa|ap) > [] p|A| , (32)
€A

where |A;| is the alphabet size of o;.

Proof of Lemma 1: Lower-bound on conditional probabilities. We start by bounding the conditional
probability of one variable o; given the rest ¢ ;. This is given by the following expression,

exp (Ypex, Orfrlar))

Ploi | a\;) = : 33
o) = S o (v, O fel2) @
_ exp (Zkelci 05 (9ix(ay,) + dir(oni)))
= ; (34)
D oie, P (Xpex, 05 (gin(ap) + dir(oni)))
€xp (Zkelci ngik(gk)) (35)

- ZUiE.Ai exp (Zk}E’Ci ezgﬂ@ (Qk)) ’

as the centering functions ¢; (0, ;) are independent of o;. The last expression can be simply bounded
away from zero,

]P(g’- | o ) _ exp (ZkelCi Ql:gik(gk)) < eXp(—2’y)
o ZO’iGAi €xp (ZkGICi H]tgik (Qk)) - |Al| ’

using v > | 35 e, Ok gir(a)]-

Now we consider the conditional probability of one variable o; given a subset of variable g 5 where
B CVandi ¢ B. Denote the complementary set of ¢ and B by S =V \ ({i} U B). Then using the
chain rule and the inequality from Eq. (36) we find the following lower-bound,

(36)

O'z|UB Z]PO'ZO'S|O'B) (37)
:ZIP(Ul | 0s.05)P(as | ap) (38)
:ZIP(Ui | 0\i)P(as | ap) (39)

exp(—27)
Z AT 40
T Al (40)

Finally we consider the conditional probability of a set of variable o 4 given another set ¢ 5 where
AN B = {). Denote the vertices in Aby {1,2,...,|A|}. Then using the chain rule and the inequality
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from Eq. (36), we obtain the desired result,

Ploalop)= [ Plojlap.oi,. - o), (41)
=T Al
exp(—27)
—27) 4
> 11 e (42)
J=1,..,|A]
O

B Proofs of GRISE estimation error bound

. . 2
Proposition 3 (Gradient Concentration for GRISE). For some node u € V, let n > 2—?; log( 2?1“ ),

then with probability at least 1 — 01 the components of the gradient of the GISO are bounded from
above as

[VSn (@)oo < €1 (43)

Define the residual of the first order Taylor expansion as

Proposition 4 (Restricted Strong Convexity for GRISE). For some node v € V, let n >
2

e% log (%) and assume that Condition 1 holds for some norm || - ||. Then, with probability

2

at least 1 — 6y the error of the first order Taylor expansion of the GISO satisfies

[AT,|I” — eal|A[IR

* Pu
05,(8.8) > exp(—) Sl 2

(45)

forall A € X, C RK«.

We first prove Theorem 1 before proving the propositions.

Proof of Theorem 1: Error Bound on GRISE. For some node wu IS V, let n >
214;;2(14»;7\)2647 1
aip?

in the constraint set from Eq. (6), we find that for A = Eu -0

og(“;i). As the estimate Eu is an e-optimal point of the GISO and @ lies

€ > 8a(8,) — Su(6) (46)
= (V8n(€,), A) + 6Sn (A, 8,,) 47)
> —[IVE. (@)l [ All1 + 650 (A, 8,,)- (48)
Using the union bound on Proposition 3 and Proposition 4 with §; = 0o = % and
2,— 2,— 2
puce pue Pult
= — -, = — 49
) T AR 17) T 8072 )
we can express the inequality as
WJIAT |12 — el A2
NI 15 | et 50

2+ Al

Since by assumptions |87 |1 < - and ||§u |1 <7 fory <7 as the estimate is an e-optimal point of
the ¢ -constrained GISO, the error ||Al]; is bounded by 27. By choosing

and after some algebra, we obtain that

laz) < 3. (51)
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B.1 Gradient concentration
The components of the gradient of the GISO is given by

0 ¢ 1 ¢
89k = > —gulo o) exp ( > bigule ) : (52)
t=1

ey

Each term in the summation above is distributed as the random variable

Xuk = —guk(gy,) €xp ( Z 0% 9u gy ) Vk € KCy. (53)
lek,
Lemma 2. Foranyu € V and k € KCy, we have
E [X,4] = 0. (54)
Proof. Simple computation. O

Proof of Proposition 3: Gradient Concentration for GRISE. The random variable X, is bounded
as

[ Xuk| = |gur ()| exp < Z 0% Gur (), ) < exp(7). (35
k€K
Using Lemma 2 and the Hoeffding inequality, we get
0 . nes
P (‘B—QICSH(QU) > 61) < 2exp <—2€—27) . (56)
The proof follows by using (56) and the union bound over all £ € KC,,. O

B.2 Restricted strong convexity

We make use of the following deterministic functional inequality derived in [18].
Lemma 3. The following inequality holds for all z € R.
2

2+ 2|

e —1+2z> (57)

Proof of Lemma 3. Note that the inequality is true for z = 0 and the first derivative of the difference
is positive for z > 0 and negative for z < 0. O

Let Hy, 1, denote the correlation between g, and g, defined as
Hyyky = B [gun, (Ok, ) gukz (2,)] (58)

and let i = [Hy,1,] € RIFulxIFul be the corresponding matrix. We define H similarly based on the

empirical estimates of the correlation Hy,, 1, = Zt 1 Guk: (J;Cl)) Guks (o*gC )) The following lemma

bounds the deviation between the above two quantltles

Lemma 4. Choose some node u € V. With probability at least 1 — 2K2 exp ( ne§> we have

|I:Ik17€2 - Hk1k2| < €2, (59)
SJorall ky, ke € IC,.

Proof of Lemma 4. Fix ki,ks € K,. Then the random variable defined as Y,
Guk: (T, ) Juk, (0}, ) satisfies [ Yy, x,| < 1. Using the Hoeffding inequality we get

~ n62
P (|Hk1k2 — Hyp| > 62) < 2exp <—72> . (60)

The proof follows by using the union bound over k1, ko € IC,,. |
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Lemma 5. The residual of the first order Taylor expansion of the GISO satisfies
ATHA

A 61
)3 TAT, (1)

05n (A, 0,) > exp(—y

Proof of Lemma 5. Using Lemma 3 we have

58n(A,0%) = Zexp <_ 3 HZguk(g,(:))> x (62)

ke,
(exp (— 3 Akguk@“)) 1+ Y Akguk@;“)) (63)
kEK, ke,
ATHA
Z exp(_ﬁ/) ONE (64)

¢
2+ Zke]cu Aggur(ay )l

The proof follows by observing that | >, - Agguk (gg)ﬂ < ||A;1- O
We are now in a position to complete the proof of Proposition 4.

Proof of Proposition 4: Restricted Strong Convexity for GRISE. Using Lemma 5 we have

ATHA
3Sn(A,8) > ex —_— 65
ATHA + AT(H — H)A
= exp(— 66
Q ATHA - &||A|2

> exp(— (67

® pul AT, |2 — 2| A2
> exp(— * . 68

where (a) follows from Lemma 4 and () follows from Condition 1 as

2
ATHA =T < > Akguk (Qk)) : (69)
kEK,

O

C Efficient implementation of GRISE and its computational complexity

The iterative Algorithm 2 takes as input a number of steps 7' and output an e-optimal solution of
GRISE without constraints in Eq. (74). This algorithm is an application of the Entropic Descent
Algorithm introduced by [1] to reformulation of Eq. (13) as a minimization over the probability
simplex. Note that there exist other efficient iterative methods for minimizing the GISO, such as the
mirror gradient descent of [2]. The following proposition provides guarantees on the computational
complexity of unconstrained GRISE.

Proposition 5 (Computational Complexity for Unconstrained GRISE). Let 1 > ¢ > 0 be the
optimality gap and T > 6e=21n (2K, + 1) be the maximum number of iterations. Then Algorithm 2

is guaranteed to produce an e-optimal solution of GRISE without a constraint set Y,, with a number

of operation less than C—~ % In(1 + K,,), where Cq is an upper bound on the computational

complexity of evaluating any g;(0,.) for k € K; and C' is a universal constant that is independent of
all parameters of the problem.
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11
12

Algorithm 2: Entropic Descent for unconstrained GRISE

// Step 1: Initialization

:c,lg7+ — 1/(2K, + 1), x,lgﬁ — 1/2K, +1),Vk € Ky;
Yyt 1/2K, + 1), 7 < /2In (2K, + 1);

// Step 2: Entropic Descent Steps
fort=1,...,T do

// Gradient Update:

o = =Sz, —2'))/SFE! —z1));

wyf =z}, exp(—n'ug), wy =z}, _exp(n‘og);
// Projection Step:

2=y Ve, (w0 + w0 ):

+ —_
t+1 W, t+1 W .
xk,-‘r N xk,— = z

t
yt-l-l — y?;
// Step Size Update:
P ety Jo
end
// Step 3:

s =argmin,_; 7S} —28)):

return Eu =7(zf —2);

Proof of Proposition 5: Computational complexity of unconstrained GRISE. We start by showing
that the minimization of GRISE in Eq. (13) in the unconstrained case where ), = R¥« is equivalent
to the following lifted minimization on the logarithm of GRISE,

i log S, (6 70
o Min - log (0.,) (70)
st. 0, =7 —z7) (71)
y+ > (zf +ap) =1 (72)
k
y> 0,28 > 0,2, >0,Vk € K,,. (73)

We first show that for all §,, € R¥« such that ||g,,||1 < 7, there exists zT, ™, y satisfying constraints
(71), (72), (73). This is easily done by choosing IZ = max(0y/7,0) , x,, = max(—0;/7,0) and
y =1—6,ll1/7- Second, we trivially see that for all §,,, 2", z~,y satisfying constraints (71),
(72), (73), it implies that ,, also satisfies ||0,][1 < 7. Therefore, any &;,"" that is an argmin of
Eq. (70) is also an argmin of Eq. (13) without constraint set ),,. Moreover, if we find 8, such that
log S,,(65) — log S, (8™™) < €/+/3, we obtain an e-minimizer of Eq. (13) without constraint set ),
Indeed, since ¢/v/3 < log(1+¢) for 1 > ¢ > 0, we have that S, (65,) — S,, (™) < S, (6™ Ve < ¢
as S, (6,™) < S,(0) = 1. The remainder of the proof is a straightforward application of the analysis
of the Entropic Descent Algorithm in [1, Th. 5.1] to the above minimization where ¢,, has been
replaced by T, 2™,y using Eq. (71). In this analysis we use the fact that the logarithm of GRISE
remains a convex function as it is a sum of exponential functions and also that the gradient of our
objective function is bounded uniformly by ||V 1og S, (0,)llcc = [[VSn(8,,)/Sn(l,)]lec < 1 as
lgx(g;)| < 1. Note that the computational complexity of the gradient evaluation is proportional to
nK,cy. This is because for each sample, one has to first compute an exponential containing K,
terms gy (¢,;,) with an evaluation cost of ¢, and then multiply the exponential by the factor —gy (o)
corresponding to each of the K, components of the gradient. O

When the constraint set ), is parametrically complete, an e-optimal solution to (13) can be found by
first solving the unconstrained version of GRISE and then performing an equi-cost projection onto
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V.. We define an e-optimal solution to the unconstrained GRISE problem as

~unc

8,0, )< min 8,00, +e (74)

—U — ~
0,:18, 1<

Lemma 6. Let EZHC be an e-optimal solution of the unconstrained GRISE problem in Eq. (74). Then

~unc
an equi-cost projection of §,,  is an e-optimal solution of the constrained GRISE problem,
~Unc

Sn(Py, (02 < i Sn(0,) +c. 75
(Py. (0. ) . T (0,) +e€ (75)

Proof of Lemma 6. Since unconstrained GRISE is a relaxation of GRISE with the constraints §,, € Y,
we must have

)<  min  S,(8,) te< min Sn(8,) + e (76)
0.:10, 1<~ 0., €Vu:ll0, <7

Since, ), is parametrically complete, by definition,

~unc

S (Py. (@) = Su(@): (77)
The estimates Py, @zm) are feasible for the constrained GRISE problem, completing the proof. [J

Lemma 6 implies that the computational complexity of GRISE for parametrically complete cases is
the sum of the computational complexity of the unconstrained GRISE and the projection step.

Algorithm 3: Computing GRISE estimates for parametrically complete constraints

// Step 1: Solve unconstrained GRISE

Use Algorithm 2 to obtain solutions Eim to the unconstrained GRISE ;
// Step 2: Perform projection step

. ~unc . .
Project §,, onto ), to obtain the final estimates;
~Unc

8, ="Py, 0, )
return 0,,;

Algorithm 3 is an implementation of GRISE for parametrically complete cases. Its computational
complexity is obtained easily by combining Lemma 6 and Proposition 5.

Theorem 3 (Computational Complexity for GRISE with P.C. Constraints). Let ), be a parametrically
complete set and let 1 > € > 0 be given. Then Algorithm 3 computes an e-optimal solution to GRISE

NUNC

with a number of operations bounded by CZ‘%K“ In(1 + K,) + C(Py, (8, )), where cg is an

upper bound on the computational complexity of evaluating any g;x(c}.) for k € K; and where
C(Py, (QZM)) denotes the computational complexity of the projection step.

D Proofs & algorithms for structure and parameter estimation

D.1 Dimension independence and easier computation of NPC constants

We recall the definition of the NPC constant,

o= gy 1, ) > Y zhi(a) | |- (78)
c cli . =
csli gcez)(; Ty €A \KE[d,,

In order to give an intuition for the intricate formula in Eq. (78), let us define for maximal cliques ¢ €

M (G), their clique parameterization matrix G, with indices being maximal factors k, k' € [c] .
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The clique parameterization matrix is obtained by summing over variable ¢, the globally centered
basis functions,

Pe= > hi(g)hw(a,) (79)

o, €A

Note that the clique parametertization matrices are positive semi-definite matrices by construction.
Bounding the expectation over o; using Lemma 1, we see that the NPC constant is linked to the
smallest eigenvalue of the clique parameterization matrix,

-2
PO > P2,y e (80)
qi
Clique parametertization matrices have a typical size of O(g* x ) since variables in a clique can
take up to O(q") different configurations. Therefore, Eq. (80) emphasizes that that the NPC constant
does not depend on the dimension of the model p but rather on local properties of the parameterization
of the family.

D.2 Proofs for local learnability condition from nonsingular parametrization of cliques

Proof of Proposition 1: LLC in {~, 2-norm. For a given vertex i € V,letz € X; C R¥: be a vector
in the perturbation set. First, suppose that {¢} is not a maximal clique and choose any maximal clique
¢ € Mg (G) that contains the vertex ¢ and let the set S = ¢\ {i} be the set of nodes in the clique
without . The expression characterizing the LLC can be evaluated conditioning the expectation over
S. Denoting the marginal and the conditional probability distribution used to compute expectation by
subscripts, we find,

E (Z xkgik(gk)) =B o) | Bloslos) (Z Iink(Qk)) : (81)
kelkC; L kelC;

>P |5 5 (Zwkmm) @

Lj€s os€As \kek;

where in the last line, we bounded the probability of P (o g | o\ g) using Lemma 1. We want to rewrite
the sum over g4 in Eq. (82) using globally centered functions hy, for factors k € [c]sp instead of

locally centered functions g;;. Using definitions of locally centered functions in Eq. (3) and globally
centered functions in Eq. (22), we see that g;;(c,) = hi (¢;,) + Rix(g,), where

—1)7l
Rilop) =~ Y (| )| > fulay)- (83)
TEP;?E})\@ "oa,

The sum in Eq. (82) can be expanded into the four contributions,
2

2
Z (Z Iink(Qk)) = Z Z zphi(a,) (84)

og€As \keK; gg€As \ke[cly,

+ Z Z Ty Z hi(c.)gi(a;) (85)

keld,, lEK\d,,  2s€As
+ Z Z Ty Z hi(a.)Ra(c.) (86)
ke[, 1€y, os€As
2
+ > > wmgnlon)+ Y wBale) | - 8D
os€As \keKi\[d,, keld,,

We start by evaluating the contribution from terms in Eq. (85). For k € [c], and | € K; \ [c],, there
exists at least one node u € ¢ such that u # i and u ¢ Ol. Summing over the variable o, cancels the
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expression,
> hla.)gale) =0, (88)
ouEAL
as hi(o,) is globally centered and g;;(o;) does not depend on o,.

The contribution from Eq. (86) is also null. To see this we expand the sums using the formula for the
reminder in Eq. (83),

—1)I"l
Z hk(gc)Rll(gc) = - Z ( |jz| Z hk(gc) Z fl (Qc) = 07 (89)

og€As reP(A1)\0 ogg€As
r#{i}

where the sum over g ¢ vanishes as h;(c,.) depends on o, # o; while ) fi(c..) does not. As the
contribution from Eq.(87) is non-negative, we can lower- bound Eq. (82) by 'the following expression,
2

(Z Iink(Qk)) > 1] eXITA | LU/ S DD whule) , (90)

keK; JjES gs€As \keld,

_Hexp |2” TS 1)

JES kE[c

where in the last line we have recognized the definition of the NPC constant from Eq. (23). Since (91)
holds for any ¢ € M.y; (G) that contains the vertex 4, the Local Learnability Condition is satisfied for
a weighted /o 2-norm with LLC constant equal to pNPC

2
(Z kaik(Qk)) > pC 2 |12 w(c0,2) 92)
keK;
where the weighted /. o-norm is defined as follows,
exp(—2y)
||27;- w(o0,2) = I?Sf‘ H ﬁ Z w% (93)
cEMai(9) \ Jec\{i} T keld,,

As the weighted /o 2-norm in Eq. (93) is lower-bounded by the £, 2-norm,

L—-1
exp(—27)
oz ()

lzr, (94)

00,2

we have that the LLC is also satisfied for the {. 2-norm with LLC constant equal to

L—1
pNPC (expg—hz)
1 q *

When {i} is a maximal clique, then K; = [{i}], and it straightforward to see that
2

2
(Z kaik(Ek)) =Eq,) Z zphi (o) 95)
ke

kelC; [{Z}]<
>p"C Y g (96)
kel[{i}]y,
Od

Lemma 7. Let 0 € A, be a discrete random variable with probability distribution p(o). Consider
r, € R, a function defined over o that is centered, i.e. ) __ , x, = 0. The variance of the function
Z, is lower-bounded by,

Var (2] > puin Y 2, (97)
ceA

where Pmin = minUGA p(O’)
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Proof. The proof goes as follows,

Var [z,] = Z p(o) (:CU - p(o’)xg/> (98)

ceA

2
> Dmin (Ia - p(U’)Iw) (99)

2
= Pmin - 2$a Z P(UI)UCU' + <Z p(U/)an’> ) (100)

oceA o’€A og’'€A
> Prin ) T (101)
oeA
where in the last line we used that ) __ , x5 = 0 and (ngeAP(U/)fa’)Q > 0. O

Proof of Proposition 2: LLC in {y-norm for pairwise models. For a given vertex ¢ € V, let x €
X; C R¥ be a vector in the perturbation set. When {i} is a maximal clique, then K; = [{i}],, and
we immediately see that

2

2
(Z kuik(%)) =E(, > Qkhk((fi) (102)
ke

ke,

>pPC N g (103)
ke[{i}tsp

Now suppose that {i} is not a maximal clique, i.e. there exists j € V such that {4, j} € M.y (G*).
The expectation that arises in the LLC is lower-bounded by its variance,

(Z kuik(Qk)) > Var

ke,

> xkgl-k(gk)l : (104)

ke,

Let {S,}r=1,.. be a minimal coloring of the graph G*. For a given color r, define the set C, =
Sy \ {#} and apply the law of total variance on the right-hand side of Eq. (104), conditioning on a\c,»

> wrgin(a) TP [Z z1gin (s H : (105)

kelC; keK;

= E

where the marginal and the conditional probability distribution used to compute expectation and
variance respectively are indicated by subscripts. As the variance on the right-hand side of Eq. (105)
is conditioned on g, ¢, , only basis functions involving a pair (0i,0;) with j € C, are giving a
non-zero contribution to the conditional variance,

= Var (cc,lo\c,) Z Z Trgik (03, 05) | - (106)

JECH kel{ii}]up

ar X a
Vi (cc, o) [ E ki (k)
kEK;

We can rewrite the locally centered functions with respect to globally centered functions using their
definitions found in Eq. (3) and in Eq. (22),

1
gik (04, 05) = hi(04,05) — |A | ka 0i,05) m Z Jr(oi,05). (107)

We see from Eq. (107) that the difference between locally and globally centered functions only
depends on the variable o;. This means that we can interchange locally centered functions with
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globally centered functions in the right-hand side of Eq. (106) as the variance is conditioned on o,

Var (eo,lo\c,) Z Z ik (04, 05) zVa (ec,love,.) Z Z zihi(0i,0;)

FECr ke[{id}]up JECT kel{id}).p
(108)

Since {S, },=1,... y is a vertex coloring, by definition all nodes j € C, having the same color are not
sharing a factor node i.e. V41,2 € Cp, Ak € K* such that Ji,J2 € Ok. This implies that variables
o; with j € C, are independent conditioned on the remaining variables ¢\ o, and the variance in
Eq. (108) can be rewritten,

Var (20, 10\0,) Z Z zihi (o4, 05) :ZVar(lj‘z\CT) Z zihy(o;,05)

JE€C ke[{ii}.p JjeCy ke({i,5},
(109)

The right-hand side of Eq. (109) is centered with respect to o; and we can apply Lemma 7 and
Lemma 1 to find a lower-bound that is only dependant on the random variable o;,
2

ZV&I(Q]_'Q\CT) Z xkhk(ﬂ'i,o'j) _exp 27 Z Z Z xkhk(”i,ﬂj)

jec, ke[{i.0}p J€C, 0,€A; \kel{id}.,
(110)

Plugging back the results derived in Eq. (108), Eq. (109), and Eq. (110) into the initial inequality in
Eq. (105), we find,
2

Zxkgzk 0k1>]E(al exp(=27) 27 Z Z Z xrhi (o4, 05) , (11D

keK; JjeCraeA; \ke[{ij},,

> exp 2'7 NPC Z Z xi, (112)

J€Cr ke[{i,g}l,,

where in Eq. (112) we used the definition of the NPC constant in Eq. (23) to bound the quadratic
form involving z.

Finally, we average the inequality described by Eq. (112) over the different colors and hence possible
conditioning sets C,. to conclude the proof,
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D.3 Proofs of estimation guarantees for the SUPRISE algorithm

Proof of Theorem 2: Reconstruction and Estimation Guarantees for SUPRISE. As the NPC con-
stant is non-zero pNX¥¢ > 0 for all nodes u € V, we apply Proposition 1 in conjunction with
Theorem 1 to find that for each step ¢ € {0, ..., L—1} and with probability at least 1—¢/(pL), GRISE
around a node u € V recovers the parameters in each maximal clique ¢ € My (G [(V, K')]) that
contains u with precision 33, ., (€, — 0;)* < («/2)*. Therefore, at each step t € {0,...,L — 1}
and with probability at least 1 — ¢ /L, the factor removal procedure is guaranteed to remove all factors
of size L — ¢ that are not present in the graph if all factors of size bigger than L — ¢ were correctly
removed in the previous steps. Since there are at most L removal steps, it implies that the overall
procedure discovers all maximal cliques with probability at least 1 — 4.

a
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E Application to special cases

In this section, we show how to apply Theorem 2 in order to derive the sample and computational
complexity of reconstructing graphical models for some common basis functions.

E.1 Binary models on the monomial basis

In this subsection, we consider general models on binary alphabet A; = {—1,1}. Let the factors be
all nonempty subsets of {1,...,p} =V of size at most L,

K={kCV|K <L} (115)

The set IC contains all potential subsets of variable of size at most L. The parameterization uses the
monomial basis given by fi(c,) = [[ ¢, 0j with k € K. Note that the monomial basis functions are

already globally centered fx, = g = h. The probability distribution for this model is expressed as

1
vinay (@) = exp | > 0p [T oy |- (116)

keK  jek
When L < 2, the model in Eq. (116) is pairwise and it is referred as the Ising Model.
For each maximal clique there exists exactly one maximal factors in its span. Therefore, the NPC
constant as defined in Eq. (23) is pnpc = 1 since for any clique ¢ we have,
2 2

S oS ane)) =2 ([ =23 am

Tevu €A\ \KE[c], ge{—1,1}el71 \i=1

and the minimum is achieved for cliques of size one. As every node is involved in at most K < p*~!

factor functions, the structure of binary models can be recovered as a corollary of Theorem 2.

Corollary 1 (Structure recovery for binary graphical models). Let o), ... ¢(") be i.i.d. sam-
ples drawn according to p(c) in (116) and let o < mingeg(g-) |0;| be the intensity of the smallest
non-zero parameter. If

0

then the structure of the binary graphical model is perfectly recovered using Algorithm 1, i.e.

S = $(0"), with probability 1 — 6. Moreover the total computational complexity scales as O(p*),
for fixed L, o, y, ¥ and 4.

52 1 \2 4vL 4L 2L—1
> 912420 ‘:ZR ¢ log( P ) (118)

For pairwise Ising models that are x colorable, we have also guarantees on the £5-norm reconstruction
by SUPRISE of pairwise parameters.

Corollary 2 (¢5-parameter estimation for Ising models). Let oM, ..., 0™ beiid samples drawn
according to p(c) in (116) for L = 2 and let o > 0 be the prescribed estimation accuracy. If
<2 1 V24,2 5,87 8 3
n> 216%1% (%) 7 (119)
a

then, with probability at least 1 — 0, the parameters are estimated by Algorithm 1 with the error

(120)

The computational complexity of obtaining these estimates is (5(p2)f0rﬁxed X, @, Y, Y and 9.

As graphs with bounded degree d have a chromatic number at most d + 1 > , Corollary 2 recovers
the ¢>-guarantees for sparse graphs recovery of [18] albeit with slightly worse dependence with
respect to v and «. The worse v dependence is an artifact of the general analysis presented in this
paper. For models over binary variables one can improve the 27 dependence to €% using Berstein’s
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inequality in Proposition 3 instead of Hoeffding’s inequality. However, the worse o dependence
seems to be more fundamental. It is caused by the replacement of the ¢;-penalty used in [18] by an
{1-constraint.

For graphs with unbounded vertex degree but low chromatic number, such as star graphs or bipartite
graphs, Corollary 2 shows that the parameters of the corresponding Ising model can be fully recovered
with a bounded ¢5-error using a number of samples that is only logarithmic in the model size p.

E.2 L-wise models with arbitrary alphabets on the indicator basis

In this subsection, we consider L-wise graphical models over variables taking values in arbitrary
alphabet A; of size g;, parametrized with indicator-type functions. The building block of the set of
basis functions is the centered univariate indicator function defined as

o B 1_5, if o; = s, (121
8i,04 — _L, otherwise, :

i
where s;,0; € A; are prescribed letters of the alphabet. The univariate indicator functions in
Eq. (121) are centered Kronecker delta functions and possess similar properties such as symmetry
O, 0, = Po, s, and contraction under a summation,

Z ¢7i75i¢7i,0'i = (I)si,ai' (122)
T, EA;

The set of factors K are pairs associating elements of R = {r € P(V) | |r| < L} which are subsets
of variable of size at most L with an alphabet configuration in A, = &), ., A,

K={(r,s,)|re€R,s, €A} (123)

In what follows, we slightly abuse the notation of factors and parameters by shortening (r, s,.) = s,..
With these notations, the indicator basis functions are constructed as f; (o T) =[I;c, ®s;,0,- Note
that the indicator basis functions are globally centered i.e. fs = gs = h, . The probability
distribution of an L-wise graphical model with arbitrary alphabet is defined as follows,

,Ufgeneral(g) = - eXP Z Z 3* H(I)SI oi | - (124)

r€ER s €A, S

The family of distribution in Eq. (124) is not uniquely parameterized by the parameters 6*. To see
this, we introduce the linear application P, acting on arrays 6, as follows,

> 0 [ ®sc- (125)

5,.€A- €T

Using the contraction property from Eq. (122), it is easy to see that P, is a projector, i.e P? = P,.
It is also straightforward to verify that .0 is always a globally centered array and if 6 is already
globally centered then P,.f = 8. Therefore, the applications P, are projectors on the space of array
05, which are globally centered, i.e. Zs,- s, = Oforalli € r. We lift the parametrization degeneracy
in Eq. (124) by imposing that parameters §* are in the range of the projector P,.. We thus require that
the parameters satisfy the following linear constraints at each vertex u € V,

Y= {Qu eR¥v |vier, Y 0, = o} . (126)

reER si€A;
rOU

The constraint set in Eq. (126) is parametrically complete according to Definition 2 as we explicitly
exhibited the equi-cost projection {P,.}.c g onto it. The computational complexity of this projection
is no more than O(pL~1¢%).

As the constraint set in Eq. (126) forms a linear subspace, the perturbation set is simply X, =
Y N B1(27), the intersection of the constraint set with the ¢1-ball of radius 25. Maximal cliques
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are subset of vertices and hence are also elements of R. Therefore, the NPC constant as defined in
Eq. (23) is bounded by pnpc > exp(—27)/q since for each clique we have,

2

Boo| 3| X whited ] | =220 S (1w, ) a2

gy i€A \kE[d, G glea.

—2
= M Z x;, (128)
qi o e,

as x € X, is globally centered and thus is in the range of the projector P.. Every node is involved in
at most K < p~1¢” factor functions and the structure of L-wise models with arbitrary alphabets
can be recovered as a corollary of Theorem 2.

Corollary 3 (Structure recovery for L-wise graphical models). Let o), ... ¢(") be i.i.d. sam-

ples drawn according to p(c) in (124) and let oo < mingcg g~ /Z§ ca. Us 2 be the intensity of

the smallest non-zero parameter. If

n> 214q2L7 (129)

2(1 +7)2et(E4D) 4Lg?Lp?L-1

log ,
a* 8

then the structure of the L-wise graphical model with arbitrary alphabets is perfectly recovered using

Algorithm 1, i.e. $ = $(8"), with probability 1 — 6. Moreover the total computational complexity

scales as O(pl), for fixed L, q, o, v, 5 and 4.

For pairwise models with arbitrary alphabet that are x colorable, we have also guarantees on the
{2-norm reconstruction by SUPRISE of pairwise parameters.

Corollary 4 (¢5-parameter estimation for pairwise models). Let g(l), e o™ be iid. samples
drawn according to p(o) in (124) for L = 2 and let o > 0 be the prescribed estimation accuracy. If

2(1 4 7)2y2el2Y 8qtp®
log ,
at 0
then, with probability at least 1 — 6, the parameters are estimated by Algorithm 1 with the error

Yoo > e, 6P s % (131)

i,jeV S-;G.Ai,sj' G.A]'

n> 214q47

(130)

The computational complexity of obtaining these estimates is o (p?) for fixed x, q, o, 7, 7§ and 0.
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