
We thank the reviewers for their careful consideration of our paper and their uniformly positive feedback. We will1

incorporate all minor comments and typos in the final version of our paper. Below we address specific questions and2

comments by the reviewers.3

Reviewer 14

Our paper establishes SQ lower bounds against weakly learning an unknown function in the given class. As correctly5

pointed out by the reviewer, our lower bound construction produces instances in which OPT is close to 1/2. Proving6

SQ lower bounds for the case that OPT is a small constant is left as an interesting open question that may require7

additional ideas.8

The reviewer is correct that our lower bound works for the (broader) class of SQ algorithms – as opposed to only CSQ –9

even for ReLUs, essentially because the class of hard functions are boolean-valued. We will clarify this point in the10

final version.11

We will add the definition of the unsupervised SQ dimension in our revised version, as well as the definition of12

χ2-divergence.13

We will add intuition regarding the notion of correlation. Intuitively, one can always think correlation as a metric of the14

closeness of two functions. For boolean-valued functions, correlation is closely related to the probability the functions15

disagree/agree. So, finding a function with a high correlation is the same as finding one with small error.16

Reviewer 217

As pointed out by the reviewer and explained in the discussion section of our paper, our SQ lower bounds are18

qualitatively optimal, up to a degree of the polynomial in the exponent. In particular, we prove an SQ lower bound of19

dΩ(1/ε) for agnostically learning LTFs (under Gaussian marginals). In comparison, the best known algorithm for the20

problem has runtime dO(1/ε2); and the best previous lower bound was dΩ(log 1/ε).21

It remains an interesting open question for future work whether dΩ(1/ε2) is an SQ lower bound for the problem.22

Typos/Definition: We will revise line 42 and add the definition of a k-decision list in the final version.23

Regarding the potential existence of faster PTAS for the problem: Suppose there was an algorithm for agnostically24

learning LTFs under Gaussian marginals that achieves error (1 + γ)OPT + ε and runs in time poly(dlog(1/γ), 1/ε).25

Then, by setting γ = ε and using the fact that OPT is at most 1, we would obtain an algorithm with error OPT+ 2ε26

that runs in quasi-polynomial time (as a function of 1/ε).27

Proof of Proposition 3.3: We will add a clarification to line 274. In the proof, we need the breakpoints to be distinct, (as28

is stated in the beginning of the proof). In the proof of Proposition 3.3., we work with functions that have at most k + 129

breakpoints, which means that for some ε it is possible that for some values of i, bi and bi+1 may be equal. Of course,30

the compactness argument shows the existence of such a function and indeed it may have less than k + 1 breakpoints,31

which will in fact yield a function with higher correlation. (Note for example that, if we knew that the function has
√
k32

breakpoints, we could improve the lower bound to dΩ(1/ε2).)33

Reviewer 334

Thank you for pointing out this concurrent related work. We will add a paragraph with a comparison to our results and35

techniques in the revised version of our paper.36

Thank you for the detailed technical comments. We will address them in the final version. We will also add prose37

providing the intuition behind Lemma 3.8.38

Reviewer 439

Thank you for pointing out these typos. We will fix them in the final version and add the definition of χ2-divergence.40


