- We thank the reviewers for their careful consideration of our paper and their uniformly positive feedback. We will
- 2 incorporate all minor comments and typos in the final version of our paper. Below we address specific questions and
- 3 comments by the reviewers.

4 Reviewer 1

- 5 Our paper establishes SQ lower bounds against weakly learning an unknown function in the given class. As correctly
- 6 pointed out by the reviewer, our lower bound construction produces instances in which OPT is close to 1/2. Proving
- SQ lower bounds for the case that OPT is a small constant is left as an interesting open question that may require
- 8 additional ideas.
- 9 The reviewer is correct that our lower bound works for the (broader) class of SQ algorithms as opposed to only CSQ –
- even for ReLUs, essentially because the class of hard functions are boolean-valued. We will clarify this point in the
- 11 final version
- We will add the definition of the unsupervised SQ dimension in our revised version, as well as the definition of
- 13 χ^2 -divergence.
- 14 We will add intuition regarding the notion of correlation. Intuitively, one can always think correlation as a metric of the
- 15 closeness of two functions. For boolean-valued functions, correlation is closely related to the probability the functions
- disagree/agree. So, finding a function with a high correlation is the same as finding one with small error.

17 Reviewer 2

- 18 As pointed out by the reviewer and explained in the discussion section of our paper, our SQ lower bounds are
- 19 qualitatively optimal, up to a degree of the polynomial in the exponent. In particular, we prove an SQ lower bound of
- $d^{\Omega(1/\epsilon)}$ for agnostically learning LTFs (under Gaussian marginals). In comparison, the best known algorithm for the
- problem has runtime $d^{O(1/\epsilon^2)}$; and the best previous lower bound was $d^{\Omega(\log 1/\epsilon)}$.
- It remains an interesting open question for future work whether $d^{\Omega(1/\epsilon^2)}$ is an SQ lower bound for the problem.
- 23 Typos/Definition: We will revise line 42 and add the definition of a k-decision list in the final version.
- 24 Regarding the potential existence of faster PTAS for the problem: Suppose there was an algorithm for agnostically
- learning LTFs under Gaussian marginals that achieves error $(1 + \gamma)$ OPT + ϵ and runs in time poly $(d^{\log(1/\gamma)}, 1/\epsilon)$.
- Then, by setting $\gamma = \epsilon$ and using the fact that OPT is at most 1, we would obtain an algorithm with error OPT $+2\epsilon$
- that runs in quasi-polynomial time (as a function of $1/\epsilon$).
- 28 Proof of Proposition 3.3: We will add a clarification to line 274. In the proof, we need the breakpoints to be distinct, (as
- is stated in the beginning of the proof). In the proof of Proposition 3.3., we work with functions that have at most k+1
- breakpoints, which means that for some ϵ it is possible that for some values of i, b_i and b_{i+1} may be equal. Of course,
- 31 the compactness argument shows the existence of such a function and indeed it may have less than k+1 breakpoints,
- which will in fact yield a function with higher correlation. (Note for example that, if we knew that the function has \sqrt{k}
- breakpoints, we could improve the lower bound to $d^{\Omega(1/\epsilon^2)}$.)

34 Reviewer 3

- 35 Thank you for pointing out this concurrent related work. We will add a paragraph with a comparison to our results and
- 36 techniques in the revised version of our paper.
- 37 Thank you for the detailed technical comments. We will address them in the final version. We will also add prose
- providing the intuition behind Lemma 3.8.

39 Reviewer 4

Thank you for pointing out these typos. We will fix them in the final version and add the definition of χ^2 -divergence.