
Supplementary Material

A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.3

We prove the lemma for the random variable A. The proof for B is similar. From the definition of f ,
we have that Ez∼N (0,1)[f(z)] = 0, thus

E
z∼N (0,1)

[1{f(z) = 1}] = E
z∼N (0,1)

[1{f(z) = −1}]

or equivalently

E
z∼N (0,1)

[1{f(z) = 1}] =
1

2
. (5)

Similarly, from Ez∼N (0,1)[f(z)zt] = 0, we have

E
z∼N (0,1)

[zt1{f(z) = 1}] = E
z∼N (0,1)

[zt1{f(z) = −1}] . (6)

Let φ(z|f(z) = 1) be the probability distribution of z conditional that f(z) = 1. We have that

E
z∼A

[zt] =

∫ ∞
−∞

ztφ(z|f(z) = 1)dz =

∫ ∞
−∞

zt
φ(z)

Prz′∼N (0,1)[f(z′) = 1]
1{f(z) = 1}dz

= 2

∫ ∞
−∞

ztφ(z)1{f(z) = 1}dz =

∫ ∞
−∞

ztφ(z)1{f(z) = 1}dz +

∫ ∞
−∞

ztφ(z)1{f(z) = −1}dz

=

∫ ∞
−∞

ztφ(z)dz = E
z∼N (0,1)

[zt] ,

where we used Equations (5), (6).

A.2 Proof of Lemma 3.7

We start by noting that each F ∈ Fk is of the form Fv(x) = f(〈v,x〉), where f is the function
from Proposition 3.2 and v ∈ S. We will take σ to be σ(x) = sign(〈v,x〉+ β). Let z1, . . . , zk be
the breakpoints of f(z). We will show that if we set the value of β to a breakpoint, then the result
follows.

Let ai+1 =
∫ zi+1

zi
φ(z)dz for 0 < i < k + 1, a1 =

∫ z1
−∞ φ(z)dz and ak+1 =

∫∞
zk
φ(z)dz. Let

β = zl, for a breakpoint zl, and b = sign(f((zl + zl+1)/2)). Then we have that

E
x∼N (0,I)

[Fv(x)σ(x)] = 2

∫ ∞
zl

f(z)φ(z)dz = 2b

k+1∑
j=l

(−1)j−laj ,

where the first equality holds because

E
x∼N (0,I)

[Fv(x)1{x ∈ A}] = − E
x∼N (0,I)

[Fv(x)1{x ∈ Ac}] ,

for any A ⊆ Rd. From the fact that
∑k+1
i=1 ai = 1, it follows that there exists an index i such

that ai ≥ 1/(k + 1). Assume, for the sake of contradiction, that for all l > i we have that
|
∑k+1
j=l (−1)l−jaj | ≤ (1/4k), since otherwise there exists a breakpoint that satisfies the equation.

Then, for b = sign(f((zi + zi+1)/2)), we have that either 2b(
∑k+1
j=i+1(−1)j−iaj + ai) ≥ (1/2k)

or 2b(
∑k+1
j=i+1(−1)j−iaj + ai) ≤ −(1/2k). In the former case, we are done. In the latter case, the

halfspace −σ(x) satisfies the desired correlation property.

A.3 Proof of Fact 3.9

We define f to take alternative values ±1 in intervals of length s. Let us denote Ii = (is, (i+ 1)s)
for −1/(sεk) ≤ i ≤ 1/(sεk) for an integer i. If f(z) = 1 for z ∈ Ii, then we have f(z) = −1 for
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z ∈ Ii+1. Moreover, we will have that f(z) = 1 for z ≤ −1/εk and f(z) = −1 for z > 1/εk. We
assume that the number of constant pieces is even for simplicity. To prove that for all 0 ≤ t < k,
Ez∼N (0,1)[f(z)zt] < 4ε, observe that for all even moments the expectation is equal to zero. So it
suffices to prove the desired statement for odd moments. Note that Ez∼N (0,1)[z

tf(z)1{z ≥ 0}] =
Ez∼N (0,1)[|zt|f(z)1{z < 0}] for odd moments. Thus, we will prove that Ez∼N (0,1)[z

tf(z)1{z ≥
0}] ≤ 2ε. We have that ∫ ∞

1/εk
ztφ(z)dz ≤ εk/t ,

where we used the inequality Prz∼N (0,1)[|z|t ≥ y] ≤ 1√
2πy1/t

e−y
2/t ≤ 1/y1/t. Moreover, we bound

from above the absolute ratio between two subsequent regions, i.e.,
∣∣∣ Ez∼N(0,1)[z

tf(z)1{z∈Ii}]
Ez∼N(0,1)[ztf(z)1{z∈Ii+1}]

∣∣∣. For
i ≥ 0, we have that∫ (i+1)s

is
ztφ(z)dz∫ (i+2)s

(i+1)s
ztφ(z)dz

≤ s((i+ 1)s)tφ(is)

s((i+ 1)s)tφ((i+ 2)s)
= e2is2+2s2 ≤ 1 + 3is2 + 9i2s4 , (7)

where in the first inequality we used the maximum value and the minimum of the integral, and in
the second one we used that ex ≤ 1 + x + x2 for x ≤ 1, which holds for s < εk. Thus, for two
subsequent intervals we have∫ (i+1)s

is

ztφ(z)dz −
∫ (i+2)s

(i+1)s

ztφ(z)dz ≤ 4is2

∫ (i+2)s

(i+1)s

ztφ(z)dz ≤ 4ks2

∫ (i+2)s

(i+1)s

ztφ(z)dz .

On the other direction, from Equation (7) we have that

−
∫ (i+1)s

is

ztφ(z)dz+

∫ (i+2)s

(i+1)s

ztφ(z)dz ≥ −4is2

∫ (i+2)s

(i+1)s

ztφ(z)dz ≥ −4ks2

∫ (i+2)s

(i+1)s

ztφ(z)dz .

Thus, we have

−4ks2(t− 1)!! ≤
1/(sεk)∑
i=0

(−1)i
∫ (i+1)s

is

ztφ(z)dz ≤ 4ks2

∫ ∞
−∞

ztφ(z) = 4ks2(t− 1)!! .

Choosing s = ε(k+1)/2/kk and setting ε = ε/2, the proof follows.

B Omitted Proofs from Section 4

B.1 Proof of Proposition 4.1

To prove Proposition 4.1, we first need to prove that there exists a function that has non-trivial
correlation with the ReLU and whose first k moments are zero.

We have the following crucial proposition.

Proposition B.1. Let k be a positive integer. There exists a function f : R 7→ [−1, 1] such that
Ez∼N (0,1)[f(z)zt] = 0, for 0 ≤ t ≤ k, and Ez∼N (0,1)[f(z)ReLU(z)] > 1/poly(k).

The proof of Proposition B.1 requires analytic properties of the Legendre poynomials and is deferred
to Section B.2.

In the main part of this subsection, we prove Proposition 4.1, assuming Proposition B.1.

In the following lemma, we show that there exists a piecewise constant Boolean-valued function with
near-vanishing moments of degree at most k and non-trivial correlation with the ReLU.

Lemma B.2. For any ε > 0 and any non-negative integer k, there exists a piecewise con-
stant function G : R 7→ {±1} such that |Ez∼N (0,1)[G(z)zt]| ≤ ε, for 0 ≤ t ≤ k, and
Ez∼N (0,1)[G(z)ReLU(z)] > 1/poly(k) +O(ε).
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Proof. The proof is similar to the proof of Fact 3.9. The main difference here is that we
need to construct a function that will also have non-trivial correlation with the ReLU. To do
this, we use a probabilistic argument to show that there exists a function that is bounded in
the range [−1, 1], that has non trivial correlation, and then we discretize the function as in
Fact 3.9. Let f be the function from Proposition B.1. We split the interval [−1, 1] into sub-
intervals of length δ and we define the random piecewise constant function G in each inter-
val [z0, z0 + δ] as G(z) = 1 with probability (1 +

∫ z0+δ

z0
f(z)φ(z)dz/

∫ z0+δ

z0
φ(z)dz)/2 and

G(z) = −1 with probability (1 −
∫ z0+δ

z0
f(z)φ(z)dz/

∫ z0+δ

z0
φ(z)dz)/2. Thus, in each interval,

we have E[G(z)] =
∫ z0+δ

z0
f(z)φ(z)dz/

∫ z0+δ

z0
φ(z)dz. Then, for any |z0| ≤ 1− δ, we have that

E

[∫ z0+δ

z0

G(z)ztφ(z)dz

]
= E

[∫ z0+δ

z0

G(z)(z0 +O(δ))tφ(z)dz

]
=

∫ z0+δ

z0

f(z)φ(z)(z0 +O(δ))tdz

=

∫ z0+δ

z0

f(z)φ(z)ztdz +

∫ z0+δ

z0

t ·O((|z0|+ δ)t−1δ)dz

=

∫ z0+δ

z0

f(z)ztφ(z)dz + t ·O
(
(|z0|+ δ)t−1δ2

)
,

where we used the Taylor series zt = (z0 +O(δ))t + t ·O(δ(|z0|+ δ)t−1). Thus, we obtain

E

[∫ 1

−1

G(z)ztφ(z)dz

]
=

∫ 1

−1

f(z)ztφ(z)dz + t ·O(δ) = t ·O(δ) ,

where we used that all the moments of f with degree at most k are zero and that |z0| + δ ≤ 1.
Moreover, for 0 ≤ z0 ≤ 1, it holds that

E

[∫ z0+δ

z0

G(z)ReLU(z)φ(z)dz

]
= E

[∫ z0+δ

z0

G(z)zφ(z)dz

]
=

∫ z0+δ

z0

f(z)ReLU(z)φ(z)dz + t ·O
(
(|z0|+ δ)t−1δ2

)
,

where we used the same method as before. Thus, it follows that

E

[∫ 1

0

G(z)ReLU(z)φ(z)dz

]
=

∫ 1

0

f(z)ReLU(z)φ(z)dz + t ·O(δ) > 1/poly(k) + t ·O(δ) .

Define the random variable Xi,t =
∫ i·δ+δ
i·δ G(z)ztφ(z)dz and Xt =

∑1/δ
i=−1/δXi,t. Using Hoeffding

bounds, we have that

Pr[|Xt −E[Xt]| >
√
δ log(4/(t+ 1))] ≤ 1/(2(t+ 1)) ,

where we used that |Xi,t| ≤ δ. By the union bound, we get that there is positive probability that all
Xt are within ±

√
δ log(4/(t + 1)) from the mean value, and thus, from the probabilistic method

there is a function with this property. Furthermore, we round the rest of the values of G(z) as in the
proof of Fact 3.9 (because ReLU(z) = z for z > 0). Choosing the correct constant value of δ, the
result follows.

Lemma B.3. Let m and k be positive integers such that m > 2k + 5 and ε > 0. If there exists
an m-piecewise constant function f : R 7→ {±1} such that |Ez∼N (0,1)[f(z)zt]| < ε for all non-
negative integers t ≤ k, and Ez∼N (0,1)[f(z)ReLU(z)] > 1/poly(k) +O(ε), then there exists an at
most (2k + 5)-piecewise constant function g : R 7→ {±1} such that |Ez∼N (0,1)[g(z)zt]| < ε for all
non-negative integers t ≤ k and Ez∼N (0,1)[g(z)ReLU(z)] > 1/poly(k) +O(ε).

Proof. This proof is similar to the proof of Lemma 3.8. The only difference is that we have to keep
also the correlation with the ReLU constant. For completeness, we provide a full proof.

Let {b1, b2, . . . , bm−1} be the breakpoints of f . Let F (z1, z2, . . . , zm−1, z) : Rm 7→ R be an
m-piecewise constant function with breakpoints on z1, . . . , zm−1, where z1 < z2 < . . . < zm−1

and F (b1, b2, . . . , bm−1, z) = f(z). For simplicity, let z = (z1, . . . , zm−1) and define Mi(z) =
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Ez∼N (0,1)[F (z, z)zi], for all 0 ≤ i ≤ k and Mc(z) = Ez∼N (0,1)[F (z, z)ReLU(z)]. Finally, let
M(z) = [M0(z),M1(z), . . . ,Mk(z), arMc(z)]T . It is clear that

Mi(z) =

m−1∑
n=0

∫ zn+1

zn

F (z, z)ziφ(z)dz =

m−1∑
n=0

an

∫ zn+1

zn

ziφ(z)dz ,

and

Mc(z) =

m−1∑
n=0

∫ zn+1

zn

F (z, z)z1{z > 0}φ(z)dz =

m−1∑
n=0

an

∫ zn+1

zn

z1{z > 0}φ(z)dz ,

where z0 = −∞, zm = ∞, and an is the sign of F (z, z) in the interval (zn, zn+1). Note that
an = −an+1 for every 0 ≤ n < m. By taking the derivative of Mc and Mi in zj , for 0 < j < m,
we get that

∂

∂zj
Mi(z) = 2aj−1z

i
jφ(zj) and

∂

∂zj
Mc(z) =

{
2aj−1zjφ(zj), if aj > 0

0, if aj ≤ 0
.

Combining the above, we get

∂

∂zj
M(z) =

{
2aj−1φ(zj)[1, z

1
j , . . . , z

k
j , zj ]

T , if zj > 0

2aj−1φ(zj)[1, z
1
j , . . . , z

k
j , 0]T , if zj ≤ 0 .

We first work with the positive breakpoints. Let i0 be the index of the first positive break-
point and assume that the positive breakpoints are m′ > k + 2. We argue that there exists
a vector u ∈ Rm−1 such that u = (0, . . . , 0,ui0+1, . . . ,ui0+k+2, 0, 0, . . . , 0, 1) and the di-
rectional derivative of M in u is zero. To prove this, we construct a system of linear equa-
tions, such that ∇uMi(z) = 0 for all 0 ≤ i ≤ k and ∇uMc(z) = 0. Indeed, we have∑k
j=1

∂
∂zj

Mi(z)uj = − ∂
∂zm−1

Mi(z) or
∑k
j=1 aj−1z

i
jφ(zj)uj = −am−2z

i
m−1φ(zm−1) and∑k

j=1 aj−1zjφ(zj)uj1{zj ≥ 0} = −am−2zm−1φ(zm−1)1{zm−1 ≥ 0}, which is linear in the
variables uj . Note that the last equation is the same equation as the ∇uM1(z) = 0, because we have
positive breakpoints only. Let û be the vector with the variables from index i0 + 1 to i0 + k + 2, and
let w be the vector of the right hand side of the system, i.e., wi = −am−2z

i
m−1φ(zm−1). Then this

system can be written in matrix form as VDû = w, where V is the Vandermonde matrix, i.e., the
matrix that is Vi,j = αj−1

i , for some values αi and D is a diagonal matrix. In our case, Vi,j = zj−1
i

and Dj,j = 2aj−1φ(zj). It is known that the Vandermonde matrix has full rank iff for all i 6= j we
have αi 6= αj , which holds in our setting. Thus, the matrix VD is nonsingular and there exists a
solution to the equation. Thus, there exists a vector u with our desired properties and, moreover, any
vector in this direction is a solution to this system of linear equations. Note that the vector u depends
on the value of z, thus we consider u(z) be the (continuous) function that returns a vector u given z.

We define a differential equation for the function v : R 7→ Rm−1
, as follows: v(0) = b, where

b = (b1, . . . , bm−1), and v′(T ) = u(v(T )) for all T ∈ R. If v is a solution to this differential
equation, then we have:

d

dT
M(v(T )) =

d

dv(T )
M(v(T ))

d

dT
v(T ) =

d

dv(T )
M(v(T ))u(v(T )) = 0 ,

where we used the chain rule and that the directional derivative in the u(v(T )) direction is zero. This
means that the function M(v(t)) is constant and, for all 0 ≤ j < k, we have |Mj | < ε, because
we have that |Ez∼N (0,1)[F (z1, . . . , zm−1, z)z

t]| < ε. Furthermore, since u(v(T )) is continuous in
v(T ), this differential equation will be well founded and have a solution up until the point where
either two of the zi approach each other or one of the zi approaches plus or to zero (the solution
cannot oscillate, since v′m−1(T ) = 1 for all T ).

Running the differential equation until we reach such a limit, we find a limiting value v∗ of v(T ) so
that either:

1. There is an i such that v∗i = v∗i+1, which gives us a function that is at most (m− 2)-piecewise
constant, i.e., taking F (v∗, z).
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2. v∗m−1 =∞, which gives us an at most (m− 1)-piecewise constant function, i.e., taking F (v∗, z).
Since when the v∗m−1 =∞, the last breakpoint becomes∞, we have one less breakpoint.

3. v∗i0+1 = 0, which gives us one less positive breakpoint.

By iterating this method, we can get a function f ′ that has at most k + 2 positive break-
points. For the negative breakpoints, we work in a similar way, with the only difference that
∂
∂zj

Mc(z) = 0, for all the negative breakpoints, and that the direction we increase has the form
u = (−1,u1, . . . , 0,uk+2, 0, . . . , 0). Thus, we get a function g that has at most 2k + 5 breakpoints,
where we can get an extra breakpoint if 0 is a breakpoint.

Proof of Proposition 4.1. For every ε > 0, using the function f ′ from Lemma B.2 in Lemma B.3,
we can obtain a function fε such that |Ez∼N (0,1)[fε(z)z

t]| ≤ ε, for every non-negative integer
t ≤ k and Ez∼N (0,1)[fε(z)ReLU(z)] > 1/poly(k) + O(ε). Moreover, the function fε is at most
(2k + 5)-piecewise constant.

Let M : R2k+5 7→ Rk+2, where Mi(b) =
∑2k+5
n=0 (−1)n+1

∫ bn+1

bn
ziφ(z)dz, for 0 ≤ i < k + 2, and

Mk+2(b) =
∑2k+5
n=0 (−1)n+1

∫ bn+1

bn
ReLU(z)φ(z)dz, where b0 ≤ b1 . . . ≤ b2k+5, b0 = −∞ and

b2k+6 =∞. Here we assume without loss of generality that before the first breakpoint the function
is negative, because we can always set the first breakpoint to be −∞. It is clear that the function M

is a continuous map and R2k+5
is a compact set, thus M

(
R2k+5

)
is a compact set. We also have

that for every ε > 0, there is a point b ∈ R2k+5
such that | 〈M(b), ei〉 | ≤ ε, for 0 ≤ i < k + 2,

and 〈M(b), ek+2〉 > 1/poly(k) +O(ε). Thus, from compactness, we have that there exists a point
b∗ ∈ R2k+5

such that | 〈M(b∗), ei〉 | = 0 for 0 ≤ i < k+2, and 〈M(b∗), ek+2〉 > 1/poly(k).

B.2 Proof of Proposition B.1

Below we state some important properties of the Legendre polynomials that we use in our proofs.

Fact B.4 ([Sze39]). The Legendre polynomials Pn(z), for n non-negative integer, satisfy the following
properties:

(i) Pn(z) is a degree-n univariate polynomial, with P0(z) = 1 and P1(z) = z.

(ii)
∫ 1

−1
Pi(z)Pj(z)dz = δij

2
2i+1 , for all i, j non-negative integers (orthogonality).

(iii) |Pn(z)| ≤ 1, for all |z| ≤ 1 (bounded).

(iv) P ′n(z) =
∑n
t=0

2t+1
2 Pt(z) (closed form of derivative).

Using the Legendre polynomials, we can construct a function for which the first k + 1 moments are
zero and which has non-trivial correlation with the ReLU function.

Proof of Proposition B.1. Define f(z) = cReLU(z)−p(z)
φ(z) 1{z ∈ [−1, 1]}, for a degree-k polynomial

p(z) and a constant c > 0. Then, we have

E
z∼N (0,1)

[f(z)zt] = c

∫ 1

−1

(ReLU(z)− p(z))ztdz .

We want Ez∼N (0,1)[f(z)zt] = 0, thus we want to find a polynomial p(z) such that∫ 1

−1

ReLU(z)ztdz =

∫ 1

−1

p(z)ztdz . (8)

Equation (8) is equivalent to saying that for all 0 ≤ t < k, it holds∫ 1

−1

ReLU(z)Pt(z)dz =

∫ 1

−1

p(z)Pt(z)dz , (9)
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because the Legendre polynomials of degree at most k span the space of polynomials of degree at
most k. Using Fact B.4 (ii) and a standard computation involving orthogonal polynomials, gives that
for p(z) =

∑k
t=0

2t+1
2 Pt(z)

∫ 1

−1
ReLU(z)Pt(z)dz, Equation (9) and Equation (8) hold. We want

the function f to take values inside the interval [−1, 1]. To achieve this, we bound from above the
constant c. It holds that

∫ 1

−1
ReLU(z)Pt(z)dz ≤ 2, where we used Fact B.4 (iii) and |ReLU(z)| ≤ 1

for |z| ≤ 1. Moreover, we get that

|p(z)| ≤ 2

k∑
t=0

2t+ 1

2
|Pt(z)| ≤ k2 + 2k ≤ 2k2 ,

for all |z| ≤ 1. Thus, it must hold that c ≤ g(1)/(2k2 + 1), and by taking c = g(1)/(2k2 + 1), we
get that |f(z)| ≤ 1.

Next we prove that Ez∼N (0,1)[f(z)ReLU(z)] > 1/poly(k). We have that

E
z∼N (0,1)

[f(z)ReLU(z)] = c

∫ 1

−1

ReLU(z)(ReLU(z)− p(z))dz = c

∫ 1

−1

(ReLU(z)− p(z))2dz ,

where we used that
∫ 1

−1
q(z)(ReLU(z) − p(z))dz = 0, for any polynomial q of degree at most k,

and thus it holds for q(z) = p(z). Note that |p′(z)| ≤ 5k4 and |p′′(z)| ≤ 7k6 =: N , because from
Fact B.4 (iv), we have that |P ′n(z)| ≤ 2n2 and |P ′′n (z)| ≤ 4n4, for all |z| ≤ 1. For ε > 0 sufficiently
small, we then have ∫ 1

−1

(ReLU(z)− p(z))2dz ≥
∫ ε

−ε
(ReLU(z)− p(z))2dz .

Using the Taylor expansion of p, we get that there exists a linear function L, such that p(z) =
L(z) +O(Nε2), for |z| ≤ ε. We thus have that∫ ε

−ε
(ReLU(z)− p(z))2dz =

∫ ε

−ε
(ReLU(z)− L(z) +O(Nε2))2dz .

Note that every function can be written as G(z) = Geven(z) +Godd(z), where Geven(z) is the even
part of G and Godd(z) is the odd part. For ` > 0, it holds that∫ `

−`
G2(z)dz =

∫ `

−`

(
G2

even(z) +G2
odd(z) + 2Geven(z)Godd(z)

)
dz ≥

∫ `

−`
G2

even(z)dz ,

where we used that
∫ `
−`Geven(z)Godd(z) = 0. Using that ReLU(z) = |z|/2 + z/2, it holds∫ ε

−ε
(ReLU(z)− L(z) +O(Nε2))2dz ≥

∫ ε

−ε
(|z|/2− L(0) +O(Nε2))2dz ,

where we used that L is linear, thus the even part is L(0). Choosing ε such that N < ε−1/C for a
large enough C > 0, we have that ||z| /2− L(0)| ≥ ε/8 for at least half of the interval [−ε, ε]. To
prove this, note that we have two cases. First, if L(0) > ε/2 or L(0) ≤ 0, this holds trivially. Again in
the other case trivially in half the points we have ||z|/2−L(0)| ≥ ε/4. Moreover, from the choice of
ε, we have that Nε2 ≤ ε/C, thus

∣∣|z|/2− L(0) +O(Nε2)
∣∣ ≥ ∣∣||z| /2− L(0)| − |O(Nε2)|

∣∣ ≥ ε/8
for at least half of the interval. Therefore, we have∫ ε

−ε
(|z|/2− L(0) +O(Nε2))2dz ≥ Ω(ε3) .

By our choice of ε, we have

c

∫ 1

−1

(ReLU(z)− p(z))2dz ≥ c · Ω(ε3) ≥ c · Ω(N−3) ≥ Ω(1/k20) .

This completes the proof.
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B.3 Proof of Theorem 1.5

The proof follows using the same construction as in Theorem 1.4, but using the O(k)-piecewise
constant function f from Proposition 4.1. Let C(k) be a constant that depends on k and Fk be
the family of O(k)-decision lists of halfspaces, where each Fv ∈ Fk has the form Fv(x) =
C(k) · f(〈v,x〉), for a unit vector v ∈ S, where we use the set S from Lemma 3.4. Let A be an
agnostic SQ learner for ReLUs under Gaussian marginals. We feed A a set of i.i.d. labeled examples
from an arbitrary function Fv ∈ Fk. By definition, algorithm A computes a hypothesis h : Rd 7→ R
such that

E
x∼N (0,I)

[(h(x)− Fv(x))2] ≤ inf
f∈CReLU

E
x∼N (0,I)

[(f(x)− Fv(x))2] + ε .

We denote ‖g‖22 = Ex∼N (0,I)[g(x)2] for a function g : Rd 7→ R. Let C(k) =
‖ReLU‖22

Ex∼N(0,I)[f(〈x,v〉)ReLU(〈x,v〉)] . Then we have that

E
x∼N (0,I)

[(ReLU(〈x,v〉)− Fv(x))2] = ‖Fv‖22 + ‖ReLU‖22 − 2 E
x∼N (0,I)

[Fv(x)ReLU(〈x,v〉)]

= C2(k) ‖f‖22 − ‖ReLU‖22 .

Furthermore, using that ‖f‖22 = 1 and ‖ReLU‖22 = 1/2, if we choose ε = o(1/C2(k)), the algorithm
returns a hypothesis such that

E
x∼N (0,I)

[(h(x)− Fv(x))2] ≤ C2(k)
(
1− Ω(1/C2(k))

)
.

Thus, from the triangle inequality, we have that ‖h/C(k)‖22 ≤ 2 ‖f‖22, and also

2 E
x∼N (0,I)

[
h(x)

C(k)

Fv(x)

C(k)

]
≥ Ω(1/C2(k)) + ‖h‖22 /C

2(k) ≥ Ω(1/C2(k)) .

Finally,

E
x∼N (0,I)

[
h(x)

‖h‖2
Fv(x)

‖Fv‖2

]
≥ 1

2
E

x∼N (0,I)

[
h(x)

C(k)

Fv(x)

C(k)

]
≥ Ω(1/C2(k)) .

Let h∗(x) = h(x)
‖h‖2

and F ∗v (x) = Fv(x)
‖Fv‖2

. Then we have that Ex∼N (0,I) [h∗(x)F ∗v (x)] ≥ Ω(1/C2(k)).
Thus, using Proposition 4.1 to bound C(k), we get that

E
x∼N (0,I)

[h∗(x)F ∗v (x)] ≥ Ω(1/poly(k)) .

Since the function Fv is an O(k)-decision list of halfspaces, we can apply Proposition 3.1 to get that
any SQ algorithm needs dΩ(k) queries to STAT(d−Ω(k)) to get Ex∼N (0,I) [h∗(x)F ∗v (x)] ≥ d−Ω(k).
Thus, in order to learn with error OPT + ε, for ε = o(1/poly(k)), the algorithm A needs to use
dΩ((1/ε)c) queries to STAT(d−Ω((1/ε)c)), for a constant c > 0.
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