Supplementary Material

A Omitted Proofs from Section

A.1 Proof of Lemma[3.3

We prove the lemma for the random variable A. The proof for B is similar. From the definition of f,
we have that E. _z(0,1)[f(2)] = 0, thus

LB U@ == B 1) = -1
or equivalently 1
o 1)[]l{f( =1=3. (5)
Similarly, from E. . x(0,1) [f(2)2'] = 0, we have
ZNN(O 1) {f () =1} = z~/\]/520,1)[ztﬂ{f(z) =-1}]. (6)

Let ¢(z|f(z) = 1) be the probability distribution of z conditional that f(z) = 1. We have that
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where we used Equations (3), (6).

A.2 Proof of Lemma[3.7]

We start by noting that each F' € Fy, is of the form Fy (x) = f((v,x)), where f is the function
from Proposition|3.2|and v € S. We will take o to be o(x) = sign((v,x) + ). Let z1, ..., z;, be
the breakpoints of f(z). We will show that if we set the value of  to a breakpoint, then the result
follows.

Let a; 11 = f:“ p(z)dzfor0 < i < k+1,a1 = [} ¢(2)dz and apy1 = fzio ¢(z)dz. Let
B = z, for a breakpoint z;, and b = sign(f((z; + z1+1)/2)). Then we have that

k+1

XNA][E%OVI)[FV(X)U(X)] :2/21 f(2)p(2)dz = 2bz —la;

where the first equality holds because

E [F,(x)l{xecA}]=—- E [F,(x)1{xe A°}],
LB BLxe A =~ B RGLxe A7)
for any A C R?. From the fact that Eerll a; = 1, it follows that there exists an index 7 such
that a; > 1/(k 4+ 1). Assume, for the sake of contradiction, that for all [ > 4 we have that

| Zkﬂ( 1)!=9a;| < (1/4k), since otherwise there exists a breakpoint that satisfies the equation.

Then, for b = sign(f((z; + z:+1)/2)), we have that either 2b(2§;1+1(71)j7iaj +a;) > (1/2k)

or 2b(2§;1+1 (—1)7~%a; + a;) < —(1/2k). In the former case, we are done. In the latter case, the
halfspace —o(x) satisfies the desired correlation property.

A.3 Proof of Fact[3.9]

We define f to take alternative values +1 in intervals of length s. Let us denote I; = (4

is, (i + 1)s)
for —1/(se*) < i < 1/(se®) for an integer i. If f(z) = 1 for z € I;, then we have f(z) =

—1 for
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z € I;11. Moreover, we will have that f(2) = 1 for z < —1/¢* and f(z) = —1 for z > 1/e*. We
assume that the number of constant pieces is even for simplicity. To prove that for all 0 < ¢ < k,
E. n0,1)[f(2)2"] < 4e, observe that for all even moments the expectation is equal to zero. So it

suffices to prove the desired statement for odd moments. Note that E, 0,1y [2" f(2)1{z > 0}] =
E. x|z f(2)1{z < 0}] for odd moments. Thus, we will prove that E_xr(o,1)[2" f(2)1{z >
0}] < 2e. We have that

/ Zp(z)dz < /T
1/€ek

*/* < 1/y"/*. Moreover, we bound

E. [ f(2)1{z€L:}]

where we used the inequality Pr, 0,1y [z > y] < We‘y

from above the absolute ratio between two subsequent regions, i.e., Eovon = F @Izl || For
7 > 0, we have that
(i+1)s ¢ d . tois
‘fi < ¢(Z) < < S((Z + 1)8) ¢(ZS) — €2i52+252 S 1+37,52 +9,L'284 , (7)

SO (2~ s+ D) +2)s)

where in the first inequality we used the maximum value and the minimum of the integral, and in
the second one we used that e* < 1 + x + 22 for < 1, which holds for s < €*. Thus, for two
subsequent intervals we have

(i+1)s (i+2)s (i+2)s (i+2)s
/ 2'p(z)dz — / 2'p(z)dz < 42'32/ Zé(2)dz < 4k:32/ Zé(2)dz .
is (i4+1)s (i4+1)s (i4+1)s

On the other direction, from Equation (7) we have that

(i+1)s (i+2)s (i42)s (i42)s
f/ zt¢(z)dz+/ Z(z)dz > 741'52/ 2(z)dz > f4ks2/ Zo(z)dz .

s (i+1)s (i+1)s (i4+1)s
Thus, we have
1/(se*) pGHD)s 0
—dks*(t—1N < > (—1)1/ 2 (z)dz < 4ks2/ 2o(z) = 4ks?(t — DI
i—0 s —00

Choosing s = e(*+1)/2 /kF and setting € = ¢€/2, the proof follows.

B Omitted Proofs from Section 4|

B.1 Proof of Proposition [4.1]

To prove Proposition .1} we first need to prove that there exists a function that has non-trivial
correlation with the ReLU and whose first £ moments are zero.

We have the following crucial proposition.

Proposition B.1. Let k be a positive integer. There exists a function f : R — [—1,1] such that
E. nvonlf(2)2'] =0, for0 <t <k and B, n01)[f(2)ReLU(2)] > 1/poly(k).

The proof of Proposition [B.T|requires analytic properties of the Legendre poynomials and is deferred
to Section

In the main part of this subsection, we prove Proposition 4.1} assuming Proposition [B.T]

In the following lemma, we show that there exists a piecewise constant Boolean-valued function with
near-vanishing moments of degree at most k& and non-trivial correlation with the ReLU.

Lemma B.2. For any ¢ > 0 and any non-negative integer k, there exists a piecewise con-
stant function G : R — {£1} such that |E, n0,1)[G(2)2"]] < € for 0 < t < k, and
E. n0,1)[G(2)ReLU(2)] > 1/poly(k) + O(e).
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Proof. The proof is similar to the proof of Fact 3.9 The main difference here is that we
need to construct a function that will also have non-trivial correlation with the ReL.U. To do
this, we use a probabilistic argument to show that there exists a function that is bounded in
the range [—1, 1], that has non trivial correlation, and then we discretize the function as in
Fact Let f be the function from Proposition We split the interval [—1,1] into sub-
intervals of length § and we define the random piecewise constant function GG in each inter-

val [z0, 20 + 8] as G(z) = 1 with probability (1 + [*"° f()p(2)dz/ [*° ¢(2)dz)/2 and
G(z) = —1 with probability (1 — f;o+5 f(2)é(2)dz/ fZZDOM ¢(z)dz)/2. Thus, in each interval,
we have E[G(z)] = f;”s f(2)p(2)dz/ f;ﬁa ¢(2)dz. Then, for any |2o| < 1 — &, we have that

E

zo+6
/ G(2)2'p(2)dz| = E

20

zo+0 zo+0
/ G(z)(zwow))w»(z)dz]: / F(2)8(2) (20 + O(8))!d2

20 20

zo+9 zo+0
— [ s@esta [0l + 6o

zo+6
:/ F(2)2'o(2)dz +t- O ((Jz0] + 8)1162)

where we used the Taylor series 2! = (29 + O(8))! +t - O(6(|z0| + 6)!~1). Thus, we obtain

E [/11 G(z)ztaﬁ(z)dz} = /11 f(2)2'p(2)dz +t-O(8) =t-0(5) ,

where we used that all the moments of f with degree at most k are zero and that |zg| + 6 < 1.
Moreover, for 0 < zg < 1, it holds that

zo+6
E / G(z)ReLU(2)¢(2)dz| = E

20

zo+0 zo+0
/ G(z)zq&(z)dz] = / f(2)ReLU(2)¢(2)dz + t - O ((|z0] + 6)''6?) |

20 20

where we used the same method as before. Thus, it follows that

E [/ G(z)ReLU(z)qS(z)dz} = / f(z)ReLU(2)¢(z)dz +t - O(d) > 1/poly(k) +t- O(9) .
0 0

. i-548
Define the random variable X; ; = : s *

bounds, we have that

G(2)2'¢(2)dz and X, = Y1/ |+ X, ;. Using Hoeffding

Pr[X; — E[X/]| > Valog(4/(t + 1))] < 1/(2(t +1)) ,

where we used that | X ;| < . By the union bound, we get that there is positive probability that all

X, are within v/ log(4/(t + 1)) from the mean value, and thus, from the probabilistic method
there is a function with this property. Furthermore, we round the rest of the values of G(z) as in the
proof of Fact (because ReLU(z) = z for z > 0). Choosing the correct constant value of d, the
result follows. O

Lemma B.3. Let m and k be positive integers such that m > 2k + 5 and € > 0. If there exists
an m-piecewise constant function f : R — {£1} such that | E, x0,1)[f(2)2"]] < € for all non-
negative integers t < k, and E . r(0,1)[f(2)ReLU(2)] > 1/poly(k) + O(e), then there exists an at
most (2k + 5)-piecewise constant function g : R — {£1} such that | E..xr0,1)[9(2)2"]| < € for all
non-negative integers t < k and B, zr(0,1)[9(2)ReLU(z)] > 1/poly(k) + O(e).

Proof. This proof is similar to the proof of Lemma[3.8] The only difference is that we have to keep
also the correlation with the ReLLU constant. For completeness, we provide a full proof.

Let {b1,b2,...,bm_1} be the breakpoints of f. Let F(z1,22,...,2m—1,2) : R™ — R be an
m-piecewise constant function with breakpoints on z3,...,2,-1, Where 21 < 20 < ... < Zp—1
and F(by,ba,...,bym—1,2) = f(z). For simplicity, let z = (z1,...,2,—1) and define M;(z) =

14



E. n(01)[F(z,2)z"], forall 0 < i < k and M.(z) = E, n0,1)[F (2, 2)ReLU(z)]. Finally, let
M(z) = [My(z), M1(z),. .., My(z),ar M.(z)]T. It is clear that

m—1 Zn41 ) m—1 Zn+l
M@ =Y [ F@aeee = Y e [ o,
n=0 Y ?n n=0 Zn
and
m—1 Znt1 m—1 Znt1
M.(z) = Z / F(z,2)21{z > 0}¢(z)dz = Z an/ 21{z > 0}¢p(2)dz ,
n=0 Y %n n=0 Zn
where zyp = —00, 2, = 00, and a,, is the sign of F(z,z) in the interval (z,, z,+1). Note that

ap = —ap41 for every 0 < n < m. By taking the derivative of M, and M, in z;, for 0 < j < m,
we get that

9
8zj

B . d _ [2a;-120(75), ifa; >0
M;(z) = 2aj_1zj¢(zj) and aiszc(Z) = {0, if a; <0

Combining the above, we get

0 (z) = 205 19(2j)[1, 2, - .. ,z;-“,zj]T, if z;>0
8Zj 2aj,1¢(zj)[1,z]1-,...,z]’?,O]T, lf Zj SO .

We first work with the positive breakpoints. Let iy be the index of the first positive break-
point and assume that the positive breakpoints are m’ > k + 2. We argue that there exists
a vector u € R™! such that u = (0,...,0,W;41,---,Wip+kt2,0,0,...,0,1) and the di-
rectional derivative of M in u is zero. To prove this, we construct a system of linear equa-
tions, such that VyM;(z) = 0 for all 0 < ¢ < k and V,M,.(z) = 0. Indeed, we have
Yot s Mi(2)u; = — 52— Mi(z) or Y)_ aj1256(2) 0y = —@m-22h,_16(2m-1) and
25:1 aj—12;0(z))u;1{z; > 0} = —am—22m—10(2m—1)1{zm—1 > 0}, which is linear in the
variables u;. Note that the last equation is the same equation as the V,, M (z) = 0, because we have
positive breakpoints only. Let t1 be the vector with the variables from index iy + 1 to ig + k + 2, and
let w be the vector of the right hand side of the system, i.e., w; = fam_ngn_lgﬁ(zm_l). Then this
system can be written in matrix form as VDa = w, where V is the Vandermonde matrix, i.e., the
matrix thatis V; ; = o ~!, for some values o; and D is a diagonal matrix. In our case, V., =2z -t
and D, ; = 2a;_1¢(z;). It is known that the Vandermonde matrix has full rank iff for all ¢ # j we
have a; # «;, which holds in our setting. Thus, the matrix VD is nonsingular and there exists a
solution to the equation. Thus, there exists a vector u with our desired properties and, moreover, any
vector in this direction is a solution to this system of linear equations. Note that the vector u depends
on the value of z, thus we consider u(z) be the (continuous) function that returns a vector u given z.

We define a differential equation for the function v : R = qu, as follows: v(0) = b, where
b = (b1,...,bp—1), and v/(T') = u(v(T)) for all T € R. If v is a solution to this differential
equation, then we have:

d d d d
d*TM(V(T)) = dvi(T)M(V(T))diTV(T) = T(T)M(V(T))U(V(T)) =0,

where we used the chain rule and that the directional derivative in the u(v(7")) direction is zero. This
means that the function M(v(¢)) is constant and, for all 0 < j < k, we have |M;| < ¢, because
we have that | E, x0,1)[F (21, - - -, 2m—1, 2)2']| < e. Furthermore, since u(v(T)) is continuous in
v(T), this differential equation will be well founded and have a solution up until the point where
either two of the z; approach each other or one of the z; approaches plus or to zero (the solution
cannot oscillate, since v/, _;(T) = 1 for all T").

Running the differential equation until we reach such a limit, we find a limiting value v* of v(7') so
that either:

1. There is an i such that vi = v, ;, which gives us a function that is at most (m — 2)-piecewise
constant, i.e., taking F'(v*, 2).
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2. v 00, which gives us an at most (m — 1)-piecewise constant function, i.e., taking F'(v*, z).

m—1 —
Since when the v}, _; = oo, the last breakpoint becomes co, we have one less breakpoint.

3. v} 1 = 0, which gives us one less positive breakpoint.

By iterating this method, we can get a function f’ that has at most k& + 2 positive break-

points. For the negative breakpoints, we work in a similar way, with the only difference that

%Mc(z) = 0, for all the negative breakpoints, and that the direction we increase has the form
J

u=(-1,uy,...,0,u42,0,...,0). Thus, we get a function g that has at most 2k + 5 breakpoints,
where we can get an extra breakpoint if 0 is a breakpoint.

Proof of Propositiond.1} For every € > 0, using the function f’ from Lemma[B.2)in Lemma[B.3]
we can obtain a function f, such that | E. x0,1)[fe(2)2"]| < €, for every non-negative integer
t < kand E; n0,1)[fc(2)ReLU(2)] > 1/poly(k) 4+ O(e). Moreover, the function f. is at most
(2k + 5)-piecewise constant.

Let M : R 5 REF2, where M;(b) = 322555 (— 1)+ [241 2ig(2)dz, for 0 < i < k + 2, and

My yo(b) = Y 2ME5(—)ntt fbby;”“ ReLU(z2)¢(z)dz, where by < by ... < bagis, bp = —o0 and
bar+¢ = 00. Here we assume without loss of generality that before the first breakpoint the function

is negative, because we can always set the first breakpoint to be —oo. It is clear that the function M

. . —=2k+5 . —2k+5Y .
is a continuous map and R is a compact set, thus M (R ) is a compact set. We also have

that for every e > 0, there is a point b € R***” such that | (M(b),e;)| <€ for0<i<k+2,
and (M(b), ex2) > 1/poly(k) + O(e). Thus, from compactness, we have that there exists a point

b* € R’ such that | (M(b*),e;) | = 0for 0 < i < k+2, and (M(b*), exs2) > 1/poly(k). [

B.2 Proof of Proposition (B.1

Below we state some important properties of the Legendre polynomials that we use in our proofs.
Fact B.4 ([Sze39)). The Legendre polynomials P, (z), for n non-negative integer, satisfy the following
properties:
(i) P,(z) is a degree-n univariate polynomial, with Py(z) = 1 and Py (z) = z.
(ii) fil Pi(2)Pj(z)dz = ¢;5 ﬁ,for all i, j non-negative integers (orthogonality).
(iii) |Pn(z)| <1, for all |z| < 1 (bounded).

(iv) Pl(z) =Y 1o 2L P,(2) (closed form of derivative).

Using the Legendre polynomials, we can construct a function for which the first £ + 1 moments are
zero and which has non-trivial correlation with the ReLLU function.

Proof of Proposition[B.] Define f(z) = c%ﬂ{z € [—1, 1]}, for a degree-k polynomial
p(z) and a constant ¢ > 0. Then, we have

1
E fl = ReLU(z) — fdz .
B @) = [ (ReLU() — pl)21a:
We want E_xr(0,1)[f(2)z"] = 0, thus we want to find a polynomial p(z) such that
1 1
/ ReLU(2)2'dz = / p(2)z'dz . (8)
—1 —1
Equation (8) is equivalent to saying that for all 0 < ¢ < k, it holds
1 1
/ ReLU(z)P(z)dz = / p(2)Pi(z)dz , )

-1 —1
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because the Legendre polynomials of degree at most k span the space of polynomials of degree at
most k. Using Fact@ (i) and a standard computation involving orthogonal polynomials, gives that

for p(z) = Zt o P (2 f ReLU(z2)P;(z)dz, Equation (O) and Equation (8) hold. We want
the function f to take values 1ns1de the interval [—1, 1]. To achieve this, we bound from above the
constant c. It holds that fil ReLU(z)P;(z)dz < 2, where we used Fact(iii) and [ReLU(z)| < 1
for |z| < 1. Moreover, we get that

241
\<227+|Pt )| < E? 42k < 2k?,

for all |z| < 1. Thus, it must hold that ¢ < g(1)/(2k? + 1), and by taking ¢ = g(1)/(2k* + 1), we
get that |f(2)| < 1.

Next we prove that B zr(0,1)[f(2)ReLU(z)] > 1/poly(k). We have that

1 1

ReLU(z)(ReLU(z) — p(z))dz = c/_l(ReLU(z) —p(2))3dz,

E ReLU(z)] =
B VR = [
where we used that fil q(2)(ReLU(z) — p(z))dz = 0, for any polynomial g of degree at most k,

and thus it holds for ¢(z) = p(z). Note that |p’(2)| < 5k* and |p” (2)| < Tk® =: N, because from
Fact[B.4|(iv), we have that | P/, (z)| < 2n? and | P/ (z)| < 4n*, forall |2| < 1. For € > 0 sufficiently
small, we then have

/_1(ReLU(z) —p(2))3dz > /_E (ReLU(2) — p(2))%dz .

Using the Taylor expansion of p, we get that there exists a linear function L, such that p(z) =
L(2) + O(Ne?), for |z| < e. We thus have that

/_ ) (ReLU(z) — p(2))%dz = /_ e (ReLU(2) — L(z) + O(N¢?))?dz

Note that every function can be written as G(2) = Geven(2) + Goad(2), Where Geyen(2) is the even
part of G and Goq44(2) is the odd part. For £ > 0, it holds that

V4 V4 ¢
/ G?(2)dz = / (G2ron(2) + G2aq(2) + 2G ven(2)Goaa(2)) dz > / G2, (2)dz
iy _

where we used that ffe Geven(2)Godad(z) = 0. Using that ReLU(z) = |z|/2 + z/2, it holds

€

/6 (ReLU(z) — L(z) + O(N€?))?dz > / (|2]/2 — L(0) + O(N€?))*dz

—€ —€

where we used that L is linear, thus the even part is L(0). Choosing € such that N < ¢! /C for a
large enough C' > 0, we have that ||z| /2 — L(0)| > ¢/8 for at least half of the interval [—e, €]. To
prove this, note that we have two cases. First, if L(0) > ¢/2 or L(0) < 0, this holds trivially. Again in
the other case trivially in half the points we have ||z|/2 — L(0)| > €/4. Moreover, from the choice of
e, we have that Ne? < ¢/C, thus ||z]/2 — L(0) + O(N€?)| > |[[z| /2 — L(0)| — |O(Ne?)|| > €/8
for at least half of the interval. Therefore, we have

/6 (|2]/2 — L(0) + O(N€?))?dz > Q(€?) .

By our choice of €, we have

c/1 (ReLU(2) — p(2))?dz > c- Q(®) > ¢- Q(N3) > Q(1/k*°) .

1 -

This completes the proof. O
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B.3 Proof of Theorem

The proof follows using the same construction as in Theorem but using the O(k)-piecewise
constant function f from Proposition Let C(k) be a constant that depends on k and Fj, be
the family of O(k)-decision lists of halfspaces, where each F\, € Fj, has the form Fy(x) =
C(k) - f({v,x)), for a unit vector v € S, where we use the set S from Lemma[3.4] Let A be an
agnostic SQ learner for ReLUs under Gaussian marginals. We feed A a set of i.i.d. labeled examples
from an arbitrary function F,, € F}.. By definition, algorithm .4 computes a hypothesis h : R — R
such that

E [(h(x) — Fy(x))?] < inf E _ Fy(x))? '
XNN(OxI)[( (X) (X)) ] o ng;eLU XNN(O,I)[(f(X) (X)) ] te
We denote |lg]l; = Exonoplg(x)?] for a function ¢ : R? +— R. Let C(k) =
|ReLU||3

Brx o [F (V) ReLU((xv)] - Lhen we have that

B (RELU(Ge. ) = By ()] = 1B+ [ReLUJS ~2 B [Fu(x)ReLU((x,v))]

= C2(k) || £l — [ReLUI[3 .

Furthermore, using that ||f||§ =1land ||ReLU||§ = 1/2, if we choose € = o(1/C?(k)), the algorithm
returns a hypothesis such that

B[00 = B ()] < C2 k) (1 - 2(1/C2K)))

Thus, from the triangle inequality, we have that ||h/C (k:)||§ <2|f ||§, and also
h(x) Fy(x)

XA (0.1) [C(k) C (k)

} > Q(1/C(k)) + ||hll; /C* (k) = Q(1/C3(k)) .

Finally,

h(x) Fv(X)}>1 E {h(X) F(x)

x-A0 {nhQ Bl = 2 xerblon [CGR) CR) } = Q1/C°R))

Let h*(x) = % and F} (x) = ff‘;‘fﬁi Then we have that Ey 0,1y [0 (x) F5 (x)] > Q(1/C?(k)).

Thus, using Proposition[4.1]to bound C'(k), we get that

B IR (60] = 91 /poly(h))

Since the function F, is an O(k)-decision list of halfspaces, we can apply Proposition|3.1{to get that
any SQ algorithm needs d*(*) queries to STAT(d—*(%)) to get Exnon [P*(x)F(x)] > d—Sk),
Thus, in order to learn with error OPT + ¢, for ¢ = o(1/poly(k)), the algorithm .4 needs to use
d(/9°) queries to STAT (d—*((1/9)%)), for a constant ¢ > 0.
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