A Extending to Multi-Round Communications

The formulation in Section 3 can be extended to multiple rounds of communications per time step.

For the transformer architecture with two rounds of communications, first there is an internal network

il . R% — R that combines the state and the cumulative message into an internal vector

1n—=Jj _
J

s ,(hi, o"7) which replaces the state s’ in the original equation with the internal state h’. New

. , N e i
ht = nl (s’, Yoo, ad _”mj_”). Next, we compute the next round of messages as m

keys and queries are also generated as k"7 = 7/’ (s?, 0*7) and ¢ = ngl (s'), but these still use the
original state s’. Finally, the Equations 2 and 1 are repeated to compute the action. This architecture
can be extended similarly to an arbitrary number of rounds of communications. A programmatic
policy for R rounds of communications will have R different programs (one for each round). We
synthesize these programs independently. To synthesize the communication program P, for the
r-th round of communication, we use the hard attention weights ofr for the r-th round and use the
original soft attention weights for the other rounds 7’ # r to compute the synthesis objective J(P,.).

B Experimental Details

The code and a short video illustrating the different tasks used in the paper can be found in https:
//github.com/jinala/multi-agent-neurosym-transformers. Figure 5 shows the initial
and goal positions for the unlabeled goals task, along with attention maps produced by our program
policies for the two rounds of communications at a particular timestep.

There are four main hyper-parameters in our synthesis algorithm.

X in Section 3.4: This parameter strikes a balance between minimizing the difference in
the actions (with and without hard attention) and minimizing the maximum communication

degree. We use \ = {0.3,0.5,0.7,1.0}.

e The number of rules in the program = {2,3,4,5}.

The depth of the Boolean conditions in the filter expressions = 2.

The feature map ¢ used in the filter predicates and the map functions. We have 2 versions:
1) for every vector (z,y) in the state s and the observations o, we also encode the norm

/22 + 42 and the angle tan~!(y/x) as part of the features; 2) on top of 1, we add quadratic
features (5o, TsYo, YsTo, YsYo) Where (x5, ys) is the state and (x,, y,) is the observation.

We used cross validation to choose these parameters. In particular, we chose the ones that produced
the lowest cumulative reward on a validation set of rollouts; if the cumulative rewards are similar, we
chose the ones that reduced the communication degree.

(a)

(b)

5
g
e
&

°

IS

Receiver (in)

0.0

©

°

IS

6

®

Sender (out)

Figure 5: Unlabeled goals task: (a) Initial positions of the agents and the locations of the goals to
cover (b) Final configuration of the agents where 8 out of the 10 goals are covered (c) Attention maps
of prog-retrained for the two rounds of communication.

13



Random cross Random grid Unlabeled goals

00 00

ed & e ) e ed & ed 09 ed
Pt @™ ger 9 Pt o™ (@™ e o o™
091 &S o 00! oS <09,

ed ot ed ) ed
Pt & PECPES (@™
o 001 $ (9

() (b) (©)

Figure 6: Statistics of cumulative loss and communication graph degrees for the additional baselines,
for (a) random-cross, (b) random-grid, and (c) unlabeled-goals.

Random cross Random grid

|

Unlabeled goals

20 avg_cum_loss 3 avg_cum _loss
= max_deg_in = max_deg_in
mm max_deg_out

avg_cum_loss
= max_deg_in
== max_deg_out

Degree

prog ril rl2 0 prog ri1 ri2 0 prog ril ri2

Figure 7: Comparing program policy with RL policy that treats communications as actions. RL1 and
RL2 correspond to two different hyper-parameters in the policy gradient algorithm.

C Additional Baselines

We compare to two additional baselines: (i) an ablation of our approach that learns only de-
terministic rules—i.e., rules with random are excluded from the search space (det-prog and
det-prog-retrained), and (ii) a learned communication policy in the form of a decision tree
(dt and dt-retrained). For (ii), to train the decision tree, we constructed a supervised dataset by
(i) collecting the soft-attentions from the transformer model, and (ii) solving the global hard-attention
problem at each timestep to ensure that the maximum degree (both in-degree and out-degree) is
at most k, where k is chosen as described in Section 4 (i.e., to match the number of rules in our
programmatic communication structure). Then, we train the decision tree using supervised data on
this dataset.

Figure 6 shows the performance using both the loss and the maximum communication degree for
these two baselines. The decision tree baselines (dt and dt-retrained) perform poorly in-terms of
the communication degree for all the tasks, demonstrating that domain-specific programs that operate
over lists are necessary for the communication policy to reduce communication.

The deterministic baseline (det-prog-retrained) achieves a similar loss as prog-retrained for
the random-cross and random-grid tasks; however, it has worse out-degrees of communication.
For these tasks, it is most likely difficult for a deterministic program to distinguish the different agents
in a group; thus, all agents are requesting messages from a small set of agents. For the unlabeled
goals task, the deterministic baseline has a lower degree of communication but has higher loss than
prog-retrained. Again, we hypothesize that the deterministic rules are insufficient for an agent to
distinguish the other agents, which led to a low in-degree (and consequently low out-degree), which
is not sufficient to solve the task.

D Comparison to Communication Decisions as Actions

The multi-agent communication problem can be formulated as an MDP where decisions about which
agents to communicate with are part of the action. We performed additional experiments to compare
to this approach. Since the action space now includes discrete actions, we use the policy gradient

14



Random grid (noisy communications)

avg_cum_loss
== max_deg_in
l = max_deg_out

®

120 I

100

o

80 1 & I

«

Loss

60

IS
Degree

w

40

20

0- 0
tf-full hard dist prog prog-retrained

Figure 8: Random grid task with noisy communications.

algorithm to train the policy. We tuned several hyper-parameters including (i) weights for balancing
the reward term with the communication cost, (ii) whether to use a shaped reward function, and (iii)
whether to initialize the policy with the pre-trained transformer policy.

Results are shown in Figure 7. Here, rl1 is the baseline policy that achieves the lowest loss across all
hyper-parameters we tried; however, this policy has a very high communication degree. In addition,
112 is the policy with lowest communication degree; however, this policy has very high loss.

As can be seen, our approach performs significantly better than the baseline. We believe this is due
to the combinatorial blowup in the action space—i.e., there is a binary communication decision for
each pair of agents, so the number of communication actions is 2V ~! per agent and 2V(N—1) for
all agents (where N is the number of agents). Our approach addresses this challenge by using the
transformer as a teacher.

E Case Study with Noisy Communication

We consider a new benchmark based on the random grid task, but where the communication link
between any pair of agents has a 50% probability of failing. The results are shown in Figure 8.
As can be seen, the programmatic communication policy has similar loss as the transformer policy
while simultaneously achieving lower communication degree. Here, the best performing policy has
four rules (i.e., K = 4), whereas for the previous random grid task, the programmatic policy only
has 2 rules. Intuitively, each agent is attempting to communicate with more of the other agents to
compensate for the missing communications.

15



