
Multi-agent active perception with prediction rewards
(Supplementary material)

Mikko Lauri
Department of Computer Science

Universität Hamburg
Hamburg, Germany

lauri@informatik.uni-hamburg.de

Frans A. Oliehoek
Department of Computer Science

TU Delft
Delft, The Netherlands

f.a.oliehoek@tudelft.nl

1 Introduction

This supplementary document is structured as follows. We present proofs of the lemmas and the
observation omitted from the main paper in Section 2. Additional details on the APAS algorithm and
computation of the α-vectors are provided in Section 3. We give details of our experimental setup in
Section 4. Finally, additional experimental results are provided in Section 5.

2 Proofs

In this section, we present the proofs omitted from the main paper. Lemmas 1, 2, 3, and 4 are proven
in Subsections 2.1, 2.2, 2.3, and 2.4, respectively. Finally, Observation 1 is proven in Subsection 2.5.

For ease of referencing, before stating the proofs we repeat required definitions from the main paper.
First, recall the definitions of a Dec-POMDP and a Dec-ρPOMDP, and of the proposed conversion
between the two.
Definition 1. A Dec-POMDP is a tupleM = 〈h, I , S, b0, A, Z , T ,R〉, where

• h ∈ N is the horizon of the problem,

• I = {1, 2, . . . , n} is a set of n agents,

• S is the finite set of states s,

• b0 ∈ ∆(S) is the initial state distribution at time step t = 0,

• A is the collection of individual action spaces Ai,t for each agent i ∈ I and time step
t = 0, . . . , h − 1. The tuple at = 〈a1,t, a2,t, . . . , an,t〉 of individual actions is called the
joint action at time t,

• Z is the collection of individual observation spaces Zi,t for each agent i ∈ I and time step
t = 1, . . . , h. The tuple zt = 〈z1,t, z2,t, . . . , zn,t〉 of individual observations is called the
joint observation at time step t,

• T is the dynamics function specifying the conditional probability P(zt+1, st+1 | st, at), and

• R is the collection of reward functions Rt(st, at) for time steps t = 0, . . . , h− 1.
Definition 2 (Dec-ρPOMDP). A Dec-ρPOMDP is a pair 〈M,Γ〉, whereM is a Dec-POMDP and
Γ is a set of tangent hyperplanes that determine the centralized prediction reward ρ : ∆(S) → R
defined as ρ(b) , max

α∈Γ

∑
s
b(s)α(s).

Definition 3. Given a Dec-ρPOMDP 〈M,Γ〉 withM = 〈h, I , S, b0, A, Z , T , R〉, convert it to a
standard Dec-POMDPM+ = 〈h+ 1, I , S, b0,A+, Z+, T+,R+〉 where the horizon is incremented
by one and

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• in A+, the individual action space Ai,h for each agent i ∈ I at time h is a set of individual
prediction actions ai,h, with one individual prediction action for each tangent hyperplane
α ∈ Γ; for other time steps Ai,t are as in A,

• in Z+, the individual observation space Zi,h+1 for each agent i ∈ I at time h+ 1 contains
a single null observation; for other time steps Zi,t are as in Z ,

• T+(zh+1, sh+1 | sh, ah) has probability of one for the joint null observation and sh+1 = sh,
and is otherwise zero; for other time steps T+ is equal to T , and

• inR+, the reward functionRh at time step h is a linear combination of individual prediction
rewards Ri,h of each agent, such that for a joint prediction action ah = 〈a1,h, . . . , an,h〉
the decentralized prediction reward is

Rh(sh, ah) =
1

n

n∑
i=1

Ri,h(sh, ai,h), (1)

with Ri,h(sh, ai,h) = αai,h(sh), where αai,h ∈ Γ is the tangent hyperplane corresponding
to the individual prediction action ai,h; for other time steps Rt are as inR.

The sufficient plan-time statistic for initial state distribution b0 and a past joint policy ϕt is defined as

σt(st, ~zt) , P(st, ~zt | b0, ϕt), (2)

with σ0(s0) , b0(s0). The sufficient statistic update operator is defined as

[Uss(σt, δt)](st+1, ~zt+1) ,
∑
st∈S

T (zt+1, st+1 | st, δt(~zt))σt(st, ~zt). (3)

Finally, recall that we write V π to refer to the expected sum of rewards under a joint policy π, and
V ϕt for the expected sum of rewards under a past joint policy ϕt. We use subscripts, for instance
V πM, to refer to the expected sum of rewards in a particular Dec-POMDPM.

2.1 Proof of Lemma 1

Lemma 1. Let 〈M,Γ〉 be a Dec-ρPOMDP and define M+ as above. Then, for any past joint
policy ϕt with t ≤ h, the respective plan-time sufficient statistics σt in 〈M,Γ〉 and σ+

t inM+ are
equivalent: σt ≡ σ+

t .

Proof. By induction. As the initial state distributions are equal, clearly σ0 ≡ σ+
0 . Now assume

σt ≡ σ+
t for some 0 ≤ t < h. By Definition 3 the transition functions T and T+ are equivalent.

Therefore, the respective sufficient statistic update operators Uss and U+
ss as defined in Eq. (3) are

equivalent for the next decision rule δt. We conclude that σt+1 ≡ σ+
t+1.

2.2 Proof of Lemma 2

Lemma 2 (Optimal joint prediction rule). Let 〈M,Γ〉 be a Dec-ρPOMDP and defineM+ as above,
and let σh be a plan-time sufficient statistic for any past joint policy. Then the joint prediction rule
φ∗ = 〈φ∗1, . . . , φ∗n〉 where each individual prediction rule φ∗i is defined as

φ∗i (~zi,h, σh) , argmax
ai,h∈Ai,h

∑
~z−i,h,sh

σh(sh, ~z−i,h | ~zi,h)Ri,h(sh, ai,h) (4)

maximizes the expected decentralized prediction reward, i.e, R̂h(σh, φ
∗) = maxφ R̂h(σh, φ).

2

Proof. We proceed from the definition of the maximum expected decentralized prediction reward:

max
φ

R̂h(σh, φ) , max
φ

∑
~zh,sh

σh(sh, ~zh)Rh(sh, φ(~zh, σh)) (5a)

= max
φ1,...,φn

∑
~zh,sh

σh(sh, ~zh)
1

n

n∑
i=1

Ri,h(sh, φi(~zi,h, σh)) (5b)

=
1

n

n∑
i=1

max
φi

∑
~zh,sh

σh(sh, ~zh)Ri,h(sh, φi(~zi,h, σh)) (5c)

=
1

n

n∑
i=1

max
φi

∑
~zi,h,~z−i,hsh

σh(~zi,h)σh(sh, ~z−i,h | ~zi,h)Ri,h(sh, φi(~zi,h, σh)) (5d)

=
1

n

n∑
i=1

∑
~zi,h

σh(~zi,h) max
ai,h∈Ai,h

∑
~z−i,h,sh

σh(sh, ~z−i,h | ~zi,h)Ri,h(sh, ai,h) (5e)

=
1

n

n∑
i=1

∑
~zi,h

σh(~zi,h)
∑

~z−i,h,sh

σh(sh, ~z−i,h | ~zi,h)Ri,h(sh, φ
∗
i (~zi,h, σh)) (5f)

= R̂h(σh, φ
∗). (5g)

Above, 5b follows by definition of Rh as sum of individual prediction rewards (Eq. (1)) and since φ
is decentralized. Then 5c and 5d follow by rearranging terms and by law of conditional probability,
respectively. Then 5e follows since maximizing over φi is equivalent to finding an individual
prediction action for each ~zi,h that maximizes the expected individual prediction reward. Equality 5f
follows from the definition of φ∗i , completing the proof.

2.3 Proof of Lemma 3

Lemma 3. The expected decentralized prediction reward R̂h(σh, φ
∗) inM+ is at most equal to the

expected centralized prediction reward ρ̂(σh) in 〈M,Γ〉, i.e., R̂h(σh, φ
∗) ≤ ρ̂(σh).

Proof. We continue from Eq. (5e):

R̂h(σh, φ
∗) =

1

n

n∑
i=1

∑
~zi,h

σh(~zi,h) max
ai,h∈Ai,h

∑
~z−i,h,sh

σh(sh, ~z−i,h | ~zi,h)Ri,h(sh, ai,h) (6a)

=
1

n

n∑
i=1

∑
~zi,h

σh(~zi,h) max
ai,h∈Ai,h

∑
~z−i,h

σh(~z−i,h | ~zi,h)
∑
sh

σh(sh | ~z−i,h, ~zi,h)Ri,h(sh, ai,h) (6b)

≤ 1

n

n∑
i=1

∑
~zi,h,~z−i,h

σh(~zi,h)σh(~z−i,h | ~zi,h) max
ai,h∈Ai,h

∑
sh

σh(sh | ~z−i,h, ~zi,h)Ri,h(sh, ai,h) (6c)

=
1

n

n∑
i=1

∑
~zh

σh(~zh) max
ai,h∈Ai,h

∑
sh

σh(sh | ~zh)Ri,h(sh, ai,h) (6d)

=
1

n

n∑
i=1

∑
~zh

σh(~zh) max
α∈Γ

∑
sh

σh(sh | ~zh)α(sh) (6e)

=
1

n

n∑
i=1

ρ̂(σh) = ρ̂(σh). (6f)

Equality 6b follows by law of conditional probability and rearranging the terms. Inequality 6c follows
since the expectation of a maximum is greater than or equal to the maximum of the expectation.
Then, 6d follows by rearranging terms. Finally, 6e follows due to the one-to-one correspondence
between the individual prediction actions ai,h ∈ Ai,h and the tangent hyperplanes α ∈ Γ from
Definition 3.

3

2.4 Proof of Lemma 4

Lemma 4. Let 〈M,Γ〉 andM+ be as defined above. Let ϕh be a past joint policy forM+, and let
φ∗ be the optimal joint prediction rule. Then, the value of ϕh ◦ φ∗ inM+ is at most equal to the
value of ϕh in 〈M,Γ〉, i.e., V ϕh◦φ∗

M+ ≤ V ϕh

〈M,Γ〉.

Proof. Suppose that ϕh consists of the joint decision rules δ0, . . . , δh−1. Now ϕh can be applied as a
full joint policy in 〈M,Γ〉 with value function V ϕh

〈M,Γ〉. Since the value function of a policy is defined
as the sum of expected rewards, for any initial plan-time sufficient statistic σ0,

V ϕh◦φ∗

M+ (σ0) =

h−1∑
t=0

R̂t(σt, δt) + R̂h(σh, φ
∗) ≤

h−1∑
t=0

R̂t(σt, δt) + ρ̂(σh) = V ϕh

〈M,Γ〉(σ0), (7)

where the inequality follows since by Lemma 1 the sufficient plan-time statistics are equivalent and
by Lemma 3 the decentralized prediction reward lower bounds the centralized prediction reward.

2.5 Proof of Observation 1

For convenience, we state again the theorem proven in the main paper, and then give a proof of the
observation.

Theorem 1 (Loss due to decentralization). Consider a Dec-ρPOMDP 〈M,Γ〉 with the optimal
value function V ∗〈M,Γ〉. Let π be an optimal policy for the standard Dec-POMDPM+ created as in
Definition 3, and denote by ϕh the past joint policy consisting of the first h decision rules of π. Then
the difference of V ∗〈M,Γ〉 and the value function V ϕh

〈M,Γ〉 of applying ϕh to 〈M,Γ〉 is bounded by

|V ∗〈M,Γ〉(σ0)− V ϕh

〈M,Γ〉(σ0)| ≤ 2 max
σh

|ρ̂(σh)− R̂h(σh, φ
∗)|, (8)

where φ∗ is the optimal joint prediction rule.

Observation 1. Consider the setting of Theorem 1. Assume that the observation sequence of each
agent is conditionally independent of the observation sequences of all other agents given the past
joint policy and initial state distribution, i.e., for every agent i, σh(~zh) = σh(~zi,h)σh(~z−i,h). Then
π∗ is an optimal joint policy for 〈M,Γ〉 if and only if π∗ ◦ φ∗ is an optimal joint policy forM+.

Proof. We show that ρ̂(σh) = R̂h(σh, φ
∗) under the independence condition, which makes the

error bound in Theorem 1 zero. Let σh be the plan-time sufficient statistic that maximizes the error.
Continue from Eq. (6c), and apply the fact that σh(~z−i,h | ~zi,h) = σh(~z−i,h) under the independence
condition:

R̂h(σh, φ
∗)=

1

n

n∑
i=1

∑
~zi,h

σh(~zi,h) max
ai,h∈Ai,h

∑
~z−i,h

σh(~z−i,h)
∑
sh

σh(sh |~z−i,h, ~zi,h)Ri,h(sh, ai,h) (9a)

=
1

n

n∑
i=1

∑
~zi,h,~z−i,h

σh(~zi,h)σh(~z−i,h) max
ai,h∈Ai,h

∑
sh

σh(sh | ~z−i,h, ~zi,h)Ri,h(sh, ai,h) (9b)

=
1

n

n∑
i=1

∑
~zh

σh(~zh) max
ai,h∈Ai,h

∑
sh

σh(sh | ~zh)Ri,h(sh, ai,h) (9c)

=
1

n

n∑
i=1

∑
~zh

σh(~zh) max
α∈Γ

∑
sh

σh(sh | ~zh)α(sh) (9d)

=
1

n

n∑
i=1

ρ̂(σh) = ρ̂(σh), (9e)

where the second equality follows since the effect of the expectation over ~z−i,h is the same for every
~zi,h. Therefore V ∗〈M,Γ〉 = V π

∗◦φ∗

M+ , and the claim follows.

4

Algorithm 1 Adaptive prediction action search (APAS) for Dec-ρPOMDP planning
Input: Dec-ρPOMDP 〈M,Γ〉, convex function f : ∆(S)→ R, number of linearization points K
Output: Best joint policy found, πbest

1: Vbest ← −∞, πbest ← ∅
2: repeat
3: // Policy optimization phase
4: M+ ← CONVERTDECPOMDP(M,Γ) . Apply Definition 3
5: π ← PLAN(M+) . Use any Dec-POMDP planner
6: V ← EVALUATE(π)
7: if V > Vbest then Vbest ← V, πbest ← π
8: // Adaptation phase
9: Γ← ∅

10: for k = 1, . . . ,K do
11: ~zh ∼ σh(~zh) . Sample joint observation sequence ~zh using πbest
12: bk ← σh(· | ~zh) . Final state estimate corresponding to ~zh
13: αk ← ∇f(bk)− f∗(∇f(bk)) . Tangent hyperplane of f at bk
14: Γ← Γ ∪ {αk}
15: end for
16: until converged
17: return πbest

3 Further details on the APAS algorithm

The APAS algorithm from the main paper is reproduced in Algorithm 1. We provide additional details
on how we draw samples from the plan-time sufficient statistic, and how the α-vectors are computed.

To avoid explicitly computing the plan-time sufficient statistic σh in the adaptation phase (Lines 9-15),
we instead apply rollouts to sample ~zh ∼ σh as follows. We sample an initial state s0 ∼ b0, and then
simulate the Dec-POMDP by taking actions prescribed by πbest, sampling the next states st+1 and
joint observations zt+1 from the dynamics function T until t = h− 1. We obtain a sampled sequence
~zh of joint observations, and a sequence ~ah of joint actions taken. Then, we apply Bayesian filtering
to compute the joint state estimate bk that is equal to σh(· | ~zh), i.e., bk(sh) , P(sh | ~zh,~ah, b0).

The computation of the tangent hyperplane αk of f at the joint state estimate bk is based on the
convex conjugate or Fenchel conjugate f∗. We present here a brief overview, details are found in [1,
Sect. 3.3.1.]. We derive the special case where f is the negative entropy, but the procedure can be
applied to any bounded, convex and differentiable function f . Fix a linearization point bk ∈ ∆(S).
Because f is convex and differentiable, the following inequality holds for any b ∈ ∆(S):

f(b) ≥ bT [∇f(bk)− f∗(∇f(bk))] . (10)

In the problems we consider in the main paper, f is the negative entropy: f(b) =
∑
s b(s) ln b(s) with

∇f(b) = ln b+ 1.1 The Fenchel conjugate of f is the log-sum-exp function f∗(b) = ln
(∑

s e
b(s)
)
.

We see that f∗(∇f(bk)) = ln
(∑

s e
ln b(s)+1

)
= ln (e

∑
s b(s)) = ln(

∑
s b(s)) + ln e = 1, since∑

s b(s) = 1. By plugging these values to Eq. (10) we obtain

f(b) ≥ bT [∇f(bk)− f∗(∇f(bk))] = bT (ln bk + 1− 1) = bT ln bk =
∑
s

b(s) ln bk(s), (11)

from which we identify the α-vector αk(s) = ln bk(s).

A reference implementation of APAS as described here is available in a public repository hosted at
https://github.com/laurimi/multiagent-prediction-reward.

4 Details of the experimental setup

We present additional details on the algorithms, parameter settings, and the experimental setup we
apply.

1For a vector b, expressions such as ln b denote the vector obtained taking the element-wise log of b.

5

https://github.com/laurimi/multiagent-prediction-reward

a
(1)
i,0

a
(0)
i,0

a
(2)
i,0

z
(0)
i,0

z
(1)
i,0

a
(2)
i,0

a
(0)
i,0

z
(0)
i,0

z
(1)
i,0

z
(0)
i,0

z
(1)
i,0

Figure 1: An illustration of a finite state controller representing an individual policy πi of agent i for
horizon h = 3. Controller states represented by the circular nodes. There are 2 controller states per
time step, except for t = 0 where only the leftmost starting node is present. There are three possible
individual actions a(j)

i,t at t = 0, 1, 2. There are two possible individual observations z(j)
i,t at t = 1, 2.

4.1 Overview of the solution algorithms

We briefly review the NPGI solution algorithm for Dec-ρPOMDPs [2], and the policy graph improve-
ment method of [5] that we use to implement the planning subroutine of our proposed APAS method.
The two solution algorithms are closely related, motivating selecting them for our comparison.

NPGI. NPGI [2] represents each agent’s policy using a finite state controller (FSC) with a fixed
number of controller states. Since NPGI solves a finite horizon problem, each node is identified
with a particular time step t in the problem. A conceptual example of a FSC policy is represented in
Figure 1. Each controller state is labelled by an individual action ai,t to be taken. At each controller
state, a transition function determines the next controller node for each individual observation zi,t+1.
The transition function is represented by the edges of the directed graph shown in the figure.

NPGI optimizes the actions to take and the transition function of the FSC of each agent by repeating
two phases. First, for each controller state, NPGI computes the expected joint state estimate,
marginalizing over the possible controller states of the other agents −i. Secondly, NPGI solves a
local optimization problem at each controller state, finding an improved action and an improved
transition function.

The first step of NPGI requires computing all joint state estimates reachable under the current policy,
increasing the complexity of the algorithm. NPGI solves Dec-ρPOMDPs with reward functions
that are convex functions of the joint state estimate. This means that it is difficult to adapt it to use
sampling-based approximations or rollouts instead of explicit computation of joint state estimates. In
our experiments, we use the implementation of NPGI provided by the authors of [2].

Policy graph improvement. NPGI is a generalization of the policy graph improvement algorithm
of [5]. The policy graph improvement algorithm also represents each agent’s policy as a FSC with a
fixed number of nodes, and operates using the same two phases as NPGI.

For the PLAN subroutine of APAS, we implement the finite-horizon policy graph improvement
algorithm based on the description provided in [5]. We modify the algorithm to use sampling and
rollouts to estimate values and expected joint state estimates.

4.2 Conversion to standard Dec-POMDP: implementation details

The conversion from Dec-ρPOMDP to a Dec-POMDP increases the horizon by one, and on the newly
added time step modifies the action and observation spaces, the transition and observation models,
and the reward function. The actions on the newly added time step are the individual prediction
actions. The transition and observation models and the reward function on the newly added time step
are trivial.

6

2 3 4 5 6 7 8
h

−2.4

−2.2

−2.0

−1.8

Po
lic

y
va

lu
e

MAV - APAS (K = 2)

2 3 4 5 6 7 8
h

MAV - No adaptation (K = 2)

2 3 4 5 6 7 8
h

−2.4

−2.2

−2.0

−1.8

Po
lic

y
va

lu
e

MAV - APAS (K = 4)

2 3 4 5 6 7 8
h

MAV - No adaptation (K = 4)

2 3 4 5 6 7 8
h

−2.6

−2.4

−2.2

−2.0

−1.8

Po
lic

y
va

lu
e

MAV - APAS (K = 8)

2 3 4 5 6 7 8
h

MAV - No adaptation (K = 8)

Figure 2: Boxplots of policy values in the MAV domain found by APAS and APAS without the
adaptation phase as a function of the horizon h. The plots are arranged in three groups of two plots.
From left to right, the groups of two plots report results for K = 2, 4, or 8 individual prediction
actions. Within each group, the left plot reports the result for APAS, and the right plot the result for
APAS without adaptation.

We found it easiest to handle the conversion implicitly, that is, we load the horizon h Dec-ρPOMDP
description into memory, and then instruct our solution algorithm to solve the horizon (h + 1)
Dec-POMDP while implementing the modifications mentioned above on the final time step directly
in the solver. This implicit conversion is fast and its effect on the overall solution time is negligible.

We also experimented with first loading the problem from disk in the .dpomdp format [4], then
modifying the description to include the changes required before writing it back to disk, thereby
explicitly creating the converted standard Dec-POMDP. However, we found this approach to be
infeasible, as the .dpomdp format is not straightforward to use with time-dependent action and
observation spaces and reward functions.

4.3 Parameter settings

As described in the previous subsection, the planning algorithms used in our experiments are closely
related. We therefore share the parameters for both of them. In all our experiments, we use FSCs
with 2 nodes per time step (see Fig. 1 for an example of the resulting FSCs). 20 policy improvement
iterations are executed. We escape local maxima by assigning a random action and a random transition
function for a node under optimization with probability 0.1.

4.4 Experimental settings

For APAS and NPGI, we execute 10 runs using each and record in each run the value of the best joint
policy found. For APAS without the adaptation phase, using only a single set of randomly sampled
α-vectors, we instead run 100 runs. We terminate any run that does not finish within a timeout of 2
hours. Since all algorithms we use are anytime algorithms, we sometimes can obtain results from a
partially finished run as well. All experiments were run on a computer with an Intel Core i7-5930K
CPU, with 32 GB of memory.

5 Additional experimental results

In this section, we present additional experimental results omitted from the main paper.

Adaptation phase of APAS significantly improves performance. We present here more detailed
results on removing the adaptation phase from APAS (Algorithm 1). Instead of executing the
adaptation phase, we randomly sample the linearization points and corresponding α-vectors. Figures 2
and 3 shows a comparison of policy values between APAS and APAS without the adaptation phase for
the MAV and Rovers domains, respectively. We see that including the adaptation phase consistently
improves the average value of policies found in both problem domains. Generally policy values
are higher for APAS, while the variance is also lower, indicating usefulness of the adaptation phase.
Notably, the worst case performance is much better with the adaptation phase than without it.

We also note that as the horizon increases, both methods experience a decrease in average performance.
The greatest policy values found without adaptation sometimes exceed the values of policies found
by APAS, e.g., for horizon h = 10 with K = 5 in the Rovers domain. This suggests that further
improvements to APAS might be possible by improving the adaptation phase.

7

2 3 4 5 6 7 8 9 10
h

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

Po
lic

y
va

lu
e

Rovers - APAS (K = 5)

2 3 4 5 6 7 8 9 10
h

Rovers - No adaptation (K = 5)

2 3 4 5 6 7 8 9 10
h

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

Po
lic

y
va

lu
e

Rovers - APAS (K = 10)

2 3 4 5 6 7 8 9 10
h

Rovers - No adaptation (K = 10)

Figure 3: Boxplots of policy values in the Rovers domain found by APAS and APAS without the
adaptation phase as a function of the horizon h. From left to right, the groups of two plots report
results for K = 5 or 10 individual prediction actions. Within each group, the left plot reports the
result for APAS, and the right plot the result for APAS without adaptation.

Table 1: Average total runtime of APAS± standard deviation in seconds in the MAV domain (K = 2)
and the Rovers domain (K = 5).

Horizon h MAV (seconds) Rovers (seconds)

2 1.44 ± 0.15 21.05 ± 0.26
3 2.01 ± 0.12 21.87 ± 0.28
4 2.73 ± 0.14 22.96 ± 0.48
5 3.99 ± 0.18 24.33 ± 0.58
6 14.59 ± 0.21 27.39 ± 0.91
7 190.14 ± 1.65 35.18 ± 2.62
8 2909.11 ± 334.29 65.31 ± 4.63
9 — 177.51 ± 19.41

10 — 607.16 ± 90.82

Effect of the number of α-vectors. The effect of the numberK of α-vectors (number of individual
prediction actions) on the performance of APAS is shown in Figure 4 for the MAV domain and in
Figure 5 for the rovers domain. Each subplot shows for a particular planning horizon h boxplots
of the values of policies found by APAS as a function of K. We observe that only in the Rovers
domain for h = 10 using K = 10 individual prediction actions compared to K = 5 results in slightly
improved performance, although the difference is not very significant.

Timing results. Table 1 shows the average total duration of APAS runs for the MAV domain and
Rovers domain using K = 2 and K = 5 prediction actions, respectively. The average runtime
increases strongly as the horizons increases. Upon inspection, we noted that the majority of the
time for long horizons was spent evaluating the policies (Line 6 of Algorithm 1). We evaluate
policies exactly, by computing all reachable state estimates to evaluate the final reward f at them.
This suggests that further scaling in terms of the planning horizon is possible if switching to an
approximate evaluation of policy value, e.g., by sampling and evaluating trajectories. We did not
explore the effect of the resulting noisy value estimates on the solution quality. Somewhat surprisingly,
Table 1 indicates lower runtimes for horizons h ≥ 7 for the larger Rovers domain. This is due to the
domain structure. In any state, most observations in Rovers have zero probability as the agent always
correctly observes its own location. These zero-probability observations do not need to be considered
in value computation.

Finally, we can compare the time required by APAS and NPGI. While a direct comparison is not
fully informative due to differing implementations, we note that in the MAV domain with h = 5 a
runtime of around 30 seconds per single backward pass is reported for NPGI in [3]. As shown in
Table 1, for the same domain and horizon, APAS completes the planning (which in our case includes
20 backward passes) in about 4 seconds.

8

2 4 8
Number of α-vectors (K)

−2.15

−2.10

−2.05

−2.00

−1.95

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=2

2 4 8
Number of α-vectors (K)

−2.00

−1.95

−1.90

−1.85

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=3

2 4 8
Number of α-vectors (K)

−1.95

−1.90

−1.85

−1.80

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=4

2 4 8
Number of α-vectors (K)

−1.90

−1.85

−1.80

−1.75

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=5

2 4 8
Number of α-vectors (K)

−1.875

−1.850

−1.825

−1.800

−1.775

−1.750

−1.725

−1.700

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=6

2 4 8
Number of α-vectors (K)

−1.850

−1.825

−1.800

−1.775

−1.750

−1.725

−1.700

−1.675

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=7

2 4 8
Number of α-vectors (K)

−1.95

−1.90

−1.85

−1.80

−1.75

−1.70

−1.65

AP
AS

 p
ol

ic
y

va
lu

e

MAV h=8

Figure 4: Boxplots of values of policies found by APAS in the MAV domain as a function of the
number K of α-vectors.

References
[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[2] Mikko Lauri, Joni Pajarinen, and Jan Peters. Information Gathering in Decentralized POMDPs by Policy
Graph Improvement. In Intl. Conf. on Autonomous Agents and Multiagent Systems (AAMAS), pages
1143–1151, 2019.

[3] Mikko Lauri, Joni Pajarinen, and Jan Peters. Multi-agent active information gathering in discrete and
continuous-state decentralized POMDPs by policy graph improvement. Autonomous Agents and Multi-
Agent Systems, 34(42):1–44, 2020. Issue no. 2.

[4] Frans A. Oliehoek, Matthijs TJ Spaan, Bas Terwijn, Philipp Robbel, and João V Messias. The MADP
toolbox: an open source library for planning and learning in (multi-) agent systems. The Journal of Machine
Learning Research, 18(1):3112–3116, 2017.

[5] Joni K Pajarinen and Jaakko Peltonen. Periodic Finite State Controllers for Efficient POMDP and DEC-
POMDP Planning. In Advances in Neural Information Processing Systems, pages 2636–2644. 2011.

9

5 10
Number of α-vectors (K)

−3.65

−3.60

−3.55

−3.50

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=2

5 10
Number of α-vectors (K)

−3.5

−3.4

−3.3

−3.2

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=3

5 10
Number of α-vectors (K)

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=4

5 10
Number of α-vectors (K)

−3.5

−3.4

−3.3

−3.2

−3.1

−3.0

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=5

5 10
Number of α-vectors (K)

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

−3.0

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=6

5 10
Number of α-vectors (K)

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=7

5 10
Number of α-vectors (K)

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=8

5 10
Number of α-vectors (K)

−4.0

−3.8

−3.6

−3.4

−3.2

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=9

5 10
Number of α-vectors (K)

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

AP
AS

 p
ol

ic
y

va
lu

e

Rovers h=10

Figure 5: Boxplots of values of policies found by APAS in the Rovers domain as a function of the
number K of α-vectors (number of individual prediction actions).

10

	Introduction
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Observation 1

	Further details on the APAS algorithm
	Details of the experimental setup
	Overview of the solution algorithms
	Conversion to standard Dec-POMDP: implementation details
	Parameter settings
	Experimental settings

	Additional experimental results

