
We appreciate Reviewers’ comments and will improve presentation and reference lists based on the following responses.1

(Reviewer 1: The effect of rounding: e.g., a cluster of points.) Rounding may have some effect, but this effect does2

not ruin the impact of our contributions, i.e., construction of the fast quantum algorithm and evaluation of its runtime.3

After all, any implementation of kernel methods by computer with bits requires rounding, and in our setting, we4

resolve a cluster of points by rescaling, which is equivalent to increasing precision of rounding without rescaling.5

As discussed in Sec. 3.1, our rescaling keeps the learning problem invariant. Then under standard assumptions in signal6

processing where such implementation works well, it should be straightforward to show our algorithm also works well.7

(Reviewer 1: Difference from Ref. [20].) Compared to Ref. [20], the significance of our contributions is that our8

algorithm in the limit of good approximation (as N,G → ∞) is provably optimal up to a logarithmic gap as shown9

in Ref. [7]; also, its runtime is as fast as poly-logarithmic in N,G as shown in Sec. 3.2. Regarding the first point of the10

review comment, the integral operator may be unknown in practice, but our algorithm converges to sampling from the11

leverage-score distribution of the integral operator as N,G → ∞ whereas Ref. [20] does not converge to this optimal12

distribution in any limit. As for the second point of the review comment, Ref. [20] can achieve the learning since it13

preserves the kernel (Gram) matrix, but the optimality of Ref. [20] using the kernel matrix (i.e., a gap from a lower14

bound of the required number of random features) is unknown in general; in contrast, Ref. [7] using the integral operator15

proves the optimality, and our algorithm based on Ref. [7] achieves this optimality in the limit of N,G → ∞.16

(Reviewer 2: What quantum RAM (QRAM) do we need for the task? The algorithm has various black boxes.) We17

need a quantum oracle Oρ defined explicitly in the first paragraph of Sec. 3.2. This oracle is the only black box in18

our quantum algorithm; putting effort to make our algorithm explicit, we avoid any other QRAM. This input19

model is the same as quantum recommendation systems in Ref. [37] and is implementable feasibly as discussed in20

Sec. B of Supplemental Material, which we omit from the main text since it is well established in Ref. [37].21

(Reviewer 2: What (why) can we use the QSVT without the sparse or low-rank assumption?) We can avoid sparse22

and low-rank assumptions because we explicitly decompose the (non-sparse and full-rank) operator Σε into23

addition and the multiplication of diagonal (i.e., sparse) operators and QFTs, so that we can construct an efficient24

implementation of the block encoding of Σε. This main technical contribution of our paper is explained in the last25

paragraph of Sec. 3.1. Remarkably, our technique does not directly use Lemmas 48–50 of arXiv:1806.01838 since26

these lemmas require sparse and low-rank assumptions. While we could implement Σε by addition and multiplication27

of block encodings of the diagonal operators and QFTs, the presentation of these additions and multiplications may28

become complicated since we have multiple block encodings to be combined. For simplicity of the presentation, we use29

the block encoding of the POVM operator (Lemma 46 of arXiv:1806.01838) at the technical level to represent how to30

combine all the block encodings and QFTs as one circuit, as shown in Figs. 1 and 2 of Supplemental Material.31

(Reviewer 2: How does the quantum Fourier transform come into the overall algorithm?) Our algorithm uses QFTs for32

implementing the block encoding of Σε and for applying F†
D in preparing the quantum state (14).33

(Reviewer 2: On the practical side of the quantum algorithm.) Rather than 5 qubits in Ref. [47], our algorithm aims at34

applications at large scales. In contrast to Ref. [47], we prove that our algorithm achieves the exponential speedup. Thus,35

as explained in Introduction, our algorithm is a convincing candidate for killer applications of universal quantum36

computers in the long run; after all, large-scale machine learning will be eventually needed in practice.37

(Reviewer 2: What’s the difference between classical and quantum?) The existing classical algorithm calculates descrip-38

tion of probability distribution by matrix inversion, and then perform sampling. In contrast, our quantum algorithm39

does not estimate the classical description of the distribution represented by the amplitude of quantum states.40

(Reviewer 3: Considering ∆ is very small, then polylog(1/∆) can be big, and O(D) does not hold anymore.) The41

precision factor polylog(1/∆) is ignorable in practice while we explicitly write it for correctness of our runtime42

analysis. For example, consider two D-dimensional real vectors x and y. Computers with bits can use fixed-point43

number representation to represent each real element with precision ∆ using O(log(1/∆)) bits (e.g., 64 bits). In this44

case, multiplication of two elements requires O(polylog(1/∆)) runtime, and calculation of inner product of x and y45

requires O(D polylog(1/∆)) runtime, but the factor polylog(1/∆) is practically ignored.46

(Reviewer 3: It essentially has some connection to low rank.) Using a concentration inequality, Ref. [7] shows that a47

requirement for any algorithm using random features to achieve the learning with reasonable runtime and accuracy is48

given in terms of the degree of freedom, in particular, by the bound (5) in our paper. However, this requirement (5)49

does not imply low rank of operators used in our algorithm, as discussed in the second paragraph of Sec. 3.2.50

(Reviewer 3: The results have been in [39][42][44]) The novelty of our contributions is that we construct an exponentially51

faster QML algorithm that is free from sparsity and low-rank assumptions. As discussed in Introduction, this has been52

challenging but crucial in QML, and none of Refs. [39] [42] [44] achieves this. We hope that the above explanations53

about all the questions help with eliminating the concerns about validity and importance of our results.54


