
Supplementary Document for
CaSPR: Learning Canonical Spatiotemporal Point

Cloud Representations

Davis Rempe1 Tolga Birdal1 Yongheng Zhao2 Zan Gojcic3

Srinath Sridhar1 Leonidas J. Guibas1

1Stanford University 2University of Padova 3ETH Zürich
geometry.stanford.edu/projects/caspr

Abstract

This document provides supporting details, discussion, and results omitted from
the main paper due to space constraints. We also urge the reader to view the pro-
vided supplementary video, which more clearly demonstrates the spatiotemporal
capabilities of CaSPR. We expand on discussions in Sec. 1, provide supporting
evaluations in Sec. 2, explain details of dataset generation and architecture imple-
mentation in Sec. 3 and Sec. 4, and give details of experiments from the main
paper in Sec. 5.

1 Discussions

Remarks on ODE-Nets The requirements of homeomorphisms and differentiability impose certain
limitations. First, neural ODEs lack a universal approximation capability as non-intersecting trajecto-
ries cannot learn to approximate arbitrary topologies [21]1. On the other hand, it is also shown that
this very property brings intrinsic robustness to ODE-Nets [8]. Moreover, the requirement of invert-
ibility in CNFs is proven to hamper the approximation quality of the target distribution [4]. In fact,
for a perfect recovery and likelihood evaluation, non-invertibility is a requirement [4]. Nonetheless,
the extent to which these limitations restrict the applicability of Neural ODEs and CNFs is still an
active research topic.

Why can’t we use existing point cloud networks as a canonicalizer? Extending PointNet++ to
time (similar to MeteorNet [11]) requires some form of a spatiotemporal neighborhood query or
using time as an auxiliary input feature diminishing its contribution. Spatiotemporal neighborhood
queries are undesirable as they necessitate difficult hyperparameter tuning and limit the network’s
ability to holistically understand the motion. For example, learning the arrow of time (as CaSPR does
in Sec. 5 of the main paper) would be difficult when using local spatiotemporal queries. PointNet can
somewhat remedy this by operating on the full 4D point cloud at once, treating time equally important
as the spatial dimensions. However, we found that PointNet by itself is incapable of extracting
descriptive local features, which are essential for an accurate mapping to T-NOCS.

On the arrow of time Due to the second law of thermodynamics, the entropy of an isolated system
tends to increase with time, making the direction of time irreversible [10] i.e. it is more common
for a motion to cause multiple motions than for multiple motions to collapse into one consistent
motion [13]. This causality is confirmed in computer vision by showing that the statistics of natural
videos are not symmetric under time reversal [13]. Any method processing spacetime inputs should
then be sensitive to this direction so as to yield distinctive representations rather than being invariant

1Augmented-Neural ODEs [16] propose to operate on a higher dimensional space as one workaround.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://geometry.stanford.edu/projects/caspr


Figure 1: Failure cases of CaSPR. The CNF has difficulty capturing local details and very thin
structures (left) along with uncommon shapes (middle). TPointNet++ has trouble with symmetry or
ambiguity in partial views, resulting in reflected or rotated predictions (right).

to it. As shown in the experiments of the main paper, thanks to the inclusion of timestamps and the
Latent ODE advecting forward in time, CaSPR is highly aware of this unidirectionality and it is one
of the reasons why it can extract robust spatiotemporal latent features.

On Disentanglement In the main paper, we have demonstrated experimentally that static and dy-
namic feature disentanglement is achieved to a large extent. Note that CaSPR involves no mechanism
that can guarantee a theoretically disentangled latent space such as the one of [22]. Our design
softly encourages the canonicalization network to respect the subspace nature by only advecting
the dynamic feature with the ODE. Though this is not a CaSPR-specific drawback and many SoTA
disentanglement networks rely upon the same intuition.

Limitations Using a CNF to sample the object surface does come with some limitations as men-
tioned in prior work [19] and discussed above. The inherent properties of CNFs may hamper the
ability to capture fine-scale geometric detail. We observe this in chairs with back slats and other
thin structures that are not captured by our Reconstruction CNF as shown in the left panel of Fig. 1.
Additionally, outlier shapes can cause noisy sampling results (shown in the middle). One current
limitation of TPointNet++ is its inability to handle symmetry when canonicalizing a point cloud
sequence. If the partial view of an object is ambiguous or the object is symmetric, TPointNet++ may
predict a flipped or rotated canonical output as shown in the right panel.

2 Additional Evaluations Table 1: CaSPR ablations for reconstruction of
rigid car sequences over 10 observed frames.

Method CD EMD NFE
No Lc 0.605 11.482 38.2
No Factorization 0.635 11.249 101.3
No Input Aug 0.577 10.253 38.9
Full Arch 0.566 10.103 39.6

We provide evaluations of CaSPR omitted from
the main paper due to space constraints. Please
see Section 5 of the main paper for an expla-
nation of evaluation metrics and the primary
results.

2.1 Ablation Study
Table 2: Reconstruction errors with
varying numbers of input points per
frame for rigid car motion.

Num Points CD EMD
2048 0.5657 10.1028
1024 0.5486 10.0339
512 0.5904 10.5188
256 0.8222 13.8275
128 1.4730 20.7233

We compare the full CaSPR architecture (Full Arch) to multiple
ablations in Tab. 1. This includes: (i) not using the canonical-
ization loss (No Lc), (ii) not factorizing the latent ST feature
and instead feeding the entire vector to the Latent ODE (No
Factorization), and (iii) using no pairwise terms (see Sec. 4) as
input augmentation (No Input Aug). In addition to reconstruc-
tion metrics, we report the mean number of function evaluations
(NFE) for the Latent ODE. This is the average number of times
the ODE solver queries the dynamics network while integrating
forward in time for a single sequence. Each method is trained
on the rigid cars category and reconstructs all 10 input frames for evaluation. The full CaSPR
architecture performs best. Note that the static/dynamic feature factorization is especially important
to limit the complexity of Latent ODE dynamics.

2



2.2 Sparsity in Space and Time

We evaluate CaSPR’s ability to reconstruct partial point cloud sequences from the rigid car category
under sparsity in both space and time. Given 10 input frames, Tab. 2 shows the performance for
reconstructing all 10 observed frames with a varying number of points available at each frame.

Table 3: Reconstruction errors with a varying
number of observed input frames.

Observed Unobserved
Num Observed CD EMD CD EMD
10 steps 0.5657 10.1028 — —
7 steps 0.5701 10.3406 0.5609 10.0304
5 steps 0.5664 10.4310 0.5620 10.3374
3 steps 0.5904 11.4641 0.5837 11.2586
2 steps 0.7095 14.8348 0.7233 16.3499

Performance is consistent until 256 or fewer points
are given at which point it drops off rapidly. Tab. 3
shows performance when varying the number of avail-
able observed timesteps for each test sequence. Ob-
served timesteps are distributed as evenly as possible
over the 10-step sequence for this evaluation. Per-
formance is stable even with 3 observed frames, but
does significantly drop when only 2 frames are given
(i.e. the first and last steps).

2.3 Reconstructing Longer Sequences
Table 4: Reconstruction errors for
longer sequences on rigid car data.

Test Seq Length CD EMD
10 0.566 10.103
25 0.534 10.815

We evaluate CaSPR when trained on the rigid motion car dataset
with sequences of 25 frames (rather than 10 as in the main
paper). During training, we randomly subsample 10 frames
(rather than 5) from each sequence, and evaluate with the full
25-frame sequence as input (rather than 10). Tab. 4 shows reconstruction performance compared to
the model in the main paper which uses the 10-frame sequence dataset. We see there is a minimal
difference in performance, indicating CaSPR is capable of handling longer-horizon motion.

2.4 Multi-Category Model Table 5: Reconstruction errors training
on all categories jointly.

Train Data Test Data CD EMD
Cars Cars 0.566 10.103
All Cars 0.728 13.631

Chairs Chairs 0.715 13.009
All Chairs 1.231 15.632

Airplanes Airplanes 0.231 6.026
All Airplanes 0.391 8.213

All All 0.798 12.578

We evaluate CaSPR when trained on all shape categories
together: cars, chairs, and airplanes. This determines
the extent of the category-level restriction on our method.
Results compared to models trained on each category sep-
arately are shown in Tab. 5. Models are evaluated by
reconstructing all 10 observed time steps. As expected,
there is a performance drop when training a single joint
model, however errors are still reasonable and in most
cases better than the PointFlow baseline in terms of EMD
(see Tab. 2 in main paper).

2.5 Canonicalizing for Deformation

Table 6: Canonicalization perfor-
mance for deforming cars.

Method Spatial Err Time Err
Identity 0.0583 0.0000

TPointNet++ 0.0221 0.0012
We evaluate the ability of TPointNet++ to canonicalize non-
rigid transformations. Given a deforming car sequence from
the Warping Cars dataset, the task is to remove the deformation
at each step, leaving the base shape without any warping. To achieve this, we train TPointNet++ with
Lc only, and supervise every step in a sequence with the same GT canonical point cloud that contains
no deformation. Note that Warping Cars is already canonical in terms of rigid transformations, so the
network needs to learn to factor out non-rigid deformation only. Results are shown in Tab. 6 where we
compare TPointNet++ to a baseline that simply copies the input points to the output (Identity, which
performs reasonably since there is no rigid transformation). Identity trivially gives a perfect time error,
but TPointNet++ achieves a much lower spatial error, effectively removing the deformation from each
step. This is qualitatively shown in Fig. 10. This strategy of canonicalization offers an explicit way
to extract temporal correspondences over time, rather than relying on the CNF to naturally exhibit
correspondences (main paper Sec. 5).

2.6 Label Propagation through Canonicalization

We evaluate the ability of T-NOCS canonicalization to establish correspondences by propagating
point-wise labels both throughout a sequence and to new sequences of different object instances.
Given a semantic segmentation of the partial point cloud at the first frame of a sequence at time s1,

3



Figure 2: Example of semantic segmentation label propagation over time and across instances through
T-NOCS canonicalization. The given labels in the first frame of the top sequence (orange box) are
transferred to later frames in the same sequence (green dashed box) and to other sequences with
different object instances (blue dashed boxes) by comparing to the labeled frame in the shared
canonical space.

the first task is to label all subsequent steps in the sequence at times s2, . . . , sk, i.e. propagate the
segmentation forward in time. Secondly, we want to label all frames of sequences containing different
object instances i.e. propagate the segmentation to different objects of the same class. We achieve
both through canonicalization with TPointNet++: all frames in each sequence are mapped to T-NOCS,
then unknown points are labeled by finding the closest point in the given labeled frame at s1. If the
closest point in s1 is not within a distance of 0.05 in the canonical space, it is marked “Unknown".
This may happen if part of the shape is not visible in the first frame due to self-occlusions.

Table 7: Segmentation label propagation per-
formance. Total Acc is point-wise accuracy
over all points; Known Acc is only for points
that our method successfully labels.

Task Category Total Acc Known Acc
Temporal Chairs 0.9419 0.9804

Propagation Airplanes 0.9580 0.9676

Instance Chairs 0.6553 0.8425
Propagation Airplanes 0.7744 0.8006

Results of this label propagation for a subset of
the chairs (1315 sequences) and airplanes (1215 se-
quences) categories of the rigid motion test set are
shown in Tab. 7. We report median point-wise ac-
curacy over all points (Total Acc) and for points suc-
cessfully labeled by our approach (Known Acc). For
the instance propagation task, we randomly use 1/3
of test sequences as “source" sequences where the
first frame is labeled, and the other 2/3 are “target"
sequences to which labels are propagated. In this
case, accuracy is reported only for target sequences. Qualitative results are shown in Fig. 2.

2.7 Extrapolating Motion

We evaluate CaSPR’s ability to extrapolate future motion without being explicitly trained
to do so. In particular, the model is given the first 5 frames in each sequence and
must predict the following 5 frames. The ability to predict future motion based on the
learned prior would be valuable in real-time settings. We evaluate the already-trained
full reconstruction models for each object category (from Tab. 2 in the main paper).

Table 8: Reconstruction of extrapo-
lated frames.

5 Observed 5 Extrapolated
Category CD EMD CD EMD

Cars 0.597 9.833 1.023 21.055
Chairs 0.687 12.502 1.010 20.648

Airplanes 0.224 5.719 0.286 9.625

Note that these models are supervised with observed frames
- they are not trained to predict unseen future states. Results
are shown in Tab. 8. Clearly there is a sharp performance
drop between observed and extrapolated frames as we might
expect, though performance is actually on par with the AtlasNet
baseline (Tab. 2, main paper) in some cases. We note that
qualitatively, the model produces reasonable future motion

4



Figure 4: Examples from the rigid motion dataset. Partial point cloud sequences resulting from
rendered data depth maps are shown; color shifts from blue to red over time.

based on what it has seen and even hallucinates unseen parts of the shape, though it cannot handle
sudden changes in direction.

3 Datasets Details

Rigid Motion Dataset Please see Section 5 of the main paper for an introduction to our new dataset
containing rigid motion for ShapeNet [2] cars, chairs, and airplanes. This simulated dataset gives us
the ability to capture a wide range of trajectories and acquire the necessary inputs and supervision to
train and evaluate CaSPR.

Figure 3: NOCS
map from rigid mo-
tion dataset.

We generate these motions within the Unity game engine2. For each object
instance, we simulate a camera trajectory around the object (placed at the
origin) that starts at a random location and continues for 50 timesteps. The
camera always points towards the origin and its location is parameterized as
a point on the surface of a sphere centered at the origin: by a longitudinal
and latitudinal angle along with a radius. To produce a trajectory, each of
these parameters is gradually increased or decreased independently. When a
parameter reaches a set limit, its direction is reversed, producing interesting
and challenging motions. At each step of the trajectory, a depth map and
NOCS map [17] are rendered from the current camera view. An example
NOCS map from the dataset is shown in Fig. 3. Example camera trajectories
and the resulting aggregate canonical point cloud are shown in Fig. 8.

The rendered frames are further processed to produce the final dataset of raw
depth and canonical T-NOCS point cloud sequences. The rendered trajectory
for each object instance is split into 5 sequences (with 10 steps each). 4096 pixels on the object are
uniformly sampled from each depth map to extract raw partial point cloud sequences in the world
(camera) frame that are used as the input to CaSPR. Examples of these partial sequences are shown
in Fig. 4. Each input point cloud in a sequence is given a timestamp in uniform steps from 0.0 to
5.0. The same sampled pixels are taken from the NOCS map to extract a corresponding canonical
partial point cloud and given a timestamp from 0.0 to 1.0: this represents the supervision for CaSPR.
In total, the car category contains 2527 object instances (12, 635 sequences), chairs contains 5000
objects (25, 000 sequences), and airplanes has 4045 objects (20, 225 sequences). Each category is
split 80/10/10 into train/val/test. The val/test sets are entirely made up of object instances and camera
motions that do not appear in the training split.

Note that during training and inference, only a subset of the available 4096 points at each step
in the dataset are used, as detailed in the main paper (usually 1024 during training and 2048
during evaluation). Additionally, during training a subset of the available 10 frames are randomly
sampled from each sequence, giving non-uniform step sizes between observations. These subsampled
sequences are shifted so that s1 = 0.0 before being given to CaSPR, making things practically easier
as it ensures that the Latent ODE always starts from t1 = 0 for any sequence in a batch.

2https://unity.com/

5



Warping Cars Dataset In Section 5.1 of the main paper (“Non-Rigid Reconstruction and Tem-
poral Correspondences"), we use a variation of the Warping Cars dataset from Occupancy Flow
(OFlow) [12]. We generate our version of this dataset with code kindly provided by the authors of
that work. The dataset contains the same car models as our rigid motion dataset, however they are
watertight versions that allow determining occupancy, which is needed to train OFlow. Same as the
rigid motion dataset, we generate 5 sequences for each car instance with 10 frames of motion each.
Consistent with the OFlow paper, we sample 100k points per sequence on the surface of the object
that are in correspondence over time and can be used as inputs to CaSPR and OFlow; we also sample
100k points in the unit cube containing the object with corresponding occupancy labels for OFlow.
Note that this data gives point clouds on the complete object rather than the partial surface, and there
is no rigid motion in the dataset – only deformation. This means the sequences are already canonical
in the sense that cars are consistently aligned and scaled. We also use input timestamps from 0.0 to
1.0, so the data is already canonical in time as well.

4 Implementation Details

We next cover additional architectural and training details of our method. Please see Section 4.1 of
the main paper for the primary discussion of our architecture and training procedure. We implement
our method using PyTorch3.

TPointNet++ The PointNet [14] component operates on the entire 4D input point cloud and
extracts a 1024-dimensional global feature and 64-dimensional per-point features. We use the vanilla
classification PointNet architecture with 3 shared fully-connected (FC) layers (64, 128, 1024), ReLU
non-linearities, and a final max-pool function. The per-point features come from the output of the
first FC layer, while the global feature is the output of the max-pool. We do not use the input or
feature transform layers, and replace all batch normalization with group normalization [18] using 16
groups, which is crucial to good performance with small batch sizes.

The PointNet++ [15] component operates on each frame of the point cloud sequence in-
dependently and does not receive the timestamp as input. The input points to this part
of the network are augmented with pairwise terms x2, y2, z2, xy, yz, and xz, which
we found improves reconstruction performance (see Sec. 2.1). We use a modified ver-
sion of the segmentation architecture which contains 5 set abstraction (SA) layers (Point-
Net dimensions, radii, number points out): ([[16, 16, 32], [32, 32, 64]], [0.8, 0.4], 1024) →
([[32, 32, 64], [32, 32, 64]], [0.4, 0.2], 512) → ([[64, 64, 128], [64, 96, 128]], [0.2, 0.1], 256) →
([[128, 256, 256], [128, 256, 256]], [0.1, 0.05], 64)→ ([[256, 256, 512], [256, 256, 512]], [0.05, 0.02], 16).
These are followed by 5 feature propagation (FP) layers which each have 2 layers with hidden size
512, and a final shared MLP with layers (512, 512) to produce the final per-point 512-dimensional
local feature. ReLU non-linearities are used throughout, and we again replace all batch normalization
with group normalization [18] using 16 groups.

The final shared MLP which processes the concatenated features from PointNet and PointNet++ also
uses group normalization and ReLU.

There are a few things of note with this architecture. First of all, it avoids any spatiotemporal
neighborhood queries since time is handled entirely with PointNet which treats the timestamps as
an additional spatial dimension. This allows the network to decide which time windows are most
important to focus on. Second, the architecture can easily generalize to sequences with differing
numbers of points and frames since both are processed almost entirely independently (the only
components affected by changing these at test-time are the PointNet max-pooling and the PointNet++
spatial neighborhood queries).

Latent ODE The Latent ODE is given a 64-dimensional latent state z0 , zCdyn which can be
advected to any canonical timestamp from 0.0 to 1.0. The dynamics of the Latent ODE is an
MLP with 3 hidden layers (512, 512, 512) which uses Tanh non-linearities. We use the torchdiffeq
package4 [3] which implements both the ODE solver along with the adjoint method to enable

3https://pytorch.org/
4https://github.com/rtqichen/torchdiffeq

6



backpropagation. We use the dopri15 solver which is an adaptive-step Runge-Kutta 4(5) method. We
use a relative tolerance of 1e-3 and absolute tolerance of 1e-4 both at training and test time.

Reconstruction CNF Our reconstruction CNF adapts the implementation of FFJORD [6] for point
clouds from PointFlow [19]. The dynamics of the CNF are parameterized by a neural network that
uses 3 hidden ConcatSquashLinear layers (512, 512, 512), which are preceeded and followed by a
Moving Batch Normalization layer. We use Softplus non-linearities after each layer. Please see [19]
for full details. In short, each layer takes as input the current hidden state (512-dimensional at hidden
layers or 3-dimensional x, y, z at the first layer), the conditioning shape feature (1600-dimensional
in CaSPR), and the current time of the flow (scalar), and uses this information to update the hidden
state (or output the 3-dimensional derivative at the last layer). The ODE is again solved using
dopri15, this time with both a relative and absolute tolerence of 1e-5. We use the adjoint method for
backpropagation and jointly optimize for the final flow time T along with the parameters of network.

Training and Inference In practice, the full loss function is L = wrLr+wcLc where the contribu-
tions of the reconstruction and canonicalization terms are weighted as wr = 0.01 and wc = 100 as to
be similar scales. No weight decay is used. We use the Adam [9] optimizer (β1 = 0.9, β2 = 0.999)
with a learning rate of 1e-4. During training, we periodically compute the validation set loss, and
after convergence use the weights with the best validation performance as the final trained model.
The number of epochs trained depends on the dataset and the task. We train across up to 4 NVIDIA
Tesla V100 GPUs which allows for a batch size of up to 20 sequences of 5 frames each. As noted in
previous work [19], solving and backpropagating through ODEs (two in our case: Latent and CNF)
results in slow training: it takes about 5 days for the full CaSPR architecture using the multi-gpu
setup. The full CaSPR network contains about 16 million trainable parameters. Inference for a
10-step sequence of rigid car motion with 2048 points at each step takes on average 0.598 seconds.

5 Experimental Details and Supplemental Results

Here we give details of experiments shown in Section 5 of the main paper along with some supporting
results for these experiments (e.g. means, standard deviations, and visualizations).

Evaluation Procedure To evaluate reconstruction error, we use the Chamfer Distance (CD) and
Earth Mover’s Distance (EMD). For our purposes, we define the CD between two point clouds X1,X2

each with N points as

dCD (X1,X2) =
1

N

∑
x1∈X1

min
x2∈X2

‖x1 − x2‖22 +
1

N

∑
x2∈X2

min
x1∈X1

‖x1 − x2‖22

and the EMD as

dEMD (X1,X2) = min
φ:X1→X2

1

N

∑
x1∈X1

‖x1 − φ(x1)‖22

where φ : X1 → X2 is a bijection. In practice, we use a fast approximation of the EMD based on [1].
Both CD and EMD are always reported multiplied by 103.

Table 9: Canonicalization performance mean and (stan-
dard deviation). Supplements Tab. 1 in the main paper.

Method Category Spatial Err Time Err
MeteorNet Cars 0.0834 (0.0801) 0.0002 (0.0015)

PointNet++ No Time 0.0649 (0.0468) —
PointNet++ w/ Time 0.0715 (0.0811) 0.0006 (0.0012)

PointNet 0.0485 (0.0952) 0.0016 (0.0015)
TPointNet++ No Aug 0.0225 (0.0501) 0.0015 (0.0014)

TPointNet++ No Time 0.0224 (0.0570) —

TPointNet++ Cars 0.0229 (0.0617) 0.0013 (0.0012)
TPointNet++ Chairs 0.0162 (0.0337) 0.0008 (0.0006)
TPointNet++ Airplanes 0.0148 (0.0412) 0.0009 (0.0007)

As noted in the main paper, for these recon-
struction metrics and the canonicalization er-
ror metrics, we report the median values over
all test frames. This is motivated by the fact
that ShapeNet [2] contains some outlier shapes
which result in large errors that unfairly bias
the mean and do not accurately reflect compre-
hensive method performance. For completeness,
we also report mean and standard deviation for
these metrics in this document for main paper
experiments. Note that CD and EMD, along
with the spatial canonicalization error, are all

7



reported in the canonical space where the shape lies within a unit cube. This helps intuit the severity
of reported errors.

Although we randomly subsample 1024 points at each frame for training, during evaluation we
always use the same 2048 points (unless specifically stated otherwise) to make evaluation consistent
across compared methods. Unless otherwise stated, CaSPR and all compared baselines reconstruct
the same number of points as in the input (e.g. for evaluation, each input frame has 2048 points, so
we sample 2048 points from our Reconstruction CNF).

Canonicalization In this experiment, we train TPointNet++ by itself with only the canonicalization
loss Lc on each category of the rigid motion dataset. In order to make the number of parameters
comparable across all baselines, we use hidden layers of size 1024 (rather than 1600) in the final
shared MLP for the full TPointNet++ architecture only. We compare to the following baselines which
are all trained with the same Lc:
• MeteorNet [11]: A recent method that extends PointNet++ to process point cloud sequences through

spatiotemporal neighborhood queries. We adapt the MeteorNet-seg version of the architecture with
direct grouping for our task by adding an additional meteor direct module layer, as well as two fully
connected layers before the output layer. Additionally, we slightly modify feature sizes to make the
model capacity comparable to other methods. We found the spatiotemporal radii hyperparameters
difficult to tune and in the end we opted for 10 uniformly sampled radii between (0.03, 0.05) in
the first layer, which were doubled in each subsequent layer.

• PointNet++ No Time: An ablation of TPointNet++ that removes the PointNet component. This
leaves PointNet++ processing each frame independently followed by the shared MLP, and therefore
has no notion of time.

• PointNet++ w/ Time: This is the same ablation as above, but modified so that the PointNet++
receives the timestamp of each point as an additional input feature. Note that local neighborhood
queries are still performed only on spatial points, but they may be across timesteps so we use
increased radii of (0.05, 0.1, 0.2, 0.6, 1.2, 2.0). This baseline represents a naive way to incorporate
time, but dilutes its contributions since it is only an auxiliary feature.

• PointNet: An ablation of TPointNet++ that removes the PointNet++ component. This leaves only
PointNet operating on the full 4D spatiotemporal point cloud. This baseline treats time equally as
the spatial dimensions, but inherently lacks local geometric features.

• TPointNet++ No Time: An ablation of TPointNet++ that only regresses the spatial part of the
T-NOCS coordinate (and not the normalized timestamp). This baseline still takes the timestamps
as input, it just doesn’t regress the last time coordinate.

• TPointNet++ No Aug: An ablation of TPointNet++ that does not augment the input points to
PointNet++ with pairwise terms as described previously. This baseline was omitted from the main
paper for brevity, so a comparison of median performance is shown in Tab. 10.

Table 10: Canonicalization performance without
input augmentation.

Method Category Spatial Err Time Err
No Aug Cars 0.0138 0.0012

Full Arch Cars 0.0118 0.0011

Each model is trained for 220 epochs on the cars
category. TPointNet++ is trained for 120 and 70
epochs on the airplanes and chairs categories, respec-
tively, due to the increased number of objects. Me-
dian canonicalization errors are in Tab. 1 of the main
paper; the mean and standard deviations are shown
in Tab. 9.

Representation and Reconstruction In this experiment, we compare the full CaSPR architecture
to two baselines on the task of reconstructing a partial point cloud sequence.

The baselines represent one alternative to achieve spatial continuity, and one to achieve temporal
continuity. The CaSPR-Atlas baseline is the full CaSPR architecture as described, but replaces the
Reconstruction CNF with an AtlasNet [7] decoder. We use the same decoder as the original AtlasNet.
This decoder contains 64 MLPs, each responsible for transforming a patch to the partial visible
surface at a desired timestep. Each MLP contains 4 hidden layers (1600, 1600, 800, 400) with Tanh
activation functions. This version of CaSPR is still trained with the auxiliary canonicalization task
(Lc loss), but the reconstruction loss is now a Chamfer distance since AtlasNet does not support

8



Table 11: Partial surface sequence reconstruction results showing mean and (standard deviation).
Supplements Tab. 2 in the main paper.

10 Observed 3 Observed 7 Unobserved
Method Category CD EMD CD EMD CD EMD
PointFlow Cars 0.537 (0.272) 15.986 (11.130) 0.538 (0.270) 15.967 (11.065) 0.700 (0.732) 17.362 (12.276)
CaSPR-Atlas Cars 0.814 (1.729) 26.922 (28.562) 0.874 (2.051) 29.171 (29.479) 0.853 (1.705) 26.416 (27.582)
CaSPR Cars 0.795 (1.048) 14.242 (21.619) 0.846 (1.261) 16.564 (24.296) 0.824 (1.108) 16.217 (23.011)

PointFlow Chairs 0.907 (0.519) 20.254 (11.938) 0.907 (0.514) 20.225 (11.899) 1.245 (1.299) 21.971 (13.417)
CaSPR-Atlas Chairs 1.007 (1.243) 54.406 (24.970) 1.030 (1.221) 54.827 (25.250) 1.061 (1.277) 52.964 (24.355)
CaSPR Chairs 1.013 (1.426) 15.287 (9.837) 0.972 (1.498) 15.757 (11.154) 1.000 (1.542) 16.145 (11.620)

PointFlow Airplanes 0.367 (0.366) 11.852 (8.768) 0.366 (0.363) 11.862 (8.725) 0.446 (0.527) 12.335 (9.146)
CaSPR-Atlas Airplanes 0.587 (1.196) 23.444 (17.386) 0.653 (1.369) 23.165 (16.932) 0.663 (1.400) 22.661 (16.853)
CaSPR Airplanes 0.536 (1.468) 8.827 (12.650) 0.536 (1.682) 8.992 (13.219) 0.530 (1.673) 9.031 (12.792)

Figure 5: Reconstruction performance of the CaSPR-Atlas and PointFlow baselines compared to the
full CaSPR model. Each row shows a frame from a different 10-step rigid motion sequence.

likelihood evaluations like a CNF. We use group normalization [18] instead of batch normalization
within the decoder to improve performance with small batch sizes.

The PointFlow [19] baseline uses their deterministic autoencoder architecture. This follows the
autoencoding evaluations from the original paper and uses a PointNet-like encoder to extract a
shape feature, which conditions a CNF decoder. This version of the model is trained only with the
reconstruction likelihood objective from the CNF, and does not use the various losses associated with
the VAE formulation of their architecture. To make it a fair comparison, we increase the size of the
shape feature bottleneck to 1600. The CNF decoder uses a dynamics MLP with 3 hidden layers of
size (512, 512, 512), just like CaSPR. Also like CaSPR, we train PointFlow with a learning rate of
1e-4, which we found to decrease the complexity of dynamics and therefore training time.

9



(b) Ground Truth - 10 (c) T-NOCS Prediction - 10 (d) CNF Prediction - 10 (e) CNF Prediction - 30

0.00 0.07

(a) Input Sequence - 10

Figure 6: Canonicalization, aggregation, and dense reconstruction of rigid motion sequences by the
full CaSPR model. Each sequence shows (a) the 10 observed raw partial point cloud frames given
as input to CaSPR, (b) the GT partial reconstruction based on the observed frames, (c) the partial
reconstruction achieved by aggregating T-NOCS predictions from TPointNet++ with color mapped
to spatial error, (d) the aggregated prediction after reconstructing the 10 observed frames with the
CNF, and (e) the aggregated prediction when interpolating 30 frames using the CNF.

The PointFlow baseline operates on single already-canonical partial point cloud frames, while
CaSPR and CaSPR-Atlas take in raw world-space sequences of partial point clouds. To reconstruct a
sequence, PointFlow can easily reconstruct the observed (canonical) frames by simply autoencoding
each frame independently. However, to allow reconstruction of intermediate unobserved steps,
we must use linear interpolation in the shape feature space from surrounding observed frames, as
described in the main paper.

Median reconstruction errors are presented in Tab. 2 of the main paper. Mean and standard deviation
are shown here in Tab. 11. Generally, the CaSPR variants have a higher standard deviation than
PointFlow. This is likely because CaSPR methods must canonicalize the input in addition to
reconstructing it, so any errors in this first step may compound in the reconstruction causing some
occasional high errors. A qualitative comparison is shown in Fig. 5. The CaSPR-Atlas baseline has
perhaps deceivingly poor EMD errors. As discussed in the main paper, the patch-based approach has
difficulty reconstructing the true point distribution of the partial view and may cause some areas to be
much more dense or sparse than they should (see chairs in Fig. 5). Because EMD requires a bijection,

10



Figure 7: Examples of spatiotemporal interpolation to reconstruct sparse, partial input sequences.
The sparse GT canonical point cloud for each sequence is shown in the top row; the dense CaSPR
reconstruction using the CNF is shown in the bottom row.

these overly dense areas are paired with distant points causing large errors. However, qualitative and
CD results suggest the approach has some advantages: the reconstructed point cloud tends to be less
noisy and capture local detail better than its CNF-based counterparts.

Additional results of the full CaSPR model reconstructing 10-frame input sequences of rigid, partial
point clouds are shown in Fig. 6. Please see the caption for details. Note that the shown T-NOCS
predictions are using TPointNet++ trained jointly within the full CaSPR model rather than individually
as in the “Canonicalization" experiments.

Rigid Spatiotemporal Interpolation Additional results of the full CaSPR architecture reconstruct-
ing a sparse, partial input sequence are shown in Fig. 7. In each sequence, the model is given 3 frames
with 512 points (with GT canonical point cloud shown as Sparse GT) and reconstructs any number
of densely sampled steps (10 are shown as Dense Sampling, each with 2048 points).

Table 12: Pose estimation performance showing mean
and (standard deviation). Supplements Tab. 3 in the
main paper.

Method Category Trans Err Rot Err(◦) Point Err
RPM-Net Cars 0.0071 (0.0102) 2.1677 (10.0952) 0.0087 (0.0146)
CaSPR 0.0116 (0.0245) 4.9597 (22.8311) 0.0203 (0.0645)

RPM-Net Chairs 0.0029 (0.0031) 0.6212 (3.3530) 0.0042 (0.0078)
CaSPR 0.0094 (0.0127) 3.0264 (9.5897) 0.0152 (0.0367)

RPM-Net Airplanes 0.0050 (0.0076) 2.2703 (16.2945) 0.0070 (0.0190)
CaSPR 0.0083 (0.0144) 3.6740 (16.9152) 0.0144 (0.0456)

Rigid Pose Estimation We solve for object
pose in a post-processing step that leverages the
world-canonical correspondences given by the
output of TPointNet++. We use the full TPoint-
Net++ architecture trained as in the “Canoni-
calization" evaluation above. For each frame
independently, we run RANSAC [5] using 4
points to perform the fitting and with an inlier
threshold of 0.015.

We compare our approach to a recent method for robust rigid registration called RPM-Net [20]. This
is an algorithm specially designed for pairwise point cloud registration that iteratively estimates the
transformation parameters of possibly-partial point clouds by estimating soft correspondences in the
inferred feature space. Because this method can only operate on pairs of point clouds, during training
we give it the raw partial point cloud (1024 points) along with the corresponding GT canonical
point cloud (1024 points with permuted ordering) as input. This contrasts with TPointNet++ that
only receives the raw partial point cloud at each step, and must predict the canonical point cloud to
establish correspondences. At test-time, we instead use 2048 points for the input point clouds, and the
raw points and GT canonical points are randomly sampled so they are not in perfect correspondence.

Median errors appear in Tab. 3 of the main paper, but mean and standard deviation results are shown
here in Tab. 12. Though TPointNet++ does not outperform RPM-Net on any shape category, the
minimal gap in performance is impressive considering that TPointNet++ has to solve a much harder

11



Figure 8: Additional camera pose estimation results. Ground truth trajectories are shown in solid
green and the CaSPR prediction in dashed red.

Figure 9: Rigid pose estimation comparison. Each column shows a frame from a different partial
point cloud sequence. Predicted object pose (red points) is shown compared to the GT depth point
cloud (green points) for each method. Both methods are very accurate.

task (pose estimation) than RPM-Net, which receives both the world and canonical point clouds as
input and iteratively solves the simpler pairwise registration task. As seen in Fig. 9, the qualitative
difference between the two methods is nearly imperceivable. Additional qualitative camera pose
estimation results from CaSPR are shown in Fig. 8.

Non-Rigid Reconstruction and Temporal Correspondences We compare CaSPR to Occupancy
Flow (OFlow) [12] on the task of reconstructing Warping Cars sequences and estimating correspon-
dences over time. Because OFlow uses an implicit occupancy shape representation, this dataset
contains complete shapes with a clearly defined inside and out. The OFlow baseline uses the point
cloud completion version of the model, which leverages a PointNet-ResNet architecture for both the
spatial and temporal encoders. OFlow is trained with the reconstruction loss only (i.e. it does not
explicitly use a correspondence loss).

Table 13: Reconstruction and correspondences mean and (standard
deviation) on Warping Cars. Supplements Tab. 4 in the main paper.

Reconstruction Correspondences
Method CD EMD Dist t1 Dist t10
OFlow 1.764 (0.913) 24.247 (14.74) 0.011 (0.003) 0.032 (0.007)
CaSPR 0.992 (0.256) 12.864 (5.856) 0.014 (0.002) 0.037 (0.009)

Both methods are trained on se-
quences of 10 frames with 512 points,
and tested on sequences of 10 frames
with 2048 points. Due to restrictions
of the OFlow encoder, the points at
each frame in the input sequence are
in correspondence over time (note that this is not a requirement for CaSPR, which can accurately
estimate temporal correspondence even if this is not the case as in most real-world applications) and
we must use the same number of timesteps at training and test time. To reconstruct a sequence with
OFlow, we reconstruct the mesh at the first time step based on the occupancy network predictions,
then randomly sample 2048 points on this mesh and advect them forward in time with the predicted
flow field. For CaSPR, we advect the latent feature forward in time to each desired timestep as per
the usual, then reconstruct each frame with the CNF using the same Gaussian samples at each step to
achieve temporal continuity.

12



Figure 10: Reconstruction results on Warping Cars data. Each sequence is 10 steps in length and we
show point trajectories over time for (a) the ground truth input sequence, (b) the reconstruction from
Occupancy Flow, (c) the reconstruction at the 10 observed steps with CaSPR, (d) 30 interpolated
steps with CaSPR, and (e) the T-NOCS prediction from TPointNet++.

Median reconstruction and correspondence errors are reported in Tab. 4 of the main paper. Here
we show the mean and standard deviations in Tab. 13. Reconstruction errors are measured at all 10
observed timesteps by randomly sampling 2048 ground truth points, while correspondence errors are
measured at only the first and last steps using the procedure detailed in the main paper. Additional
qualitative results are shown in Fig. 10.

References

[1] Bertsekas, D.P.: A distributed asynchronous relaxation algorithm for the assignment problem.
In: IEEE Conference on Decision and Control. pp. 1703–1704 (1985)

[2] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,
M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012 (2015)

[3] Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential
equations. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)
(2018)

[4] Cornish, R., Caterini, A.L., Deligiannidis, G., Doucet, A.: Relaxing bijectivity constraints with
continuously indexed normalising flows. arXiv preprint arXiv:1909.13833 (2019)

[5] Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM 24(6),
381–395 (1981)

13



[6] Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord: Free-form
continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367
(2018)

[7] Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to
learning 3d surface generation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 216–224 (2018)

[8] Hanshu, Y., Jiawei, D., Vincent, T., Jiashi, F.: On robustness of neural ordinary differential
equations. In: Proceedings of the International Conference on Learning Representations (ICLR)
(2019)

[9] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

[10] Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Physics today 46, 32–32 (1993)
[11] Liu, X., Yan, M., Bohg, J.: Meteornet: Deep learning on dynamic 3d point cloud sequences.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 9246–9255 (2019)

[12] Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d reconstruction
by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 5379–5389 (2019)

[13] Pickup, L.C., Pan, Z., Wei, D., Shih, Y., Zhang, C., Zisserman, A., Scholkopf, B., Freeman,
W.T.: Seeing the arrow of time. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2035–2042 (2014)

[14] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification
and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 652–660 (2017)

[15] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In: Advances in neural information processing systems (2017)

[16] Runz, M., Buffier, M., Agapito, L.: Maskfusion: Real-time recognition, tracking and recon-
struction of multiple moving objects. In: International Symposium on Mixed and Augmented
Reality (ISMAR). pp. 10–20. IEEE (2018)

[17] Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object
coordinate space for category-level 6d object pose and size estimation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2642–2651
(2019)

[18] Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 3–19 (2018)

[19] Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3d point cloud
generation with continuous normalizing flows. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 4541–4550 (2019)

[20] Yew, Z.J., Lee, G.H.: Rpm-net: Robust point matching using learned features. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 11824–
11833 (2020)

[21] Zhang, H., Gao, X., Unterman, J., Arodz, T.: Approximation capabilities of neural ordinary
differential equations. arXiv preprint arXiv:1907.12998 (2019)

[22] Zhao, Y., Birdal, T., Lenssen, J.E., Menegatti, E., Guibas, L., Tombari, F.: Quaternion equivari-
ant capsule networks for 3d point clouds. arXiv preprint arXiv:1912.12098 (2019)

14


	Discussions
	Additional Evaluations
	Ablation Study
	Sparsity in Space and Time
	Reconstructing Longer Sequences
	Multi-Category Model
	Canonicalizing for Deformation
	Label Propagation through Canonicalization
	Extrapolating Motion

	Datasets Details
	Implementation Details
	Experimental Details and Supplemental Results

