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Abstract

We introduce a new category of generative autoencoders called automodulators.
These networks can faithfully reproduce individual real-world input images like
regular autoencoders, but also generate a fused sample from an arbitrary combina-
tion of several such images, allowing instantaneous ‘style-mixing’ and other new
applications. An automodulator decouples the data flow of decoder operations from
statistical properties thereof and uses the latent vector to modulate the former by
the latter, with a principled approach for mutual disentanglement of decoder layers.
Prior work has explored similar decoder architecture with GANs, but their focus
has been on random sampling. A corresponding autoencoder could operate on real
input images. For the first time, we show how to train such a general-purpose model
with sharp outputs in high resolution, using novel training techniques, demonstrated
on four image data sets. Besides style-mixing, we show state-of-the-art results in
autoencoder comparison, and visual image quality nearly indistinguishable from
state-of-the-art GANs. We expect the automodulator variants to become a useful
building block for image applications and other data domains.

1 Introduction

This paper introduces a new category of generative autoencoders for learning representations of image
data sets, capable of not only reconstructing real-world input images, but also of arbitrarily combining
their latent codes to generate fused images. Fig. 1 illustrates the rationale: The same model can
encode input images (far-left), mix their features (middle), generate novel ones (middle), and sample
new variants of an image (conditional sampling, far-right). Without discriminator networks, training
such an autoencoder for sharp high resolution images is challenging. For the first time, we show a
way to achieve this.

Recently, impressive results have been achieved in random image generation (e.g., by GANs [5, 14,
25]). However, in order to manipulate a real input image, an ‘encoder’ must first infer the correct
representation of it. This means simultaneously requiring sufficient output image quality and the
ability for reconstruction and feature extraction, which then allow semantic editing. Deep generative
autoencoders provide a principled approach for this. Building on the PIONEER autoencoder [18], we
proceed to show that modulation of decoder layers by leveraging adaptive instance normalization
(AdaIn, [12, 23, 44]) further improves these capabilities. It also yields representations that are less
entangled, a property here broadly defined as something that allows for fine and independent control
of one semantic (image) sample attribute at a time. Here, the inductive bias is to assume each
such attribute to only affect certain scales, allowing disentanglement [33]. Unlike [23], previous
GAN-based works on AdaIn [6, 25] have no built-in encoder for new input images.

In a typical autoencoder, input images are encoded into a latent space, and the information of the
latent variables is then passed through successive layers of decoding until a reconstructed image has
been formed. In our model, the latent vector independently modulates the statistics of each layer of
the decoder so that the output of layer n is no longer solely determined by the input from layer n− 1.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Input

Input

Real input images

Reconstruction

is modulated by

Reconstruction

Modulated output

is modulated by

Random sample

Modulated output

‘Coarse’ features

modulated

Conditional samples given ‘coarse’

and ‘fine’ features from input

Figure 1: Illustration of some automodulator capabilities. The model can directly encode real (unseen)
input images (left). Inputs can be mixed by modulating one with another or with a randomly drawn
sample, at desired scales (center); e.g., ‘coarse’ scales affect pose and gender etc. Finally, taking
random modulations for certain scales produces novel samples conditioned on the input image (right).

A key idea in our work is to reduce the mutual entanglement of decoder layers. For robustness, the
samples once encoded and reconstructed by the autoencoder could be re-introduced to the encoder,
repeating the process, and we could require consistency between the passes. In comparison to
stochastic models such as VAEs [28, 40], our deterministic model is better suited to take advantage of
this. We can take the latent codes of two separate samples, drive certain layers (scales) of the decoder
with one and the rest with the other, and then separately measure whether the information contained
in each latent is conserved during the full decode–encode cycle. This enforces disentanglement of
layer-specific properties, because we can ensure that the latent code introduced to affect only certain
scales on the 1st pass should not affect the other layers on the 2nd pass, either.

In comparison to implicit (GAN) methods, regular image autoencoders such as VAEs tend to have
poor output image quality. In contrast, our model simultaneously balances sharp image outputs with
the capability to encode and arbitrarily mix latent representations of real input images.

The contributions of this paper are as follows. (i) We provide techniques for stable fully unsupervised
training of a high-resolution automodulator, a new form of an autoencoder with powerful properties
not found in regular autoencoders, including scale-specific style transfer [13]. In contrast to architec-
turally similar ‘style’-based GANs, the automodulator can directly encode and manipulate new inputs.
(ii) We shift the way of thinking about autoencoders by presenting a novel disentanglement loss
that further helps to learn more disentangled representations than regular autoencoders, a principled
approach for incorporating scale-specific prior information in training, and a clean scale-specific
approach to attribute modification. (iii) We demonstrate promising qualitative and quantitative
performance and applications on FFHQ, CELEBA-HQ, and LSUN Bedrooms and Cars data sets.

2 Related Work

Our work builds upon several lines of previous work in unsupervised representation learning. The
most relevant concepts are variational autoencoders (VAEs, [28, 40]) and generative adversarial
networks (GANs, [14]). In VAEs, an encoder maps data points to a lower dimensional latent
space and a decoder maps the latent representations back to the data space. The model is learnt by
minimizing the reconstruction error, under a regularization term that encourages the distribution
of latents to match a predefined prior. Latent representations often provide useful features for
applications (e.g., image analysis and manipulation), and allow data synthesis by random sampling
from the prior. However, with images, the samples are often blurry and not photorealistic, with
imperfect reconstructions.

Current state-of-the-art in generative image modeling is represented by GAN models [5, 25, 26]
which achieve higher image quality than VAE-based models. Nevertheless, these GANs lack an
encoder for obtaining the latent representation for a given image, limiting their usefulness. In some
cases, a given image can be semantically mapped to the latent space via generator inversion but this
iterative process is prohibitively slow for many applications (see comparison in App. G), and the
result may depend on initialization [1, 8].

2



Bidirectional mapping has been targeted by VAE-GAN hybrids [30, 34–36], and adversarial models
[10, 11]. These models learn mappings between the data space and latent space using combinations of
encoders, generators, and discriminators. However, even the latest state-of-the-art variant BigBiGAN
[9] focuses on random sampling and downstream classification performance, not on faithfulness of
reconstructions. InfoGAN [7, 32] uses an encoder to constrain sampling but not for full reconstruction.
IntroVAE [22] and Adversarial Generator Encoder (AGE, [45]) only comprise an encoder and a
decoder, adversarially related. PIONEER scales AGE to high resolutions [17, 18]. VQ-VAE [39, 47]
achieves high sample quality with a discrete latent space, but such space cannot, e.g., be interpolated,
which hinders semantic image manipulation and prevents direct comparison.

Architecturally, our decoder and use of AdaIn are similar to the recent StyleGAN [25] generator
(without the ‘mapping network’ f ), but having a built-in encoder instead of the disposable discrim-
inator leads to fundamental differences. AdaIn-based skip connections are different from regular
(non-modulating) 1-to-many skip connections from latent space to decoder layers, such as, e.g., in
BEGAN [3, 31]. Those skip connections have not been shown to allow ‘mixing’ multiple latent
codes, but merely to map the one and the same code to many layers, for the purpose of improving the
reconstruction quality. Besides the AGE-based training [45], we can, e.g., also recirculate style-mixed
reconstructions as ‘second-pass’ inputs to further encourage the independence and disentanglement of
emerging styles and conservation of layer-specific information. The biologically motivated recircula-
tion idea is conceptually related to many works, going back to at least 1988 [20]. Utilizing the outputs
of the model as inputs for the next iteration has been shown to benefit, e.g., image classification [49],
and is used extensively in RNN-based methods [15, 16, 41].

3 Methods

We begin with the primary underlying techniques used to construct the automodulator: the progressive
growing of the architecture necessary for high-resolution images and the AGE-like adversarial training
as combined in the PIONEER [17, 18], but now with an architecturally different decoder to enable
‘modulation’ by AdaIn [12, 23, 25, 44] (Sec. 3.1). The statistics modulation allows for multiple latent
vectors to contribute to the output, which we leverage for an improved unsupervised loss function
in Sec. 3.2. We then introduce an optional method for weakly supervised training setup, applicable
when there are known scale-specific invariances in the training data itself Sec. 3.3.

3.1 Automodulator Components

Our overall scheme starts from unsupervised training of a symmetric convolution–deconvolution
autoencoder-like model. Input images x are fed through an encoder φ to form a low-dimensional
latent space representation z (we use z ∈ R

512, normalized to unity). This representation can then
be decoded back into an image x̂ through a decoder θ.

Adversarial generator encoder loss To utilize adversarial training, the automodulator training
builds upon AGE and PIONEER. The encoder φ and the decoder θ are trained on separate steps,
where φ attempts to push the latent codes of training images towards a unit Gaussian distribution
N(0, I), and the codes of random generated images away from it. θ attempts to produce random
samples with the opposite goal. In consecutive steps, one optimizes loss Lφ and Lθ [45], with
margin Mgap for Lφ [18] (negative KL term of Lθ dropped, as customary [17, 46]), defined as

Lφ=max(−Mgap,DKL[qφ(z |x) ‖N(0, I)]−DKL[qφ(z | x̂) ‖N(0, I)])+λX dX (x,θ(φ(x))), (1)

Lθ=DKL[qφ(z | x̂) ‖N(0, I)]+λZ dcos(z,φ(θ(z))), (2)

where x is sampled from the training set, x̂ ∼ qθ(x | z), z ∼ N(0, I), dX is L1 or L2 distance, and
dcos is the cosine distance. The KL divergence can be calculated from empirical distributions of
qφ(z | x̂) and qφ(z |x). Still, the model inference is deterministic, so we could retain, in principle,
the full information contained in the image, at every stage of the processing. For any latent vector
z, decoded back to image space as x̂, and re-encoded as a latent z′, it is possible and desirable to
require that z is as close to z′ as possible, yielding the latent reconstruction error dcos(z,φ(θ(z))).
We will generalize this term in 3.2.

Progressively growing autoencoder architecture To make the AGE-like training stable in high
resolution, we build up the architecture and increase image resolution progressively during training,
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Figure 2: (a) The autoencoder-like usage of the model. (b) Modulations in the decoder can come
from different latent vectors. This can be leveraged in feature/style mixing, conditional sampling,
and during the model training (first pass). (c) The second pass during training, yielding Lj .

starting from tiny images and gradually growing them, making the learning task harder (see [17, 24]
and Supplement Fig. 7). The convolutional layers of the symmetric encoder and decoder are faded in
gradually during the training, in tandem with the resolution of training images and generated images
(Fig. 7).

Automodulation To build a separate pathway for modulation of decoder layer statistics, we need
to integrate the AdaIn operation for each layer (following [25]). In order to generate an image, a
traditional image decoder would start by mapping the latent code to the first deconvolutional layer to
form a small-resolution image (θ0(z)) and expand the image layer by layer (θ1(θ0(z)) etc.) until the

full image is formed. In contrast, our decoder is composed of layer-wise functions θi(ξ
(i−1), z) that

separately take a ‘canvas’ variable ξ(i−1) denoting the output of the preceding layer (see Figs. 2a
and 7), and the actual (shared) latent code z. First, for each feature map #j of the deconvolutional

layer #i, we compute the activations χij from ξ(i−1) as in traditional decoders. But now, we
modulate (i.e., re-scale) χij into having a new mean mij and standard deviation sij , based on z
(e.g., a block of four layers with 16 channels uses 4×16×2 scalars). To do this, we need to learn a
mapping gi : z 7→ (mi, si). We arrive at the AdaIn normalization (also see App. B):

AdaIn(χij , gi(z)) = sij

(

χij − µ(χij)

σ(χij)

)

+mij . (3)

We implement gi as a fully connected linear layer (in θ), with output size 2Ci for Ci channels.

Layer #1 starts from a constant input ξ(0) ∈ R
4×4. Without loss of generality, here we focus on

pyramidal decoders with monotonically increasing resolution and decreasing number of channels.

3.2 Conserving Scale-specific Information Over Cycles

We now proceed to generalize the reconstruction losses in a way that specifically benefits from the
automodulator architecture. We encourage the latent space to become hierarchically disentangled
with respect to the levels of image detail, allowing one to separately retrieve ‘coarse’ vs. ‘fine’
aspects of a latent code. This enables, e.g., conditional sampling by fixing the latent code at specific
decoder layers, or mixing the scale-specific features of multiple input images—impossible feats for a
traditional autoencoder with mutually entangled decoder layers.

First, reinterpret the latent reconstruction error dcos(z,φ(θ(z))) in Eq. (2) as ‘reconstruction at
decoder layer #0’. One can then trivially generalize it to any layer #i of θ by measuring differences

in ξ(i), instead. We simply pick a layer of measurement, record ξ
(i)
1 , pass the sample through a full

encoder–decoder cycle, and compare the new ξ
(i)
2 . But now, in the automodulator, different latent

codes can be introduced on a per-layer basis, enabling us to measure how much information about
a specific latent code is conserved at a specific layer, after one more full cycle. Without loss of
generality, here we only consider mixtures of two codes. We can present the output of a decoder

(Fig. 2b) with N layers, split after the jth one, as a composition x̂AB = θj+1:N (θ1:j(ξ
(0), zA), zB).

Crucially, we can choose zA 6= zB (extending the method of [25]), such as zA = φ(xA) and
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zB = φ(xB) for (image) inputs xA 6= xB . Because the earlier layers #1:j operate on image content
at lower (‘coarse’) resolutions, the fusion image x̂AB has the ‘coarse’ features of zA and the ‘fine’
features of zB . Now, any z holds feature information at different levels of detail, some empirically
known to be mutually independent (e.g., skin color and pose), and we want them separately retrievable,
i.e., to keep them ‘disentangled’ in z. Hence, when we re-encode x̂AB into ẑAB = φ(x̂AB), then

θ1:j(ξ
(0), ẑAB) should extract the same output as θ1:j(ξ

(0), zA), unaffected by zB .

This motivates us to minimize the layer disentanglement loss

Lj = d(θ1:j(ξ
(0), ẑAB),θ1:j(ξ

(0), zA)) (4)

for some distance function d (here, L2 norm), with zA, zB ∼ N(0, I), for each j. In other words, the
fusion image can be encoded into a new latent vector

ẑAB ∼ qφ(z |x) qθj+1:N
(x | ξ(j), zB) qθ1:j (ξ

(j) | ξ(0), zA), (5)

in such a way that, at each layer, the decoder will treat the new code similarly to whichever of the
original two separate latent codes was originally used there (see Fig. 2c). For a perfect network, Lj

can be viewed as a ‘layer entanglement error’. Randomizing j during the training, we can measure

Lj for any layers of the decoder. A similar loss for the later stage θj:N (ξ(j), zB) is also possible, but
due to more compounded noise and computation cost (longer cycle), was omitted for now.
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Figure 3: Breakdown of the 1-pass flow
loss terms.

Full unsupervised loss We expect the fusion images to
increase the number of outliers during training. To manage
this, we replace L1/L2 in Eq. (1) by a robust loss dρ [2]. dρ
generalizes various norms via an explicit parameter vector
α. Thus, Lφ remains as in Eq. (1) but with dX = dρ, and

Lθ = DKL[qφ(z | x̂) ‖N(0, I)]

+ λZ dcos(z,φ(θ(z))) + Lj , (6)

where x̂1: 3
4
M ∼ qθ(x | z) with z ∼ N(0, I), and

x̂ 3
4
M :M ∼ qθ(x | ẑAB), with a set 3:4 ratio of regular and

mixed samples for batch size M , j ∼ U{1, N}, and ẑAB

from Eq. (5). Margin Mgap = 0.5, except for CELEBA-
HQ and Bedrooms 128×128 (Mgap = 0.2) and CELEBA-
HQ 256×256 (Mgap = 0.4). To avoid discontinuities
in α, we introduce a progressively-growing variation of
dρ, where we first learn the α in the lowest resolution
(e.g., 4×4). There, each αi corresponds to one pixel px,y .
Then, whenever doubling the resolution, we initialize the
new—now four times as large—α in the higher resolution

by replicating each αi to cover the new α1×4
j that now

corresponds to px,y, px+1,y, px,y+1 and px+1,y+1, in the
higher resolution.

We summarize the final loss computation as follows. At
the encoder training step (Fig. 3a)[45], we compute Lφ

by first encoding training samples x into latents z, min-
imizing the KL divergence between the distribution of z
and N(0, I) 1 . Simultaneously, we encode randomly gen-
erated samples x̂ into ẑ, maximizing their corresponding
divergence from N(0, I) 2 . We also decode each z into x̃, with the reconstruction error dX (x, x̃)
3 . At the decoder training step, we first compute the 1-pass terms of Lθ (Fig. 3b) by generating
random samples x̂, each decoded from either a single z 4 or a mixture pair (zA, zB) 5 drawn
from N(0, I). We encode each x̂ into ẑ and minimize the KL divergence between their distribution
and N(0, I) 6 . We compute the latent reconstruction error dcos between each z and its re-encoded
counterpart ẑ 7 . Finally, for (zA, zB), we do the second pass, adding the term Lj (see Fig. 2c).

3.3 Enforcing Known Invariances at Specific Layers

As an extension to the main approach described so far, one can independently consider the following.
The architecture and the cyclic training method also allow for a novel principled approach to leverage
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known scale-specific invariances in training data. Assume that images x1 and x2 have identical
characteristics at some scales, but differ on others, with this information further encoded into z1
and z2, correspondingly. In the automodulator, we could try to have the shared information affect

only the decoder layers #j:k. For any ξ(j−1), we then must have θj:k(ξ
(j−1), z1) = θj:k(ξ

(j−1), z2).
Assume that it is possible to represent the rest of the information in the images of that data set in
layers #1:(j − 1) and #(k + 1):N . This situation occurs, e.g., when two images are known to differ
only in high-frequency properties, representable in the ‘fine’ layers. By mutual independence of
layers, our goal is to have z1 and z2 interchangeable at the middle:

θk+1:N (θj:k(θ1:j−1(ξ
(0), z2), z1), z2) = θk+1:N (θj:k(θ1:j−1(ξ

(0), z2), z2), z2)

= θ1:N (ξ(0), z2) = θ(φ(x2)), (7)

which turns into the optimization target (for some distance function d)

d(θ(φ(x2)),θk+1:N (θj:k(θ1:j−1(ξ
(0), z2), z1), z2)). (8)

By construction of φ and θ, this is equivalent to directly minimizing

Linv = d(x2,θk+1:N (θj:k(θ1:j−1(ξ
(0), z2), z1), z2)), (9)

where z1 = φ(x1) and z2 = φ(x2). By symmetry, the complement term L′
inv can be constructed by

swapping z1 with z2 and x1 with x2. For each known invariant pair x1 and x2 of the minibatch, you
can now add the terms Linv + L′

inv to Lφ of Eq. (6). Note that in the case of z1 = z2, Linv reduces
to the regular sample reconstruction loss, revealing our formulation as a generalization thereof.

As we push the invariant information to layers #j:k, and the other information away from them, there
are less layers available for the rest of the image information. Thus, we may need to add extra layers
to retain the overall decoder capacity. Note that in a pyramidal deconvolutional stack where the
resolution increases monotonically, if the layers #j:k span more than two consecutive levels of detail,
the scales in-between cannot be extended in that manner.

4 Experiments

Since automodulators offer more applications than either typical autoencoders or GANs without an
encoder, we strive for reasonable performance across experiments, rather than beating any specific
metric. (Experiment details in App. A.) Any generative model can be evaluated in terms of sample
quality and diversity. To measure them, we use Fréchet inception distance (FID) [19], which is
comparable across models when sample size is fixed [4], though notably uninformative about the ratio
of precision and recall [29]. Encoder–decoder models can further be evaluated in terms of their ability
to reconstruct new test inputs, which underlies their ability to perform more interesting applications
such as latent space interpolation and, in our case, mixing of latent codes. For a similarity metric
between original and reconstructed face images (center-cropped), we use LPIPS [50], a metric with
better correspondence to human evaluation than, e.g., traditional L2 norm.

The degree of latent space disentanglement is often considered the key property of a latent vari-
able model. Qualitatively, it is the necessary condition for, e.g., style mixing capabilities. Quan-
titatively, one could expect that, for a constant-length step in the latent space, the less entan-
gled the model, the smaller is the overall perceptual change. The extent of this change, mea-
sured by LPIPS, is the basis of measuring disentanglement as Perceptual Path Length (PPL) [25].

Table 1: Effect of loss terms on CELEBA-HQ at
256×256 with 40M seen samples (50k FID batch)
before applying layer noise.

FID FID (mix) PPL

Automodulator architecture 45.25 52.83 206.3
+ Loss Lj 44.06 47.74 210.0
+ Loss dρ replacing L1 36.20 43.53 217.3
+ Loss Lj + dρ replacing L1 37.95 40.90 201.8

We justify our choice of a loss function in
Eq. (6), compare to baselines on relevant mea-
sures, demonstrate the style-mixing capabilities
specific to automodulators, and show a proof-of-
concept for leveraging scale-specific invariances
(see Sec. 3.3). In the following, we use Eqs. (1)
and (6), and polish the output by adding a source
of unit Gaussian noise with a learnable scaling
factor before the activation in each decoder layer,
as in StyleGAN [25], also improving FID.

Ablation study for the loss metric In Table 1, we illustrate the contribution of the layer disentan-
glement loss Lj and the robust loss dρ on the FID for regular and mixed samples from the model
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at 256×256 resolution, as well as PPL. We train the model variants on CELEBA-HQ [24] data set
to convergence (40M seen samples) and choose the best of three restarts with different random
seeds. Our hypothesis was that Lj improves the FID of mixed samples and that replacing L1 sample
reconstruction loss with dρ improves FID further and makes training more stable. The results confirm
this. Given the improvement from dρ also for the mixed samples, we separately tested the effect of dρ
without Lj and find that it produces even slightly better FID for regular samples but then considerably
worse FID for the mixed ones, due to, presumably, more mutually entangled layers. For ablation of
the Mgap term, see [18]. The effect of the term dcos was studied in [45] (for cos instead of L2, see
[46]).

Encoding, decoding, and random sampling To compare encoding, decoding, and random
sampling performance, autoencoders are more appropriate baselines than GANs without an encoder,
since the latter tend to have higher quality samples, but are more limited since they cannot manipulate
real input samples. However, we do also require reasonable sampling performance from our model,
and hence separately compare to non-autoencoders. In Table 2a, we compare to autoencoders:
Balanced PIONEER [18], a vanilla VAE, and a more recent Wasserstein Autoencoder (WAE) [43].
We train on 128×128 CELEBA-HQ, with our proposed architecture (‘AdaIn’) and the regular one
(‘classic’). We measure LPIPS, FID (50k batch of generated samples compared to training samples,
STD over 3 runs < 1 for all models) and PPL. Our method has the best LPIPS and PPL.

In Table 2b, we compare to non-autoencoders: StyleGAN, Progressively Growing GAN (PGGAN)
[24], and GLOW [27]. To show that our model can reasonably perform for many data sets, we train at
256×256 on CELEBA-HQ, FFHQ [25], LSUN Bedrooms and LSUN Cars [48]. We measure PPL
and FID (uncurated samples in Fig. 4 (right), STD of FID over 3 runs < .1). The performance of the
automodulator is comparable to the Balanced PIONEER on most data sets. GANs have clearly best
FID results on all data sets (NB: a hyper-parameter search with various schemes was used in [25] to
achieve their high PPL values). We train on the actual 60k training set of FFHQ only (StyleGAN
trained on all 70k images). We also tested what will happen if we try invert the StyleGAN by finding
a latent code for an image by an optimization process. Though this can be done, the inference is over
1000 times slower to meet and exceed the automodulator LPIPS score (see App. G and Fig. 16). We
also evaluate the 4-way image interpolation capabilities in unseen FFHQ test images (Fig. 13 in the
supplement) and observe smooth transitions. Note that in GANs without an encoder, one can only
interpolate between the codes of random samples, revealing little about the recall ability of the model.

Style mixing The key benefit of the automodulators over regular autoencoders is the style-mixing
capability (Fig. 2b), and the key benefit over style-based GANs is that ‘real’ unseen test images
can be instantly style-mixed. We demonstrate both in Fig. 4. For comparison with prior work, we
use the randomly generated source images from the StyleGAN paper [25]. Importantly, for our
model, they appear as unseen ‘real’ test images. Performance in mixing real-world images is similar
(Supplementary Figs. 14 and 15). In Fig. 4, we mix specific input faces (from source A and B) so
that the ‘coarse’ (latent resolutions 4×4 – 8×8), ‘intermediate’ (16×16 – 32×32) or ‘fine’ (64×64 –
512×512) layers of the decoder use one input, and the rest of the layers use the other.

Invariances in a weakly supervised setup In order to leverage the method of Sec. 3.2, one needs
image data that contains pairs or sets that share a scale-specific prominent invariant feature (or,
conversely, are identical in every other respect except that feature). To this end, we demonstrate a

Table 2: Performance in CELEBA-HQ (CAHQ), FFHQ, and LSUN Bedrooms and Cars. We
measure LPIPS, Fréchet Inception Distance (FID), and perceptual path length (PPL). Resolution is
256×256, except *128×128. For all numbers, smaller is better. Only the ‘-AdaIn’ architectures are

functionally equivalent to the automodulator (encoding and latent mixing). GANs in gray.

(a) Encoder–decoder comparison

LPIPS FID PPL

(CAHQ∗) (CAHQ∗) (CAHQ∗)

B-PIONEER 0.092 19.61 92.8
WAE-AdaIn 0.165 99.81 62.2
WAE-classic 0.162 112.06 236.8
VAE-AdaIn 0.267 114.05 83.5
VAE-classic 0.291 173.81 71.7
Automodulator 0.083 27.00 62.3

(b) Generative models comparison

FID FID FID FID PPL PPL

(CAHQ) (FFHQ) (Bedrooms) (Cars) (CAHQ) (FFHQ)

StyleGAN 5.17 4.68 2.65 3.23 179.8 234.0
StyleGAN2 — 3.11 — 5.64 — 129.4
PGGAN 7.79 8.04 8.34 8.36 229.2 412.0
GLOW 68.93 — — — 219.6 —

B-PIONEER 25.25 61.35 21.52 42.81 146.2 160.0
Automodulator 29.13 31.64 25.53 19.82 203.8 250.2
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Figure 4: (Left): Feeding the random fake source images in Karras et al. [25] into our model as
‘real’ inputs, reconstructing at 512×512 and mixing at three scales. (The same for real faces, see
Supplement.) (Right): Uncurated random samples of 512×512 FFHQ and 256×256 LSUN.

proof-of-concept experiment that uses the simplest image transformation possible: horizontal flipping.
For CELEBA-HQ, this yields pairs of images that share every other property except the azimuth
rotation angle of the face, making the face identity invariant amongst each pair. Since the original
rotation of faces in the set varies, the flip-augmented data set contains faces rotated across a wide
continuum of angles. For further simplicity, we make an artificially strong hypothesis that the 2D
projected face shape is the only relevant feature at 4×4 scale and does not need to affect scales finer
than 8×8. This lets us enforce the Linv loss for layers #1–2. Since we do not want to restrict the
scale 8×8 for the shape features alone, we add an extra 8×8 layer after layer #2 of the regular stack,
so that layers #2–3 both operate at 8×8, layer #4 only at 16×16, etc. Now, with z2 that corresponds

to the horizontally flipped counterpart of z1, we have θ3:N (ξ(2), z1) = θ3:N (ξ(2), z2). Our choices
amount to j = 3, k = N , allowing us to drop the outermost part of Eq. (9). Hence, our additional
encoder loss terms are

Linv = d(x2,θ3:N (θ1:2(ξ
(0), z2), z1)) and (10)

L′

inv = d(x1,θ3:N (θ1:2(ξ
(0), z1), z2)). (11)

Fig. 5a shows the results after training with the new loss (50% of the training samples flipped in each
minibatch). With the invariance enforcement, the model forces decoder layers #1–2 to only affect the
pose. We generate images by driving those layers with faces at different poses, while modulating the
rest of the layers with the face whose identity we seek to conserve. The resulting face variations now
only differ in terms of pose, unlike in regular automodulator training.

Scale-specific attribute editing Consider the mean difference in latent codes of images that display
or do not display an attribute of interest (e.g., smile). Appropriately scaled, such codes can added
to any latent code to modify that attribute. Here, one can restrict the effect of the latent code only
to the layers driving the expected scale of the attribute (e.g., 16×16 − 32×32), yielding precise
manipulation (App. B, comparisons in Supplement) with only a few exemplars (e.g., [18] used 32).
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Figure 5: Examples of controlling individual decoder layer ranges at training time and at evaluation
time. (a) Training with face identity invariance enforcement under azimuth rotation. We generate
images with the ‘non-coarse’ styles of source A and the ‘coarse’ ones from each top row image. With
‘Enforced identity invariance’, the top row only drives the face pose while conserving identity. In
comparison, the ‘Regular’ training lets the top row also affect other characteristics, including identity.
(b) Modifying an attribute in latent space by using only 4 exemplar images of it. In ‘regular’ all-scales
manipulation, the variance in the exemplars causes unwanted changes in, e.g., texture and pose. When
the latent vector only drives the relevant scales, the variance in other scales is inconsequential.

5 Discussion and Conclusion

In this paper, we proposed a new generative autoencoder model with a latent representation that
independently modulates each decoder layer. The model supports reconstruction and style-mixing
of real images, scale-specific editing and sampling. Despite the extra skill, the model still largely
outperforms or matches other generative autoencoders in terms of latent space disentanglement,
faithfulness of reconstructions, and sample quality. We use the term automodulator to denote any
autoencoder that uses the latent code only to modulate the statistics of the information flow through
the layers of the decoder. This could also include, e.g., 3D or graph convolutions.

Various improvements to the model are possible. The mixture outputs still show occasional artifacts,
indicating that the factors of variation have not been perfectly disentangled. Also, while the layer-
induced noise helps training, using it in evaluation to add texture details would often reduce output
quality. Also, to enable even more general utility of the model, the performance could be measured
on auxiliary downstream tasks such as classification.

Potential future applications include introducing completely interchangeable ‘plugin’ layers or
modules in the decoder, trained afterwards on top of the pretrained base automodulator, leveraging
the mutual independence of the layers. The affine maps themselves could also be re-used across
domains, potentially offering mixing of different domains. Such examples highlight that the range of
applications of our model is far wider than the initial ones shown here, making the automodulators a
viable alternative to state-of-the-art autoencoders and GANs.

Our source code is available at https://github.com/AaltoVision/automodulator.

Broader Impact

The presented line of work intends to shift the focus of generative models from random sample
generation towards controlled semantic editing of existing inputs. In essence, the ultimate goal is to
offer ‘knobs’ that allow content editing based on high-level features, and retrieving and combining
desired characteristics based on examples. While we only consider images, the techniques can be
extended to other data domains such as graphs and 3D structures.

Ultimately, such research could reduce very complex design tasks into approachable ones and thus
reduce dependency on experts. For instance, contrast an expert user of a photo editor or design
software, carefully tuning details, with a layperson who simply finds images or designs with the
desired characteristics and guiding the smart editor to selectively combine them.
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Leveling the playing field in such tasks will empower larger numbers of people to contribute to design,
engineering and science, while also multiplying the effectiveness of the experts. The downside of
such empowerment will, of course, include the threats of deepfakes and spread of misinformation.
Fortunately, public awareness of these abuses has been increasing rapidly. We attempt to convey the
productive prospects of these technologies by also including image data sets with cars and bedrooms,
while comparison with prior work motivates the focus on face images.
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