
A Proof of Theorem 1

By smoothness assumption, we have

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
1

2
G‖xt+1 − xt‖2. (13)

Then, by update rule and the fact that ‖gt‖ ≤ c, we have

f(xt+1) ≤f(xt)− α〈∇f(xt), gt〉+
1

2
Gα2‖gt‖2

≤f(xt)− α〈∇f(xt), gt〉+
1

2
Gα2c2. (14)

Take expectation, sum over t from 1 to T , divide both sides by Tα, rearranging and substituting into
α = 1√

T
, we get

1

T

T∑
t=1

E[〈∇f(xt), gt〉] ≤
1

Tα
(f(x1)− f(xT+1)) +

1

2
Gαc2

≤ 1√
T
E[f(x1)− f(xT+1)] +

1

2
√
T
Gc2

≤ 1√
T
Df +

1

2
√
T
Gc2 (15)

where Df = f(x1)−minx f(x). �

B Proof of Theorem 2

In the proof, we assume ξt ∼ p̃t we omit subscript of P and E to simplify notations.

B.1 When gradient is small

Let us first consider the case with ‖∇f(xt)‖ ≤ 3
4c.

Denote B to be the event that ‖∇f(xt) + ξt‖ ≤ c and ‖∇f(xt) − ξt‖ ≤ c, we have P(B) ≥
P(‖ξt‖ ≤ c

4 ). Define D = {ξ : ‖∇f(xt) + ξt‖ > c or ‖∇f(xt)− ξt‖ > c}. Taking an expectation
conditioning on xt, we have

E[〈∇f(xt), gt〉]
=〈∇f(xt),E[clip(∇f(xt) + ξt, c)]〉

=

〈
∇f(xt),E

[
clip(∇f(xt) + ξt, c)

∣∣∣∣B]〉P(B)

+

〈
∇f(xt),

∫
D

clip(∇f(xt) + ξt, c)p̃(ξt)dξt

〉
≥‖∇f(xt)‖2P(‖ξt‖ ≤

c

4
) +

〈
∇f(xt),

∫
D

clip(∇f(xt) + ξt, c)p̃(ξt)dξt

〉
︸ ︷︷ ︸

T1

where the last inequality is due to clip(∇f(xt) + ξt, c) = ∇f(xt) + ξt when B happens and
P(B) ≥ P(‖ξt‖ ≤ c

4 ) and p̃(ξ) = p̃(−ξ).

Now we need to look at T1.

11



We have

T1 =
1

2

(〈
∇f(xt),

∫
D

clip(∇f(xt) + ξt, c)p̃(ξt)dξt

〉
+

〈
∇f(xt),

∫
D

clip(∇f(xt)− ξt, c)p̃(ξt)dξt
〉)

=
1

2

〈
∇f(xt),

∫
D

(clip(∇f(xt) + ξt, c) + clip(∇f(xt)− ξt, c)) p̃(ξt)dξt
〉

=
1

2
‖∇f(xt)‖

×
∫
D

(‖clip(ḡt + ξt, c)‖cos(ḡt, ḡt + ξt) + ‖clip(ḡt − ξt, c)‖cos(ḡt, ḡt − ξt))︸ ︷︷ ︸
T2(ξt)

p̃(ξt)dξt (16)

where ḡt , ∇f(xt) and the last equality is because 〈a, b〉 = ‖a‖‖b‖ cos(a, b) for any vector a, b,
and that the clipping operation keeps directions.

Now it reduces to analyzing T2(ξt). Our target now is to prove T2(ξt) ≥ 0.

Let us first consider the case where ||ḡt + ξt|| ≥ c and ||ḡt − ξt|| ≥ c. In this case, we have

T2(ξ) = c(cos(ḡt, ḡt + ξt) + cos(ḡt, ḡt − ξt)) ≥ 0 (17)

where the inequality is due to Lemma 1.

Another case is one of ||ḡt + ξt|| and ||ḡt − ξt|| is less than c. Assume cos(ḡt, ḡt − ξt) < 0. In this
case, we must have cos(ḡt,−ξt) < 0 and cos(ḡt, ḡt + ξt) > 0 from basic properties of trigonometric
functions. Then, from Lemma 2, we have

||ḡt + ξ|| ≥ ||ḡt − ξ||. (18)

So in this case, we have

T2(ξt) =‖clip(ḡt + ξt, c)‖ cos(ḡt, ḡt + ξt) + ‖clip(ḡt − ξ, c)‖cos(ḡt, ḡt − ξ)
=c · cos(ḡt, ḡt + ξt) + ‖clip(ḡt − ξt, c)‖ cos(ḡt, ḡt − ξt)
≥c · cos(ḡt, ḡt + ξt) + c · cos(ḡt, ḡt − ξt)
≥0 (19)

where the last inequality is due to Lemma 1.

Similar argument applies to the case with cos(ḡt, ḡt + ξt) < 0.

For the case with cos(ḡt, ḡt + ξt) ≥ 0 and cos(ḡt, ḡt − ξt) ≥ 0, we trivially have T2(ξt) ≥ 0. Thus,
we have

E[〈∇f(xt), gt〉] ≥ ‖∇f(xt)‖2P(‖ξt‖ ≤
c

4
). (20)

This completes the proof.

B.2 When gradient is large

Now let us look at the case where gradient is large, i.e. ‖∇f(xt)‖ ≥ 3
4c.

By definition, we have

E[〈∇f(xt), gt〉]

=

〈
∇f(xt),

∫
ξ

clip(∇f(xt) + ξ, c)p(ξ)dξ

〉
=

∫
ξ

〈∇f(xt), clip(∇f(xt) + ξ, c)p(ξ)dξ〉

=‖∇f(xt)‖
∫
ξ

‖clip(∇f(xt) + ξ, c)‖cos(∇f(xt),∇f(xt) + ξ)p(ξ)dξ︸ ︷︷ ︸
T7

(21)
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where the last equality is by definition of cosine and the fact that the clipping operation keeps
directions.

In the following, we want to show T7 is an non-decreasing function of ‖∇f(xt)‖, then the result can
be directly obtained from first part of the theorem.

Notice that T7 is invariant to simultaneous rotation of∇f(xt) and the noise distribution (i.e., changing
the coordinate axis of the space). Thus, wlog, we can assume ∇f(xt)1 = y > 0 and ∇f(xt)i = 0
for 2 ≤ i ≤ d. To show T7 is a non-decreasing function of ‖∇f(xt)‖, it is enough to show each term
in the integration is an non-decreasing function of y. I.e., it is enough to show that, for all ξt, the
following quantity

‖clip(∇f(xt) + ξt, c)‖cos(∇f(xt),∇f(xt) + ξt) (22)
is an non-decreasing function of y for y > 0 when ∇f(xt) = [y, 0, ..., 0] .

First consider the case where ‖∇f(xt) + ξt‖ ≤ c. In this case, (22) reduces to
‖∇f(xt) + ξt‖cos(∇f(xt),∇f(xt) + ξt)

=‖∇f(xt) + ξt‖
〈∇f(xt),∇f(xt) + ξt〉
‖∇f(xt)‖‖∇f(xt) + ξt‖

=
〈∇f(xt),∇f(xt) + ξt〉

‖∇f(xt)‖

=
y(y + ξt,1)

y
= y + ξt,1 (23)

which is a monotonically increasing function of y.

Now consider the case with ‖∇f(xt) + ξt‖ ≥ c, we have
‖clip(∇f(xt) + ξ, c)‖cos(∇f(xt),∇f(xt) + ξt)

=c · cos(∇f(xt),∇f(xt) + ξt)

=c
〈∇f(xt),∇f(xt) + ξt〉
‖∇f(xt)‖‖∇f(xt) + ξt‖

=c
y(y + ξt,1)

y
√

(y + ξt,1)2 +
∑d
i=2 ξ

2
t,i

= c
(y + ξt,1)√

(y + ξt,1)2 +
∑d
i=2 ξ

2
t,i

(24)

which is a non-decreasing function of y.

To see it is non-decreasing, define

r(z) = c
z√

z2 + q2
, (25)

we have r′(z) = c(1 − z2

z2+q2 ) ≥ 0. The term in RHS of (24) can be treated as z = y + ξt,1 and

q2 =
∑d
i=2 ξ

2
t,i.

Since the clipping function is continuous, combined with the above results, we know (22) is an
non-decreasing function of ‖∇f(xt)‖.
Then we have

E[〈∇f(xt), gt〉]

=‖∇f(xt)‖
∫
ξt

‖clip(∇f(xt) + ξt, c)‖cos(∇f(xt),∇f(xt) + ξt)p(ξt)dξt

≥‖∇f(xt)‖
∫
ξt

‖clip(
3

4
c
∇f(xt)

‖∇f(xt)‖
+ ξt, c)‖cos(

3

4
c
∇f(xt)

‖∇f(xt)‖
,

3

4
c
∇f(xt)

‖∇f(xt)‖
+ ξt)p(ξt)dξt

(26)

From first part of the theorem, we know when ‖∇f(xt)‖ = 3
4c, we have

E[〈∇f(xt), gt〉] ≥ ‖∇f(xt)‖2P(‖ξt‖ <
c

4
) = ‖∇f(xt)‖

(
3

4
c · P(‖ξt‖ <

c

4
)

)
(27)
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Combine the above result with (21) and the non-decreasing property of T7, we see that when
‖∇f(xt)‖ ≥ 3

4c, the following holds:

‖∇f(xt)‖
(

3

4
c · P(‖ξ‖ < c

4
)

)
≤ E[〈∇f(xt), gt〉] = ‖∇f(xt)‖T7,

which implies T7 ≥ 3
4c · P(‖ξ‖ < c

4 ). Substituting this lower bound into (21) finishes the proof.

B.3 Technical lemmas

Lemma 1. For any g and ξ, we have
cos(g, g + ξ) + cos(g, g − ξ) ≥ 0 (28)

Proof: By definition of cos, we have
cos(g, g + ξ) + cos(g, g − ξ)

=
〈g, g + ξ〉
‖g‖‖g + ξ‖

+
〈g, g − ξ〉
‖g‖‖g − ξ‖

=
‖g‖
‖g + ξ‖

+
‖g‖
‖g − ξ‖

+
〈g, ξ〉

‖g‖‖g + ξ‖
− 〈g, ξ〉
‖g − ξ‖

=
‖g‖
‖g + ξ‖

+
‖g‖
‖g − ξ‖

+
‖ξ‖cos(g, ξ)
‖g + ξ‖

− ‖ξ‖cos(g, ξ)
‖g − ξ‖

=
‖g + ξ‖(‖g‖ − ‖ξ‖e) + ‖g − ξ‖(‖g‖+ ‖ξ‖e)

‖g + ξ‖‖g − ξ‖
(29)

where e = cos(g, ξ).

To prove the desired result, we only need the numerator of RHS of (29) to be non-negative.

Denote h(ξ) = cos(g, g + ξ) + cos(g, g − ξ), since h is rotation invariant, we can assume ξ1 > 0
and ξt,i = 0 for 2 ≤ i ≤ d wlog. Also, because h(ξ) = h(−ξ), we can assume g1 ≥ 0 wlog.

Now suppose g1 = a,
∑d
i=2 g

2
i = b2, Denote the numerator of RHS of (29) as T3, it can be written as

T3 =‖g + ξ‖(‖g‖ − ‖ξ‖e) + ‖g − ξ‖(‖g‖+ ‖ξ‖e)

=
√
b2 + (a+ ξ1)2(

√
a2 + b2 − ξ1e)︸ ︷︷ ︸

T4

+
√
b2 + (a− ξ1)2(

√
a2 + b2 + ξ1e)︸ ︷︷ ︸

T5

(30)

and e = 〈g,ξ〉
‖g‖‖ξ‖ = a√

a2+b2
.

Now let us analyze when T3 can be possibly less than 0. Recall that by assumption, ξ1 > 0 and e ≥ 0.
Then we know T5 ≥ 0. We have T3 ≥ 0 trivially when T4 ≥ 0, i.e. when ξ1e ≤

√
a2 + b2.

Now assume ξ1e >
√
a2 + b2. To ensure T3 ≥ 0, we can alternatively ensure T 2

5 ≥ T 2
4 in this case.

We have
T 2

5 − T 2
4 =(b2 + (a− ξ1)2)(

√
a2 + b2 + ξ1e)

2 − (b2 + (a+ ξ1)2)(
√
a2 + b2 − ξ1e)2

=4b2ξ1e
√
a2 + b2 + 4ξ1e

√
a2 + b2(a2 + ξ2

1)− 4aξ1(a2 + b2 + ξ2
1e

2)︸ ︷︷ ︸
T6

(31)

For T6, we can further simplify it as

T6 =4ξ1e
√
a2 + b2(a2 + ξ2

1)− 4aξ1(a2 + b2 + ξ2
1e

2)

=4ξ1a(a2 + ξ2
1)− 4aξ1(a2 + b2 + ξ2

1e
2)

=4ξ1a(ξ2
1(1− e2)− b2)

=4ξ1a(ξ2
1(

b2

a2 + b2
)− b2)

=4ξ1a(b2(
ξ2
1 − (a2 + b2)

a2 + b2
))

≥0 (32)
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where the last inequality is because ξ2 ≥ ξ2e2 ≥ a2 + b2 and ξ1a > 0 as assumed previously.

Combining all above, we have T6 ≥ 0 =⇒ T 2
5 − T 2

4 ≥ 0 =⇒ T3 ≥ 0 =⇒ cos(g, g + ξ) +
cos(g, g − ξ) ≥ 0 which proves the desired result.
Lemma 2. For any g and ξ, we have

‖g + ξ‖ ≥ ‖g − ξ‖ (33)

if cos(g, ξ) > 0 and

‖g + ξ‖ ≤ ‖g − ξ‖ (34)

if cos(g, ξ) < 0 .

Proof: Express ξ using a coordinate system with one axis parallel to g. Define the basis of this
coordinate system as v1, v2, ...vd with v1 = g/‖g‖. Then we have ξ =

∑d
i=1 bivi and cos(g, ξ) > 0

if and only if b1 > 0.

In addition, we have

‖g + ξ‖ =

√√√√(‖g‖+ b1)2 +

d∑
i=2

b2i (35)

and

‖g − ξ‖ =

√√√√(‖g‖ − b1)2 +

d∑
i=2

b2i . (36)

Then it is clear that ‖g + ξ‖ ≥ ‖g − ξ‖ when b1 > 0 which means cos(g, ξ) > 0.

Similar arguments applies to the case with cos(g, ξ) < 0

C Proof of Theorem 3

Theorem 3. Given m distributions with the pdf of the ith distribution being pi(ξt) = φi(‖ξt − ui‖)
for some function φi. If ∇f(xt) =

∑m
i=1 wiui for some wi ≥ 0,

∑m
i=1 wi = 1. Let p′(ξt) =∑m

i=1 wipi(ξt − ∇f(xt)), be a mixture of these distributions with zero mean. If 〈ui,∇f(xt)〉 ≥
0,∀i ∈ [m], we have

Eξt∼p′ [〈∇f(xt), gt〉] ≥ ‖∇f(xt)‖
m∑
i=1

wi min(‖ui‖,
3

4
c) cos(∇f(xt), ui)Pξt∼pi(‖ξt‖ <

c

4
) ≥ 0

Proof: First, we notice that Theorem 2 can be restated into a more general form as follows.
Theorem 2 (restated). Given a random variable ξ ∼ p̃ with p̃(ξ) = p̃(−ξ) being a symmetric
distribution, for any vector g, we have

1. If ‖g‖ ≤ 3

4
c, then E[〈g, clip(g + ξ, c)〉] ≥ ‖g‖2P

(
‖ξ‖ < c

4

)
(37)

2. If ‖g‖ > 3

4
c, then E[〈g, clip(g + ξ, c)〉] ≥ 3

4
c‖g‖P

(
‖ξ‖ < c

4

)
(38)

In addition, by sphere symmetricity, if ξ ∼ p̂ with p̂ being a spherical distribution p̂(ξ) = φ(‖ξ‖)
for some function φ, for any vector g, we have E[clip(g + ξ)] = rg with r being a constant (i.e. the
expected clipped gradient is in the same direction as g). Combining with restated Theorem 2 above,
we have when p̃ is a spherical distribution with p̃(ξ) = φ(‖ξ‖),

E[clip(g + ξ, c)] = rg (39)

with r ≥ 0 and

r‖g‖ ≥ min(
3

4
c, ‖g‖)P

(
‖ξ‖ < c

4

)
. (40)
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Now we can use the above results to prove the theorem.

The expectation can be splitted as

Eξt∼p′ [〈∇f(xt), gt〉] =

m∑
i=1

wiEξt∼pi [〈∇f(xt), gt〉]. (41)

Then, because (39) and Eξt∼pi [gt] = ui and that pi corresponds to a noise with spherical distribution
added to ui, we have

Eξt∼pi [〈∇f(xt), gt〉] = 〈∇f(xt), Eξt∼pi [gt]〉 = 〈∇f(xt), riui〉 (42)

with ri‖ui‖ ≥ min( 3
4c, ‖ui‖)Pξt∼pi

(
‖ξt‖ < c

4

)
. Since we assumed 〈ui,∇f(xt)〉 ≥ 0, we have

Eξt∼p′ [〈∇f(xt), gt〉] ≥ ‖∇f(xt)‖
m∑
i=1

wi min(
3

4
c, ‖ui‖) cos(ui,∇f(xt))Pξt∼pi

(
‖ξt‖ <

c

4

)
≥ 0

(43)

which is the desired result.

D Proof of Theorem 5

Recall the algorithm has the following update rule

xt+1 = xt − α

((
1

|St|
∑
i∈St

clip(∇f(xt) + ξt,i, c)

)
+ Zt

)
(44)

where gt,i , ∇f(xt) + ξt,i is the stochastic gradient at iteration t evaluated on sample i, and
St is a subset of whole dataset D; Zt ∼ N (0, σ2I) is the noise added for privacy. We denote
gt = 1

|St|
∑
i∈St clip(∇f(xt) + ξt,i, c) in the remaining parts of the proof to simplify notation.

Following traditional convergence analysis of SGD using smoothness assumption, we first have

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
1

2
G‖xt+1 − xt‖2 (45)

which translates into

f(xt+1) ≤ f(xt)− α〈∇f(xt), (gt + Zt)〉+
1

2
Gα2‖gt + Zt‖2 (46)

Taking expectation conditioned on xt, we have

E[f(xt+1)]

≤f(xt)− αE[〈∇f(xt), gt〉] +
1

2
Gα2(E[‖gt‖2] + σ2c2d)

≤f(xt)− αE[〈∇f(xt), gt〉] +
1

2
Gα2(c2 + σ2c2d). (47)

Take overall expectation and sum over t ∈ [T ] and rearrange, we have

T∑
t=1

αE[〈∇f(xt), gt〉] ≤f(x1)− E[f(xT+1)] + T
1

2
Gα2(c2 + σ2d). (48)

Dividing both sides by Tα, we get

1

T

T∑
t=1

E[〈∇f(xt), gt〉] ≤
f(x1)− E[f(xT+1)]]

Tα
+

1

2
Gα(c2 + σ2d). (49)
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To achieve (ε, δ)-privacy, we need σ2 = v
Tc2 ln( 1

δ )

n2ε2 for some constant v by Theorem 1 in Abadi et al.
[2016b]. Substituting the expression of σ2 into the above inequality, we get

1

T

T∑
t=1

〈E[∇f(xt), gt〉] ≤
Df

Tα
+

1

2
Gα(c2 + v

T ln( 1
δ )

n2ε2
c2d) (50)

where we define Df = f(x1)−minx f(x).

Setting Tα =

√
Dfnε

√
Gc
√
d
√

ln( 1
δ )

, we have

1

T

T∑
t=1

E[〈∇f(xt), gt〉] ≤
(

1

2
v + 1

) c
√
DfGd ln( 1

δ )

nε
+

1

2
Gαc2. (51)

Setting α =

√
Dfd ln( 1

δ )

nεc
√
G

, we have

1

T

T∑
t=1

E[〈∇f(xt), gt〉] ≤
(

1

2
v +

3

2

) c
√
DfGd ln( 1

δ )

nε
. (52)

The remaining step is to analyze the term on LHS of (52). We first notice that the gradient sampling
scheme yields

E[〈∇f(xt), gt〉] = Eξt∼p[〈∇f(xt), clip(∇f(xt) + ξt, c)〉] (53)

with ξt being a discrete random variable that can takes values ξt,i, i ∈ D with equal probability and
D is the whole dataset.

Now it is time to split the bias as following.

Eξt∼p[〈∇f(xt), gt〉] =Eξt∼p̃[〈∇f(xt), gt〉] +

∫
〈∇f(xt), clip(∇f(xt) + ξt, c)〉(pt(ξt)− p̃t(ξt))dξt

with p̃ being a symmetric distribution. Applying Theorem 2, we have

Eξt∼p̃[〈∇f(xt), gt, 〉] ≥ Pξt∼p̃(‖ξt‖ <
c

4
)‖∇f(xt)‖2 (54)

when ‖∇f(xt)‖ ≤ 3
4c and

Eξt∼p̃[〈∇f(xt), gt〉] ≥
3

4
Pξt∼p̃(‖ξt‖ <

c

4
)c‖∇f(xt)‖ (55)

when ‖∇f(xt)‖ ≥ 3
4c.

Now we bound the bias term using Wasserstein distance as follows.

−
∫
〈∇f(xt), clip(∇f(xt) + ξt, c)〉(pt(ξt)− p̃t(ξt))dξt

=

∫
〈∇f(xt), clip(∇f(xt) + ξt, c)〉(p̃(ξt)− p(ξt))dξt

=

∫
〈∇f(xt), clip(∇f(xt) + ξt, c)〉p̃(ξt)dξt −

∫
〈∇f(xt), clip(∇f(xt) + ξ′t, c)〉p(ξ′t)dξ′t

=

∫ ∫
(〈∇f(xt), clip(∇f(xt) + ξt, c)〉 − 〈∇f(xt), clip(∇f(xt) + ξ′t, c)〉)γ(ξt, ξ′t)dξtdξ′t

≤
∫ ∫

|〈∇f(xt), clip(∇f(xt) + ξt, c)〉 − 〈∇f(xt), clip(∇f(xt) + ξ′t, c)〉|γ(ξt, ξ′t)dξtdξ′t (56)

where γ is any joint distribution with marginal p̃ and p. Thus, we have

−
∫
〈∇f(xt), clip(∇f(xt) + ξt, c)〉(pt(ξt)− p̃t(ξt))dξt

≤ inf
γ∈Γ(p̃,p)

∫ ∫
|〈∇f(xt), clip(∇f(xt) + ξt, c)〉 − 〈∇f(xt), clip(∇f(xt) + ξ′t, c)〉|γ(ξt, ξ

′
t)dξtdξ

′
t
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where Γ(p̃, p) is the set of all coupling with marginals p̃ and p on the two factors, respectively. If we
define the distance function dy,c(a, b) = |〈y, clip(y + a, c)〉 − 〈y, clip(y + b, c)〉|, we have

−
∫
〈∇f(xt), clip(∇f(xt) + ξt, c)〉(pt(ξt)− p̃t(ξt))dξt

≤ inf
γ∈Γ(p̃,p)

∫ ∫
d∇f(xt),c(ξt, ξ

′
t)γ(ξt, ξ

′
t)dξtdξ

′
t =W∇f(xt),c(p̃t, pt) (57)

which we define Wv,c(p, p
′) as the Wasserstein distance between p and p′ using the metric dv,c.

Wrapping up, define

h(y) =

{
y2, for y ≤ 3c/4
3
4cy, for y > 3c/4

,

we have

1

T

T∑
t=1

Pξt∼p̃t(‖ξt‖ <
c

4
)h(‖∇f(xt)‖) ≤

(
1

2
v +

3

2

) c
√
DfGd ln( 1

δ )

nε
+

1

T

T∑
t=1

W∇f(xt),c(p̃t, pt)

(58)
which is the desired result. �

E Proof of Theorem 6

Theorem 6. Let gt = clip(∇f(xt)+ξt+kζt, c) and ζt ∼ N (0, I). Then gradient clipping algorithm
has following properties:

Eξt∼p,ζt [〈∇f(xt), gt〉] ≥ ‖∇f(xt)‖min

{
‖∇f(xt)‖,

3

4
c

}
P(‖kζt‖ <

c

4
)−O(

σ2
ξt

k2
) (59)

where σ2
ξt

is the variance of the gradient noise ξt.

Proof: DefineWt = ξt+kζt be the total noise on the gradient before clipping andWt ∼ p̄. We know
E[Wt] = 0 and p̄(Wt) =

∫
ξt
p(ξt)

1
kψ(Wt−ξt

k )dξt with ψ being the pdf of N (0, I). The proof idea

is to bound the total variation distance between p̄(Wt) and 1
kψ as O(

σ2
ξt

k2 ), then use this distance to
bound the clipping bias bt. This implies p̄(Wt) will become more and more symmetric as k increases.

We have ∫ ∣∣∣∣p̄(Wt)−
1

k
ψ(
Wt

k
)

∣∣∣∣ dWt

=

∫
Wt

∣∣∣∣∫
ξt

p(ξt)
1

k
ψ(
Wt − ξt

k
)dξt −

1

k
ψ(
Wt

k
)

∣∣∣∣ dWt

=k

∫
W ′
t

∣∣∣∣∫
ξt

p(ξt)
1

k
ψ(W ′t −

ξt
k

)dξt −
1

k
ψ(W ′t )

∣∣∣∣ dW ′t (60)

By Taylor’s series, we have

ψ(W ′t −
ξt
k

) = ψ(W ′t ) + 〈∇ψ(W ′t ),
−ξt
k
〉+

∫ 1

0

〈
ξt
k
,∇2ψ(W ′t − τ

ξt
k

)
ξt
k

〉
(1− τ)dτ (61)

Then, ∫
|p̄(Wt)−

1

k
ψ(
Wt

k
)|dWt

=

∫
W ′
t

∣∣∣∣∫
ξt

p(ξt)ψ(W ′t −
ξt
k

)dξt − ψ(W ′t )

∣∣∣∣ dW ′t
=

∫
W ′
t

∣∣∣∣∫
ξt

p(ξt)

∫ 1

0

〈ξt
k
,∇2ψ(W ′t − t

ξt
k

)
ξt
k
〉(1− τ)dtdξt

∣∣∣∣ dW ′t
≤
∫ 1

0

∫
ξt

∫
W ′
t

∣∣∣∣p(ξt)〈ξtk ,∇2ψ(W ′t − t
ξt
k

)
ξt
k
〉(1− τ)

∣∣∣∣ dW ′tdξtdτ (62)
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where the second equality is obtained by applying (61) and using the fact that ξt is zero mean.

Noticing that τ ≤ 1 and define Ŵt = W ′t − τ
ξt
k , we have∫

W ′
t

∣∣∣∣p(ξt)〈ξtk ,∇2ψ(W ′t − τ
ξt
k

)
ξt
k
〉(1− τ)

∣∣∣∣ dW ′t
=p(ξt)(1− τ)

∫
Ŵt

∣∣∣∣〈ξtk ,∇2ψ(Ŵ ′t )
ξt
k
〉
∣∣∣∣ dW ′tdŴt

dŴt

=p(ξt)(1− τ)

∫
Ŵt

∣∣∣∣〈ξtk ,∇2ψ(Ŵt)
ξt
k
〉
∣∣∣∣ dŴt (63)

and the integration term only depends on ‖ ξtk ‖ due to sphere symmetricity of ψ. Thus we can assume
ξt,1 = ‖ξt‖ and ξt,i = 0 for i ≥ 2, wlog. Then, we have∫

W ′
t

∣∣∣∣p(ξt)〈ξtk ,∇2ψ(W ′t − τ
ξt
k

)
ξt
k
〉(1− τ)

∣∣∣∣ dW ′t
≤p(ξt)(1− τ)

∫
W ′
t

‖ξt‖2

k2

∣∣∣∣∇2
1,1ψ(W ′t − τ

ξt
k

)

∣∣∣∣ dW ′t
≤p(ξt)(1− τ)

∫
Ŵt

‖ξt‖2

k2

∣∣∇2
1,1ψ(Wt)

∣∣ dW ′t
dŴt

dŴt

≤p(ξt)(1− τ)
‖ξt‖2

k2
q (64)

where we have define Ŵt = W ′t − τ ξtk and q =
∫∞
−∞ |h

′′(x)|dx with h(x) being the pdf of 1-
dimensional standard normal distribution. Thus, q is a dimension independent constant.

Substituting (64) into (62), we get∫
|p̄(Wt)−

1

k
ψ(
Wt

k
)|dWt

≤
∫ 1

0

∫
ξt

∫
W ′
t

∣∣∣∣p(ξt)〈ξtk ,∇2ψ(W ′t − τ
ξt
k

)
ξt
k
〉(1− τ)

∣∣∣∣ dW ′tdξtdτ
≤
∫ 1

0

∫
ξt

p(ξt)(1− τ)
‖ξt‖2

k2
qdξtdτ

=

∫ 1

0

(1− τ)
σ2
ξt

k2
qdτ

=
1

2

σ2
ξt

k2
q (65)

where we used the fact that E[ξt] = 0 and defined σ2
ξt

being the variance of ξt.

By (5), we know

Eξt∼p,ζt [〈∇f(xt), gt〉] = EWt∼p̃[〈∇f(xt), gt〉]

+

∫
〈∇f(xt), clip(∇f(xt) +Wt, c)〉(pt(Wt)− p̃t(Wt))dWt︸ ︷︷ ︸

bt

(66)

Let p̃ be the pdf of kζt, from Theorem 2, we have

EWt∼p̃[〈∇f(xt), gt〉] ≥ ‖∇f(xt)‖min

{
3

4
c, ‖∇f(xt)‖

}
P(‖kζt‖ ≤

c

4
) (67)

In addition, we can bound bt as

|bt| ≤ ‖∇f(xt)‖c
∫
|pt(ξt)− p̃t(ξt)|dξt ≤ ‖∇f(xt)‖

c

2

σ2
ξt

k2
q = O(

σ2
ξt

k2
) (68)
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by (65).

Combining (66), (68), and (67) finishes the proof.

F More experiments on random projection

We show the projection of stochastic gradients into 2d space described in Section 4 for different
projection matrices in Figure 5-8. It can be seen that as the training progresses, the gradient
distribution in 2d space tend to be increasingly more symmetric.

(a) Repeat 1 (b) Repeat 2 (c) Repeat 3 (d) Repeat 4

(e) Repeat 5 (f) Repeat 6 (g) Repeat 7 (h) Repeat 8

Figure 5: Distribution of gradients on MNIST after epochs 0 projected using different random matrices.

(a) Repeat 1 (b) Repeat 2 (c) Repeat 3 (d) Repeat 4

(e) Repeat 5 (f) Repeat 6 (g) Repeat 7 (h) Repeat 8

Figure 6: Distribution of gradients on MNIST after epochs 3 projected using different random matrices.
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(a) Repeat 1 (b) Repeat 2 (c) Repeat 3 (d) Repeat 4

(e) Repeat 5 (f) Repeat 6 (g) Repeat 7 (h) Repeat 8

Figure 7: Distribution of gradients on MNIST after epochs 9 projected using different random matrices.

(a) Repeat 1 (b) Repeat 2 (c) Repeat 3 (d) Repeat 4

(e) Repeat 5 (f) Repeat 6 (g) Repeat 7 (h) Repeat 8

Figure 8: Distribution of gradients on MNIST after epochs 59 projected using different random matrices.

G Evaluation on the probability term

In this section, we evaluate the probability term in Corollary 1 using a few statistics of the empirical
gradient distribution on MNIST. Specifically, at the end of different epochs, we plot histogram of
norm of stochastic gradient and norm of noise, along with the inner product between stochastic
gradient (and clipped stochastic gradient) and the true gradient. The results are shown in Figure 9-11.
One observation is that the norm of stochastic gradients is concentrated around 0 while having a
heavy tail. The noise distribution is concentrated around some positive value with a heavy tail, the
mode of the noise actually corresponds to the approximate 0 norm mode of stochastic gradients. As
the training progress, the norm of stochastic gradients and the norm of noise are approaching 0. We
set clipping threshold to be 1 in the experiment, so actually the probability P(‖ξt‖ ≤ 1

4c) is 0 for the
empirical distribution p. When we use a distribution p̃ with P(‖ξt‖ ≤ 1

4c) ≥ l for some value l > 0
to approximate p, this approximation indeed can create a approximation bias. However, the bias may
not be too large since the mode of the norm of noise is not too much bigger than c

4 . Furthermore, in
Corollary 1 and Theorem 2, we actually can change Pξt∼p̃(‖ξt‖ ≤ 1

4c) to Pξt∼p̃(‖ξt‖ ≤ zc) with
any z < 1 and simultaneously change the 3

4c to (1− z)c to make the probability term larger.

Despite the discussions above, the distribution of norm of stochastic gradients and noise norm
combined with the 2d visualization experiments implies the noise on gradient might follow a mixture
of distributions with each component being approximate symmetric. Especially one component may
correspond to a approximate 0 mean distribution of stochastic gradients. Intuitively this can be true
since each class of data may corresponds to a few variations of stochastic gradients and the gradient
noise is observed to be low rank in Li et al. [2020]. We have some discussions in Section 2.2 to
explain how convergence can be achieved in the cases of symmetric distribution mixtures but it may
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not be the complete explanation here. Further exploration of gradient distribution in practice is an
important question and we leave it for future research.

(a) Norm of gradients (b) Norm of noise

(c) Inner product between true gradient and
clipped stochastic gradients

(d) Inner product between true gradient and
stochastic gradients

Figure 9: Distribution of different statistics at epoch 3.
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(a) Norm of gradients (b) Norm of noise

(c) Inner product between true gradient and
clipped stochastic gradients

(d) Inner product between true gradient and
stochastic gradients

Figure 10: Distribution of different statistics at epoch 9.

(a) Norm of gradients (b) Norm of noise

(c) Inner product between true gradient and
clipped stochastic gradients

(d) Inner product between true gradient and
stochastic gradients

Figure 11: Distribution of different statistics at epoch 59.
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H Additional results and discussions on the probability term and the noise
adding approach in Section 5

Theorem 6 says that after adding the Gaussian noise kζt before clipping, the clipping bias can
decrease. In the meantime, the expected decent also decreases because P(‖kζt‖ < c

4 ) decreases with
k. To get a more clear understanding of the theorem, consider d = 1, then P(‖kζt‖ < c

4 ) = erf( c
4k )

which decreases with an order of O( 1
k ). This rate is slower than the O( 1

k2 ) diminishing rate of the
clipping bias. Thus, as k becomes large, the clipping bias will be negligible compared with the
expected descent. This will translate to a slower convergence rate with a better final gradient bound
in convergence analysis. The key idea of adding kζt before clipping is to "symmetrify" the overall
gradient noise distribution. By adding the isotropic symmetric noise kζt, the distribution of the
resulting gradient noise Wt , ξt + kζt will become increasingly more symmetric as k increases. In
particular, the total variation distance between the distribution of Wt and kζt decreases at a rate of
O( 1

k2 ) which can be further used to bound the clipping bias. Then, one can apply Theorem 2 to lower
bound Eξt=0,ζt [〈∇f(xt), gt〉] by letting p̃ be the distribution of kζt. We believe the lower bounds
in Theorem 6 can be further improved when d > 1, notice that P(‖kζt‖ < c

4 ) tends to decrease fast
with k when d being large.

However, we observe Eξt∼p,ζt [〈∇f(xt), gt〉] decreases with a rate of O(1/d) and O(1/k) in
practice for fixed ‖∇f(xt)‖ and ξt = 0 (see Table 1 for ‖∇f(xt)‖ = 10, the expectation
Eξt=0,ζt [〈∇f(xt), gt〉] is evaluated over 105 samples of ζt ∼ N (0, I)). In addition, we found
the lower bounds in Theorem 2 are tight up to a constant when d = 1. To verify the lower bounds,
we considered a 1-dimensional example and choose a symmetric noise ξt ∼ N (0, 1) and set c = 1.
Then we compare Eξt∼p̃[〈∇f(xt), gt〉] (estimated by averaging 105 samples) with the lower bound
in Theorem 2 for different ‖∇f(xt)‖ and the results are shown in Table 2. Similar result should also
hold for p̃(ξt) being a distribution on a 1 dimensional subspace. This implies the lower bound can
only be improved by using more properties of isotropic distributions like N (0, I) or resorting to a
more general form of the lower bounds. We found this to be non-trivial and decide to leave it for
future research.

Table 1: Scalability of Eξt=0,ζt [〈∇f(xt), gt〉] w.r.t. d and k

d = 1 d = 10 d = 100 d = 1000 d =
10000

k = 1 10 9.572 7.077 3.015 0.995
k = 10 6.788 2.961 0.992 0.316 0.1
k = 100 0.758 0.316 0.098 0.032 0.01
k = 1000 0.084 0.019 0.011 0.003 0.001

The results below verify our lower bound.
Table 2: Verify the lower bounds in Theorem 2

‖∇f(xt)‖ 0.05 0.1 1 2 10 100
Eξt∼N (0,1)[〈∇f(xt), gt〉] 1.7e-4 6.6e-3 0.612 1.83 10 100

lower bound 4e-5 2e-3 0.148 0.3 1.48 14.8
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