
A Outline and notation

The supplementary material is organized as follows. First, § B proves that the softmax operator as
well as its sparse versions indeed satisfy Assumption 2. Next, § C provides formal statements of
Step 1 in the proof sketch (§ 4.1). The outline of proof of Lemma 3 (Step 2 in the proof sketch) is
presented in § D, followed by a separate section (§ E) proving the three key sublemmas in the proof.
The proof of Step 3, Lemma 4, is given in § F. Lastly, § G and § H present the detailed setup of our
experiments and additional experiment results, respectively.

We next review some of the notation and also introduce additional notation used throughout the
supplementary material. For a positive integer a, let [a] := {1, . . . , a}. For a, b, c ∈ R where
b− a > 0 is an integer multiple of c > 0, we write [a : c : b] := {a, a+ c, a+ 2c, . . . , b− c, b}. For
any matrix A ∈ Rd×n, let Aj denote its j-th column, and AS denote the submatrix consisting of
columns of A in the index set S ⊆ [n]. We also use Ai,j to denote its (i, j)-th entry. Let 1 {·} be the
0-1 indicator for an event. Let 1n ∈ Rn be a vector whose components are all 1.

B Sparse probability maps satisfy Assumption 2

In this section, we show that the softmax operator σS as well as the probability maps ρ used to replace
softmax in the existing approaches, namely softmax with only top-k inputs [35], sparselin-gen [9],
and α-entmax [8], all satisfy Assumption 2. We restate the assumption for reader’s convenience:
Assumption 2. For any ζ > 0 and η ∈ (0, 1], ∃ t > 0 such that, for any column input v satisfying
vj∗ −maxj 6=j∗ vj ≥ ζ (where j∗ = arg maxj vj), we have ρ[tv]j∗ ≥ 1− η and

∑
j 6=j∗ ρ[tv]j ≤ η.

As in the assumption, we only consider the operation of these probability maps on a single vector, as
they are applied column-wise. For each of the probability maps, we will show that for any ζ > 0 and
η ∈ (0, 1], we can choose t > 0 that satisfies the conditions of Assumption 2.

B.1 Softmax & softmax with top-k inputs

Given an input vector v ∈ Rn, the j-th coordinate of the output of softmax σS[v] is defined as

σS[v]j :=
exp(vj)∑n
i=1 exp(vi)

.

We assume without loss of generality that the entry of v is in decreasing order, where the first two
entries satisfy v1 − v2 ≥ ζ. For any such ζ > 0 and any 0 < η ≤ 1, our aim is to show the existence
of t > 0 such that σS[tv]1 = exp(tv1)∑n

i=1 exp(tvi)
≥ 1− η. Then,

∑n
j=2 σS[tv]j ≤ η follows.

Now, since vi ≤ v1 − ζ for i ∈ [2 : n], note that

σS[tv]1 =
exp(tv1)∑n
i=1 exp(tvi)

≥ exp(tv1)

exp(tv1) + (n− 1) exp(tv1 − tζ)
=

1

1 + (n− 1) exp(−tζ)
.

Since 1
1+(n−1) exp(−tζ) is an increasing function in t > 0, one can increase t sufficiently large to

make it greater than 1− η.

The same argument holds for the softmax with top-k inputs, used in [35]. By the assumption on v,
entries v1, . . . , vk are the top k components. Thus,

ρ[tv]1 ≥
1

1 + (k − 1) exp(−tζ)
≥ 1− η

can be satisfied by choosing large enough t > 0.

B.2 Sparselin-gen

We now consider the case where ρ is sparselin-gen [15], which was used to sparsify the attention
score matrices in [9]. Given a regularization parameter λ ∈ [0, 1), the sparselin-gen used in [9] is
defined as

ρ[v] := arg min
p∈∆n−1

‖p− v‖2 − λ ‖p‖2 ,
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where ∆n−1 := {p ∈ Rn | p ≥ 0,
∑n
i=1 pi = 1} is the probability simplex. Then, the solution for

optimization problem above can be written as

ρ[v]j = max

{
0,
vj − τ(v)

1− λ

}
, for j ∈ [n],

where τ : Rn → R is a threshold function that chooses the threshold τ(v) such that
∑n
j=1 ρ[v]j = 1.

Now, assume without loss of generality that the entry of v is in decreasing order, where the first two
entries satisfy v1 − v2 ≥ ζ. For any such ζ > 0 and any 0 < η ≤ 1, our aim is to show the existence
of t > 0 such that ρ[tv]1 ≥ 1− η. This is done by choosing t = 1−η

ζ . To see this, notice that if vj’s
are in decreasing order, then ρ[v]j are also in decreasing order. Now consider

ρ[tv]1 = max

{
0,
tv1 − τ(tv)

1− λ

}
, ρ[tv]2 = max

{
0,
tv2 − τ(tv)

1− λ

}
.

If ρ[tv]2 = 0, then ρ[tv]j = 0 for all j = 3, . . . , n, and ρ[tv]1 = 1 ≥ 1− η. If ρ[tv]2 > 0, then

ρ[tv]1 − ρ[tv]2 =
tv1 − τ(tv)

1− λ
− tv2 − τ(tv)

1− λ
=
t(v1 − v2)

1− λ
≥ t(v1 − v2) ≥ tζ = 1− η.

B.3 α-entmax

Next, we consider the case where ρ is α-entmax [21], which was used to sparsify the attention score
matrices in [8]. Given a parameter α ≥ 1, the α-entmax is defined as

ρ[v] := arg max
p∈∆n−1

pTv +Hα(v),

where ∆n−1 is the probability simplex and Hα is the Tsallis continuous family of entropies

Hα(v) :=

{
1

α(α−1)

∑
j vj − vαj α > 1,

−
∑
j vj log vj α = 1.

As shown in [8], the solution of α-entmax is equal to softmax if α = 1, and otherwise (α > 1) it is
given in the form

ρ[v]j =
[

max{0, (α− 1)vj − τ(v)}
] 1
α−1 , for j ∈ [n],

where τ : Rn → R is a threshold function that chooses the threshold τ(v) such that
∑n
j=1 ρ[v]j = 1.

Since softmax (α = 1) is already covered above, we focus on α > 1.

Again, assume without loss of generality that the entry of v is in decreasing order, where the first two
entries satisfy v1 − v2 ≥ ζ. For any such ζ > 0 and any 0 < η ≤ 1, our aim is to show the existence
of t > 0 such that ρ[tv]1 ≥ 1− η. This is done by choosing t = 1/ζ(α−1).

Note that (α − 1)t(v1 − v2) ≥ 1 due to our choice of t. Then, we will show that with such a t,
ρ[tv]1 = 1 must hold. For the sake of contradiction, suppose not: ρ[tv]1 < 1. Then, by monotonicity
of ρ[tv]j , we have ρ[tv]2 > 0. This means

ρ[tv]2 =
[
(α− 1)tv2 − τ(tv)

] 1
α−1 > 0,

in particular, we have (α− 1)tv2 − τ(tv) > 0. However, recall that (α− 1)t(v1 − v2) ≥ 1, which
implies (α− 1)tv1 − τ(tv) > 1. This results in

ρ[tv]1 =
[
(α− 1)tv1 − τ(tv)

] 1
α−1 > 1,

thus contradicting ρ[tv]1 < 1. Therefore, ρ[tv]1 = 1 must hold.

C Details of the Step 1 in the proof sketch (§ 4.1)

We start by formally defining the function class F(δ).

F(δ) :=

{
Z 7→

∑
G∈Gδ

AG1
{
Z ∈ G + [0, δ)d×n

}
| Z ∈ D,AG ∈ Rd×n

}
,

where Gδ := {0, δ, . . . , 1− δ}d×n. We now state and prove the lemma.
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Lemma 5. For any f ∈ F and ε > 0, there exists a small enough δ > 0 such that there exists
f ∈ F(δ) such that dp(f, f) ≤ ε/2.

Proof Since f : D → Rd×n is a continuous function on a compact domain, it is uniformly
continuous. Also, continuity is defined with respect to entry-wise `p norm which is equivalent to
entry-wise `∞ norm, uniform continuity leads to

∀ε > 0,∃δ > 0 such that ∀X,Y , ‖X − Y ‖∞ < δ =⇒ ‖f(X)− f(Y )‖p < ε/2.

Then, suppose we create a set of cube grid points Gδ := {0, δ, . . . , 1−δ}d×n, and define a piece-wise
constant approximation

f(X) =
∑

G∈Gδ
f(G)1

{
X ∈ G + [0, δ)d×n

}
.

Note that for any X ∈ G + [0, δ)d×n we have ‖X −G‖∞ < δ, so we have∥∥f(X)− f(X)
∥∥
p

= ‖f(X)− f(G)‖p < ε/2.

This implies that

dp(f, f) =

(∫
D

∥∥f(X)− f(X)
∥∥p
p

)1/p

≤ ε/2,

finishing the proof of the lemma.

D Proof of Lemma 3 (Step 2 in § 4.1)

In this section, we describe in further details how modified sparse Transformers (the class ST 2,1,1
)

are able to exactly express arbitrary piecewise constant functions in F(δ). We show that we can
compute a contextual mapping of the entire input sequences without relying on dense self-attention
layers. The token-wise feed-forward layers then transform these contextual mappings to the desired
output sequence.

To give a high level summary of the proof, we want to show that given a piece-wise constant function
f ∈ F(δ), there exists a modified Transformer network g ∈ ST 2,1,1

that exactly represents f . Recall
first that the function class ST 2,1,1

has an additive positional embedding matrix E ∈ Rd×n that is
added to input before the input is fed to the network. We start by choosing the positional embedding
E and construct a Transformer network that implements quantization of the input, contextual mapping
of the quantized input, and value mapping of the context ids.

1. Choose the positional embedding E according to γ in Assumption 1.2. After addition, each
column of the input Xk + Ek are in disjoint intervals.

2. Given the input X + E, a series of modified feed-forward layers quantizes it so that each
entry of the quantized input has a value in {0, δ, . . . , n− δ} (Lemma 6).

3. Next, a series of modified sparse self-attention layers takes the quantized input H and
implement a contextual mapping q such that, for different quantized input sequences H and
H ′, all the elements in q(H) and q(H ′) are distinct (Lemma 7).

4. Finally, a series of modified feed-forward layers maps each element in the context id q(H)
to the desired output value of f ∈ F at the input X (Lemma 8).

We defer the proofs of Lemmas 6, 7, and 8 to a separate section: see § E.

Before discussing the details of each step, we note that although a Transformer network stacks
self-attention and feed-forward layers in an alternate manner, we can use a series of arbitrary number
of the same layers, thanks to skip connections. The outline of the proof is similar to [33], but key
component in their proof called selective shift operation relies on the fact that each token can attend
to the entire sequence; this is not true in sparse Transformers, which poses a nontrivial challenge.
We overcome this issue by a more careful construction of the positional embedding E and sparse
self-attention layers.
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D.1 Choosing the positional embedding

Recall from Assumption 1.2 that there exists a permutation γ : [n]→ [n] such that for all i ∈ [n− 1],
γ(i) is one of the tokens that the γ(i+ 1)-th token directly attends to. Using this permutation γ, we
choose the columns of positional embedding E in the following way:

Eγ(1) = (n− 1)1n, and Eγ(i) = (i− 2)1n, for i ∈ [2 : n]

As a result, the γ(1)-th column of X+E will be in the range [n−1, n)d, and similarly Xγ(i)+Eγ(i) ∈
[i− 2, i− 1)d for i ∈ [2 : n]. This means that the entries corresponding to different tokens lie be in
disjoint intervals of the form [j, j + 1), where j ∈ [0 : n− 1].

D.2 Quantization by feed-forward layers

Note from the previous step that each entry of X + E must be in [0, n). Next, we quantize this
interval [0, n) of input using to a set of δ-grid points {0, δ, . . . , n− δ}. This allows us to deal with
finite set of values, which proves useful in the later stages of the proof. The next lemma shows that
the quantization can be carried out using a seried of the modified feed-forward layers.

Lemma 6. Consider a entry-wise quantization map gent
q : R→ R:

gent
q (t) =

{
kδ if kδ ≤ t < (k + 1)δ, k ∈ [0 : n/δ − 1],

t otherwise.

There exists a function gq : Rd×n 7→ Rd×n composed of dnδ token-wise feed-forward layers with
r = 1 and an activation φ ∈ Φ, which implements the entry-wise quantization gent

q to each entry of
its input.

D.3 Contextual mapping by sparse self-attention layers

After the input X + E is quantized, the output of gq must be in the following set Hδ ⊂ Rd×n:

Hδ := {G + E ∈ Rd×n |G ∈ Gδ},

where Gδ := {0, δ, . . . , 1 − δ}d×n was defined to be the δ-cubic grid points of [0, 1)d×n. Using
this finite set of sequences, we construct a contextual mapping that maps each sequence in Hδ to
unique numbers. Recall that the sparse attention layer has p sparsity patterns that rotate in cycles, and
Assumption 1.3 assumes that one token directly/indirectly access all the other tokens after s such
sparse attention layers. We now state the lemma.

Lemma 7. Assume that n ≥ 2, and δ−1 is an integer satisfying δ−1 ≥ 2. Suppose that the sparse
self-attention layers (h = 2,m = 1) satisfy Assumption 1 and employ the hardmax σH operator,
and that the positional embedding E was chosen as described in § D.1. Then, there exist a function
gc : Rd×n → Rd×n composed of p(n−1)

δd
+ s sparse self-attention layers, and a vector u ∈ Rd, such

that q(H) := uT gc(H) satisfies the following properties:

1. For any H ∈ Hδ , the entries of q(H) are all distinct.
2. For any H,H ′ ∈ Hδ such that H 6= H ′, all entries of q(H), q(H ′) are distinct.

This contextual mapping maps each unique sequence/context into different context ids, enabling the
network to distinguish the same token appearing in different sequences.

D.4 Value mapping by feed-forward layers

After the contextual mapping, we use the token-wise feed-forward layers to map each different
context ids to the desired output value of the target function f . More specifically, recall the function
gc from Lemma 7. For any H ∈ Hδ, we need to map the output gc(H) of Lemma 7 to the desired
function value f(H −E) (recall that H is the quantized input after adding E to X , so we need
to subtract E). This is done by implementing a token-wise value mapping using the feed-forward
layers.

16



Lemma 8. There exists a function gv : Rd×n → Rd×n composed of n( 1
δ )dn token-wise feed-

forward layers (r = 1) with an activation φ′ ∈ Φ such that gv is defined by a token-wise function
gtkn

v : Rd → Rd on each column,

gv(Z) =
[
gtkn

v (Z1) · · · gtkn
v (Zn)

]
,

where for all H ∈ Hδ and k ∈ {1, . . . , n},
gtkn

v (gc(H)k) = f(H −E)k.

D.5 Finishing the proof

Given Lemmas 6, 7, and 8, one can easily check that for any G ∈ Gδ := {0, δ, . . . , 1− δ}d×n and
any input value X ∈ G + [0, δ)d×n, we have

gv ◦ gc ◦ gq(X + E) = gv ◦ gc(G + E)

=
[
gtkn

v (gc(G + E)1) gtkn
v (gc(G + E)2) · · · gtkn

v (gc(G + E)n)
]

=
[
f(G)1 f(G)2 · · · f(G)n

]
= f(G) = f(X).

Therefore, we have constructed a modified sparse Transformer network g(X) := gv ◦gc ◦gq(X +E)

that satisfies g(X) = f(X) for all X ∈ D, hence proving Lemma 3.

E Proof of Lemmas 6, 7, and 8

E.1 Proof of Lemma 6

The proof goes as follows. Using n
δ token-wise feed-forward layers, we implement the quantization

function gent
q that quantizes the first row of the input. Then we stack another nδ layers to quantize the

second row, and so on.

For the first row, we add n/δ layers of the following form, for k ∈ [0 : n/δ − 1].

Z 7→ Z + e(1)φ((e(1))TZ − kδ1Tn ), φ(t) =

{
0 t < 0 or t ≥ δ,
−t 0 ≤ t < δ,

where e(1) ∈ Rd is the first canonical basis vector e(1) = (1, 0, . . . , 0). Each layer quantizes Z1,:

in [kδ, kδ + δ) to kδ, without modifying other intervals or other rows of Z. Note that the activation
φ is a piecewise linear function with three pieces; hence, φ ∈ Φ. Therefore, the layers satisfy the
definition of modified feed-forward layers. We can now repeat the same construction for the d− 1
remaining rows.

E.2 Proof of Lemma 7

In order to construct a network gc that implements the contextual mapping, we first introduce two
operations referred to as the sparse selective shift operation and all-max-shift operation, implemented
by at most two (modified) sparse attention heads of head size 1. Then, we proceed to stack layers
implementing the selective shift operations and all-max-shift operations, and prove that these layers
map input H ∈ Hδ to unique context ids.

E.2.1 Preliminaries

Sparse selective shift operation. Given any vector u ∈ Rd, first consider the following function
implementable with a sparse attention head with head size 1 and sparsity pattern {Alk}k∈[n]. For
k ∈ [n], the function ψl : Rd×n → R1×n computes each of its output column in the following way:

ψl(Z; bQ)k := uTZAlkσH[(uTZAlk)T (uTZk − bQ)] =

{
maxj∈Alk u

TZj if uTZk > bQ,

minj∈Alk u
TZj if uTZk < bQ.

One can consider a sparse self-attention layer that consists of two such heads, with bQ < b′Q:

Ψl(Z; c, bQ, b
′
Q) := Z +

[
ce(1) −ce(1)

] [ψl(Z; bQ)
ψl(Z; b′Q)

]
.
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The (1, k)-th entry of Ψl(Z; c, bQ, b
′
Q) reads

Ψl(Z; c, bQ, b
′
Q)1,k = Z1,k + c(ψl(Z; bQ)k − ψl(Z; b′Q)k)

=

{
Z1,k + c(maxj∈Alk u

TZj −minj∈Alk u
TZj) if bQ < uTZk < b′Q,

Z1,k if uTZk /∈ [bQ, b
′
Q].

This means that for input columns Zk satisfying uTZk ∈ (bQ, b
′
Q) only, Ψl shifts up the first entry

of Zk by the difference of maximum and minimum values of uTZj over the sparsity pattern j ∈ Alk,
while leaving other columns intact. By choosing bQ and b′Q properly, we can selectively modify
certain columns without touching other columns; we refer to this operation Ψl as the sparse selective
shift operation, and we will see later that this is indeed the key ingredient of our proof.

In fact, this operation is a sparse version of the selective shift operation used in [33]. Since Alk is
usually only a small subset of [n], one cannot calculate the maximum and minimum of uTZj over
the whole sequence, as done in [33]. Instead, we use Assumption 1.2 and a more careful choice of E
to get around the restriction posed by sparsity.

All-max-shift operation. Suppose the input Z ∈ Rd×n satisfies uTZ > 0 entry-wise, for a vector
u ∈ Rd. Then, the all-max-shift operation Ωl : Rd×n → Rd×n is a sparse self-attention layer that
consists of one attention head:

Ωl(Z; c) = Z + ce(1)ψl(Z; 0).

The (1, k)-th entry of Ωl(Z; c) reads

Ωl(Z; c)1,k = Z1,k + cψl(Z; 0)k = Z1,k + cmax
j∈Alk

uTZj .

So, for each column k, the all-max-shift operation shifts up the first entry of Zk by the maximum
value of uTZj over the sparsity pattern j ∈ Alk. Unlike the selective shift operation, the all-max-shift
operation is applied to all the columns.

Column ids. Recall that the any input to this step is in

Hδ := {G + E ∈ Rd×n |G ∈ Gδ := [0 : δ : 1− δ]d×n}.

Because of the way E is chosen according to the permutation γ in Assumption 1.2, for any H ∈ Hδ
we have

Hγ(1) ∈ [n− 1 : δ : n− δ]d,
Hγ(i) ∈ [i− 2 : δ : i− 1− δ]d for all i ∈ [2 : n].

Now consider u := (1, δ−1, δ−2, . . . , δ−d+1). It is easy to check that for any H ∈ Hδ, the map
Hk 7→ uTHk is one-to-one, and

uTHγ(1) ∈

[
(n− 1)

d−1∑
i=0

δ−i : δ : (n− 1)

d−1∑
i=0

δ−i + δ−d+1 − δ

]
,

uTHγ(i) ∈

[
(i− 2)

d−1∑
i=0

δ−i : δ : (i− 2)

d−1∑
i=0

δ−i + δ−d+1 − δ

]
, for i ∈ [2 : n].

(7)

Hence, for each column Hk, the inner product uTHk is in an interval disjoint from the other columns.
Thus, uTHk can be thought as a “column id” that identifies the column’s original input value Gk as
well as its position k. Note furthermore that for any H ∈ Hδ ,

uTHγ(2) < uTHγ(3) < · · · < uTHγ(n) < uTHγ(1). (8)

E.2.2 Construction of layers

Given these preliminaries, we now describe our construction of gc. Recall from Assumption 1.2 that
the permutation γ satisfies γ(i − 1) ∈

⋃p
l=1Alγ(i) for i ∈ [2 : n]. From this, for i ∈ [2 : n] we let
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li ∈ [p] be any index such that γ(i − 1) ∈ Aliγ(i). For simplicity of notation, let zk := uTHk for

k ∈ [n] and ∆ =
∑d−1
i=0 δ

−i.

Next, starting from i = 2, we want to sequentially stack δ−d sparse selective shift operations

Ψli(·; δ−d, b− δ/2, b+ δ/2),

in increasing order of b ∈
[
(i− 2)∆ : δ : (i− 2)∆ + δ−d+1 − δ

]
. That is, we want to add sparse

attention layers with sparsity patterns Aliγ(i) that apply the selective shift operation to each possible
value of zγ(i). Recall that the sparsity patterns have to cycle from A1

k to Apk, so we have to place
other remaining p− 1 sparsity patterns (whose indices are not li) in between the Ψli layers. This can
be done by setting all the other sparse attention layers to be the identity. This way, we stack a total of
pδ−d sparse attention layers for i = 2, another pδ−d for i = 3, and so on, up to i = n.

After these layers, we further stack s all-max-shift operations. For i = 1, . . . , s, we add all-max-shift
operations of the form

Ω(i−1) mod p+1(·; 2snδ−nd−1).

Here, the superscript (i − 1) mod p + 1 is there to make sure that we cycle through the sparsity
patterns from 1 to p, until we stack s layers in total. This finishes the construction of our function gc

composed of p(n−1)
δd

+ s sparse self-attention layers.

E.2.3 Selective shift operations

We now explain how these stacked self-attention layers implement a contextual mapping. This
subsection will consider the selective shift operations part; all-max-shift operations are described
in the next subsection. Suppose that after the input H ∈ Hδ is processed through the first p(n−1)

δd

layers, we get H̃ ∈ Rd×n at the output. We will show at the end of this subsection that the map
H 7→ uT H̃γ(n) is a one-to-one map for column γ(n), so the selective shift operations compute a
“unique id” for each possible input sequence H ∈ Hδ .

First selective shift. First consider the first pδ−d layers. Omitting layers that are identity, they
are essentially selective shift operations Ψl2(·; δ−d, b − δ/2, b + δ/2) for b ∈ [0 : δ : δ−d+1 − δ].
Since [0 : δ : δ−d+1 − δ] is the set of possible values of zγ(2), these layers perform selective shift
operation on the γ(2)-th column without changing the other columns. Each possible value of Hγ(2)

undergoes one and only shift operation (by the corresponding layer with b = uTHγ(2)), by which
the (1, γ(2))-th entry of the input is updated.

Recall by Assumption 1.2 that γ(1) ∈ Al2γ(2), and that zγ(1) and zγ(2) are the maximum and minimum

over the whole sequence z1, . . . , zn (see (8)). By Assumption 1.1 we also have γ(2) ∈ Al2γ(2). Since

both γ(1) and γ(2) are inAl2γ(2), the maximum and minimum value of zj := uTHj’s over j ∈ Al2γ(2)

are zγ(1) and zγ(2), respectively. Therefore, the (1, γ(2))-th entry of the input matrix is shifted up as
follows:

H̃1,γ(2) := H1,γ(2) + δ−d(zγ(1) − zγ(2)).

Let H̃γ(2) be the γ(2)-th column after the shift operation has shifted H1,γ(2) to H̃1,γ(2). Then, define

z̃γ(2) := uT H̃γ(2) = zγ(2) + δ−d(zγ(1) − zγ(2)).

Note that z̃γ(2) > zγ(1) because

zγ(2) + δ−d(zγ(1) − zγ(2)) > zγ(1) ⇔ (δ−d − 1)(zγ(1) − zγ(2)) > 0,

which is true. Therefore, z̃γ(2) becomes the new maximum among the current values
zγ(1), z̃γ(2), zγ(3), . . . , zγ(n), and the new minimum element is zγ(3).

Second selective shift. We now consider the next pδ−d layers, which are essentially Ψl3(·; δ−d, b−
δ/2, b+ δ/2) for b ∈ [∆ : δ : ∆ + δ−d+1 − δ]. They apply the shift operation to the γ(3)-th column.
Since we have γ(2), γ(3) ∈ Al3γ(3), the shift operation similarly yields

z̃γ(3) := zγ(3) + δ−d(z̃γ(2) − zγ(3)) = zγ(3) + δ−d(zγ(2) − zγ(3)) + δ−2d(zγ(1) − zγ(2)).
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We can also show z̃γ(3) > z̃γ(2), because

zγ(3) + δ−d(z̃γ(2) − zγ(3)) > z̃γ(2) ⇔ (δ−d − 1)(z̃γ(2) − zγ(3)) > 0.

So after this operation z̃γ(3) and zγ(4) are the new maximum and minimum over the updated sequence
zγ(1), z̃γ(2), z̃γ(3), zγ(4), . . . , zγ(n).

Repeating the process. The same process continues. The next pδ−d layers shifts the γ(4)-th
columns and results in z̃γ(4) which is greater than z̃γ(3). After the first p(n − 1)δ−d layers, all
columns except γ(1)-th column have been shifted, resulting in zγ(1), z̃γ(2), . . . , z̃γ(n) satisfying

(n− 1)∆ ≤ zγ(1) < z̃γ(2) < · · · < z̃γ(n). (9)

Let us denote the output of the p(n− 1)δ−d-th layer as H̃ .

Selective shifts implement a one-to-one map. Next, we prove that the map from H ∈ Hδ to

z̃γ(n) := uT H̃γ(n) = zγ(n) +

n−1∑
i=1

δ−id(zγ(n−i) − zγ(n+1−i))

is one-to-one. Recall that for each column Hk, the map Hk 7→ uTHk =: zk is one-to-one.
Also, permutation of columns is one-to-one, which implies that it suffices to show that the map[
zγ(1) . . . zγ(n)

]
7→ z̃γ(n) is one-to-one.

Suppose we have two sequences
[
zγ(1) . . . zγ(n)

]
and

[
z′γ(1) . . . z′γ(n)

]
that map to the same

value of z̃γ(n) = z̃′γ(n). Then,

0 = z̃γ(n) − z̃′γ(n) = zγ(n) − z′γ(n) +

n−1∑
i=1

δ−id(zγ(n−i) − zγ(n+1−i) − z′γ(n−i) + z′γ(n+1−i)).

Suppose zγ(n) 6= z′γ(n). Since they both lie inside [(n− 2)∆ : δ : (n− 2)∆ + δ−d+1 − δ], we have

−δ−d+1 + δ ≤ zγ(n) − z′γ(n) ≤ δ
−d+1 − δ.

Note that all the terms other than zγ(n)− z′γ(n) are of “coarser resolution.” For example, the first term

δ−d(zγ(n−1) − zγ(n) − z′γ(n−1) + z′γ(n))

in the summation can only take values 0, δ−d+1,−δ−d+1, 2δ−d+1,−2δ−d+1, . . . , so it can never
cancel the difference zγ(n) − z′γ(n) and make the sum z̃γ(n) − z̃′γ(n) zero. This implies that zγ(n) =

z′γ(n) must hold.

Next, suppose zγ(n−1) 6= z′γ(n−1). Since we have zγ(n) = z′γ(n),

−δ−2d+1 < δ−d(zγ(n−1) − zγ(n) − z′γ(n−1) + z′γ(n)) = δ−d(zγ(n−1) − z′γ(n−1)) < δ−2d+1.

But similarly, any other terms in the summation have coarser resolution than δ−2d+1, so they cannot
cancel the difference δ−d(zγ(n−1) − z′γ(n−1)). Thus zγ(n−1) = z′γ(n−1) must hold. Repeating the
same argument up to γ(1) proves that the two sequences must be equal:

[
zγ(1) . . . zγ(n)

]
=[

z′γ(1) . . . z′γ(n)

]
. This proves that the map H 7→ z̃γ(n) is one-to-one and z̃γ(n) can be seen as

the unique id for the input sequence H ∈ Hδ .

E.2.4 All-max-shift operations

Next, we explain the operation of the s all-max-shift layers. Recall from Assumption 1.3 that any
token can attend to all the other tokens after s steps, either directly or indirectly. Also recall from
the last subsection that the input to the first all-max-shift layer is H̃ , and the maximum entry of
uT H̃ is z̃γ(n), the unique id for input H . From the statement of Lemma 7, the output after the s
all-max-shift operations for input H is denoted as gc(H). In this subsection, we show that through s
all-max-shift operations, the maximum z̃γ(n) will propagate to all tokens and be a “dominant” term,
which determines the interval that uT gc(H) lies in. As a result, we can show Properties 7.1 and 7.2
of gc at the end.
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Some preliminaries. Note that the unique id z̃γ(n) has the following upper bound:

z̃γ(n) := zγ(n) +

n−2∑
i=1

δ−id(zγ(n−i) − zγ(n+1−i)) + δ−(n−1)d(zγ(1) − zγ(2))

≤ zγ(n) + δ−d
n−2∑
i=1

(zγ(n−i) − zγ(n+1−i)) + δ−(n−1)d(zγ(1) − zγ(2))

= zγ(n) + δ−d(zγ(2) − zγ(n)) + δ−(n−1)d(zγ(1) − zγ(2))

= δ−(n−1)dzγ(1) − (δ−(n−1)d − δ−d)zγ(2) − (δ−d − 1)zγ(n)

≤ δ−(n−1)dzγ(1) ≤ δ−(n−1)d((n− 1)∆ + δ−d+1 − δ)
≤ δ−(n−1)d(n− 1 + δ)(δ−d − 1) ≤ δ−nd − δ (10)

where we used ∆ :=
∑d−1
i=0 δ

−i = δ−d−1
δ−1−1 ≤ δ

−d − 1. A similar bound

z̃γ(i) ≤ nδ−id − δ (11)

also holds from a similar derivation. Next, recall from Assumption 1.3 the definitions

S1
k := A1

k, Stk :=
⋃

j∈A(t−1) mod p+1
k

St−1
j ,

and that there exists s ≥ 1 such that, for all k ∈ [n], Ssk = [n]. Finally, the following inequality will
be useful throughout: for any integer s ≥ 1,(

2s+ 1

2s

)
≤
(

2s+ 1

2s

)2

≤ · · · ≤
(

2s+ 1

2s

)s
≤ 2. (12)

Let us now describe the operation that the all-max-shift layers Ω(i−1) mod p+1(·; 2snδ−nd−1), i =
1, . . . , s, carry out.

First all-max-shift. The input to the first all-max-shift layer is H̃ . Let the output of the layer be
M1. Recall that uT H̃ consists of values zγ(1), z̃γ(2), . . . , z̃γ(n), which are all strictly greater than 0
and strictly less than nδ−nd (by (10)). So, for each column k ∈ [n], the layer update reads

M1
1,k := H̃1,k + 2snδ−nd−1 max

j∈A1
k

uT H̃j = H̃1,k + 2snδ−nd−1uT H̃j1k
,

where j1
k := arg maxj∈A1

k
uT H̃j . After the update, uTM1

k is “dominated” by 2snδ−nd−1uT H̃j1k
,

meaning that for any k, k′ ∈ [n],

uT H̃j1k
< uT H̃j1

k′
=⇒ uTMk < uTMk′ .

This is because the minimum gap between different values of uT H̃j1k
is at least δ, and we have

uT H̃k < nδ−nd < 2snδ−nd−1 · δ,

so if uT H̃j1k
< uT H̃j1

k′
, that solely determines the order uTMk < uTMk′ because uT H̃k cannot

reverse it. Also, by the definition of j1
k , for any index set B ∈ [n] we have

max
i∈B

uT H̃j1i
= max
j∈

⋃
i∈B A1

i

uT H̃j . (13)

If s ≥ 2, we move on to the second layer.

Second all-max-shift. At the second all-max-shift, we have sparsity patterns A1 mod p+1
k . Let us

the output of this layer as M2. For each column k ∈ [n], the layer update reads

M2
1,k := M1

1,k + 2snδ−nd−1 max
j∈A1 mod p+1

k

uTM1
j = M1

1,k + 2snδ−nd−1uTM1
j2k
,
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where j2
k := arg maxj∈A1 mod p+1

k
uTM1

j . If we look at the update more closely, we can apply (13)
and get

uTM2
k = uT H̃k + 2snδ−nd−1uT H̃j1k

+ 2snδ−nd−1(uT H̃j2k
+ 2snδ−nd−1 max

i∈A1 mod p+1
k

uT H̃j1i
)

= uT H̃k + 2snδ−nd−1(uT H̃j1k
+ uT H̃j2k

) + (2snδ−nd−1)2 max
j∈S2

k

uT H̃j .

Again, the last term dominates the rest of the terms in uTM2
k , because the minimum gap between

different values of maxj∈S2
k
uT H̃j is at least δ, and

uTM2
k − (2snδ−nd−1)2 max

j∈S2
k

uT H̃j = uT H̃k + 2snδ−nd−1(uT H̃j1k
+ uT H̃j2k

)

< (1 + 4snδ−nd−1)nδ−nd ≤ (1 + 4s)n2δ−2nd−1 ≤ (2snδ−nd−1)2 · δ = 4s2n2δ−2nd−1.

The last inequality holds due to inequality (12), because(
2s+ 1

2s

)2

≤ 2⇔ 1 + 4s ≤ 4s2

is true for s ≥ 2.

Remaining all-max-shifts. If s ≥ 3, we move on to the third layer, which outputs M3. Similarly,
we can show that uTM3

k is dominated by (2snδ−nd−1)3 maxj∈S3
k
uT H̃j because the rest of the

terms in uTM3
k is strictly upper-bounded

uTM3
k − (2snδ−nd−1)3 max

j∈S3
k

uT H̃j < (1 + 3 · 2snδ−nd−1 + 3 · (2snδ−nd−1)2)nδ−nd−1,

which can then be shown to be smaller than (2snδ−nd−1)3 · δ:

(1 + 3 · 2snδ−nd−1 + 3 · (2snδ−nd−1)2)nδ−nd ≤ (1 + 6s+ 12s2)n3δ−3nd−2 ≤ 8s3n3δ−3nd−3 · δ.

The last inequality is due to the fact that 1 + 6s + 12s2 ≤ 8s3 for s ≥ 3, which can derived from
(12). Repeating this process, after all s layers we get M s, and uTM s

k is dominated by

(2snδ−nd−1)s max
j∈Ssk

uT H̃j = (2snδ−nd−1)s max
j∈[n]

uT H̃j = (2snδ−nd−1)sz̃γ(n).

This is because the remaining terms in uTM s
k can be strictly upper-bounded

uTM s
k − (2snδ−nd−1)sz̃γ(n) <

(
s−1∑
i=0

(
s

i

)
(2snδ−nd−1)i

)
nδ−nd,

which is then dominated by the smallest difference possible in (2snδ−nd−1)sz̃γ(n):(
s−1∑
i=0

(
s

i

)
(2snδ−nd−1)i

)
nδ−nd ≤

(
s−1∑
i=0

(
s

i

)
(2s)i

)
(nδ−nd−1)s−1nδ−nd

= ((1 + 2s)s − (2s)s)(nδ−nd−1)s · δ ≤ (2snδ−nd−1)s · δ.

The last inequality used (1 + 2s)s − (2s)s ≤ (2s)s, derived from (12).

E.2.5 Verifying Properties 7.1 and 7.2

After these all-max-shift operations, we define the output M s of the last all-max-shift layers to be
the output of the function gc for input H , i.e., gc(H) := M s.

Property 7.1 requires that for any H ∈ Hδ , all the components uT gc(H) need to be distinct. This is
true, because for each column of uT gc(H), we have

uT gc(H)k mod 2snδ−nd = uT H̃k.
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This is because anything added by the all-max-shift operations is an integer multiple of 2snδ−nd,
and uT H̃k < nδ−nd < 2nδ−nd for all k. Recall that H̃ is the input matrix for the first max-shift
operation, and that the components of uT H̃ are zγ(1), z̃γ(2), . . . , z̃γ(n), which were shown to be
distinct by (9). Since uT gc(H)k produce distinct outputs for a mod operation, they themselves have
to distinct. This proves Property 7.1.

Also, by the “domination” argument in the previous subsection, the output gc(H) has the property
that for any column, uT gc(H)k lies inside an interval determined by z̃γ(n), the unique id for the
input H:

uT gc(H)k ∈
[
(2snδ−nd−1)sz̃γ(n), (2snδ

−nd−1)s(z̃γ(n) + δ)
)
,

and these intervals do not overlap because any different values of z̃γ(n) must differ by at least δ. This
means that for any input H,H ′ ∈ Hδ, the components in uT gc(H) and uT gc(H ′) lie in disjoint
intervals. Together with Property 7.1, this proves Property 7.2.

E.3 Proof of Lemma 8

To prove this lemma, we implement a token-wise function that maps

gtkn
v (gc(H)k) = f(H −E)k,

for all H ∈ Hδ and k ∈ [n]. From the construction of Lemma 7, there are n|Hδ| = n
δdn

distinct
values of uT gc(H)k, and different values of uT gc(H)k differ by at least δ. The implementation of
gtkn

v can be done by stacking feed-forward layers so that each layer maps one unique number to the
corresponding output column.

More precisely, choose any H ∈ Hδ. For each of the n values of uT gc(H)k, we add one feed-
forward layer of the form

Z 7→ Z+(f(H−E)k−gc(H)k)φ′(uTZ−uT gc(H)k1
T
n ), φ′(t) =

{
0 t < −δ/2 or t ≥ δ/2,
1 −δ/2 ≤ t < δ/2.

This layer updates any column j of its input Z that satisfies uT gc(H)k − δ/2 ≤ uTZj <
uT gc(H)k + δ/2, without modifying any other columns that are out of this range.

We stack these layers for all possible values of H ∈ Hδ. After n
δdn

such layers, we get the desired
function gv that satisfies

gv(Z) =
[
gtkn

v (Z1) · · · gtkn
v (Zn)

]
,

where for all H ∈ Hδ and k ∈ [n],

gtkn
v (gc(H)k) = f(H −E)k.

F Proof of Lemma 4 (Step 3 in § 4.1)

In this section, we describe how the modified sparse Transformer network g ∈ ST 2,1,1
constructed in

Lemma 3 can be approximated with an original sparse Transformer network g ∈ ST 2,1,4. Recall that
g is a “modified” sparse Transformer network, which employ the hardmax σH operators in place of ρ
operators in sparse self-attention layers and piecewise linear activations φ ∈ Φ instead of ReLUs in
feed-forward layers. The goal of this lemma is to approximate the function g = gv ◦gc ◦gq ∈ ST

2,1,1

with a standard sparse Transformer g = g̃v ◦ g̃c ◦ g̃q ∈ ST 2,1,4 with accuracy dp(g, g) ≤ ε/2. As
the construction of g consists of three steps, we will approximate each of them step by step. The
whole intuition behind the proof is that as long as we are considering Lp approximation, we can
approximate σH and φ ∈ Φ as closely as we want with ρ and ReLUs, respectively. However, as the
proof will show, controlling the aggregated error over layers is not a trivial job.

F.1 Approximating the quantization function gq (Lemma 6)

We first consider approximating gq from Lemma 6 with a standard feed-forward layer counterpart,
g̃q. Recall from § E.1 that the modified feed-forward layers used in gq are of the form

Z 7→ Z + e(i)φ((e(i))TZ − kδ1Tn ), φ(t) =

{
0 t < 0 or t ≥ δ,
−t 0 ≤ t < δ,

(14)
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for i ∈ [d] and k ∈ [0 : n/δ − 1]. Note that the activation φ ∈ Φ can be closely approximated by
three ReLUs:

φ̃α(t) := −ReLU(t) +
1

α
ReLU(t− (1− α)δ)− 1− α

α
ReLU(t− δ)

=


0 t ≤ 0 or t ≥ δ,
−t 0 ≤ t ≤ (1− α)δ,
1−α
α (t− δ) (1− α)δ ≤ t ≤ δ,

where 0 < α < 1. Note that φ̃α(t) = φ(t) except for an interval ((1 − α)δ, δ), and by shrinking
α > 0 this interval can be made arbitrarily small. Consider approximating the layers (14) with
standard feed-forward layers, by replacing φ with its approximation φ̃α. Let the resulting function be
g̃q ∈ ST 2,1,3.

Then, it is easy to check that gq(X + E) = g̃q(X + E) holds if all coordinates of X ∈ [0, 1)d×n

are in the intervals of the form [kδ, (k + 1 − α)δ] for some k ∈ [0 : n/δ − 1]; i.e., the intervals in
which φ̃α perfectly approximates φ. The Lebesgue measure of the set of such inputs X is

((1− α)δ)nd × 1

δnd
= (1− α)nd,

and this can be made arbitrarily close to 1 by making α small. As a result, “most” of the input X ∈ D
satisfies gq(X +E) = g̃q(X +E) ∈ Hδ , while a small fraction (of measure at most 1− (1−α)nd)
can map to some other values. For most of the remaining of the proof, we will consider the fraction
of inputs mapped correctly to Hδ and bound their approximation error. We will come back to the
1− (1− α)nd fraction at the end of the proof.

F.2 Approximating the contextual mapping gc (Lemma 7)

Let us now consider approximating the contextual mapping gc in Lemma 7, constructed using the
hardmax σH operators, with the standard sparse self-attention layers employing ρ operator. We will
call the approximation g̃c. Recall that ρ satisfies Assumption 2:
Assumption 2. For any ζ > 0 and η ∈ (0, 1], ∃ t > 0 such that, for any column input v satisfying
vj∗ −maxj 6=j∗ vj ≥ ζ (where j∗ = arg maxj vj), we have ρ[tv]j∗ ≥ 1− η and

∑
j 6=j∗ ρ[tv]j ≤ η.

This means that ρ can closely approximate σH in the sense that whenever the input vector v to the
ρ operator has a maximum element vj∗ by some margin ζ, then the j∗-th component of the output
ρ[tv] is close to 1, while the other components of ρ[tv] are close to 0.

Recall that gc consists of two parts. The first part is a composition of sparse selective shift operations,
and the second is a composition of all-max-shift operations. We will first examine how “errors” are
introduced when σH is replaced with ρ in both operations, discuss how the errors accumulate, and
show how to choose the right ζ and η to control the errors in the approximation g̃c.

Errors introduced by ρ: Sparse selective shift operation. Recall that the key component in both
the selective shift operation and all-max-shift operation is the sparse attention head ψl(·), which
computes its k-th column as the following:

ψl(Z; bQ)k := uTZAlkσH[(uTZAlk)T (uTZk − bQ)] =

{
maxj∈Alk u

TZj if uTZk > bQ,

minj∈Alk u
TZj if uTZk < bQ.

Now suppose we replaced σH with ρ satisfying Assumption 2. Suppose each entry in uTZ differs
at least by δ, which is true in the construction of gc. We choose ζ = δ/2 and some 0 < η < 1, and
corresponding t > 0. Then, replace σH[·] with ρ[t·] and define

ψ̃l(Z; bQ)k := uTZAlkρ[t(uTZAlk)T (uTZk − bQ)].

If uTZk > bQ, it is easy to check that ψ̃l(Z; bQ)k satisfies

(1− η) max
j∈Alk

uTZj + η min
j∈Alk

uTZj ≤ ψ̃l(Z; bQ)k ≤ max
j∈Alk

uTZj . (15)
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Similarly, if uTZk < bQ, we have

min
j∈Alk

uTZj ≤ ψ̃l(Z; bQ)k ≤ (1− η) min
j∈Alk

uTZj + η max
j∈Alk

uTZj .

Now consider the approximate sparse selective shift operator Ψ̃l, implemented with ψ̃l. For bQ < b′Q,
we define

Ψ̃l(Z; c, bQ, b
′
Q) := Z +

[
ce(1) −ce(1)

] [ψ̃l(Z; bQ)

ψ̃l(Z; b′Q)

]
.

For any column Zk satisfying bQ < uTZk < b′Q, we have

(1− 2η)

(
max
j∈Alk

uTZj − min
j∈Alk

uTZj

)
≤ ψ̃l(Z; bQ)k − ψ̃l(Z; b′Q)k ≤ max

j∈Alk
uTZj − min

j∈Alk
uTZj ,

and for any column Zk satisfying uTZk /∈ [bQ, b
′
Q], we get

|ψ̃l(Z; bQ)k − ψ̃l(Z; b′Q)k| ≤ η

(
max
j∈Alk

uTZj − min
j∈Alk

uTZj

)
.

Recall that for the hardmax σH version, we had

ψl(Z; bQ)k − ψl(Z; b′Q)k =

{
maxj∈Alk u

TZj −minj∈Alk u
TZj if bQ < uTZk < b′Q,

0 if uTZk /∈ [bQ, b
′
Q].

From this observation, the approximation error Ψ̃l −Ψl of the selective shift operator on the (j, k)-th
entry of the output can be bounded as follows:

Ψ̃l(Z; c, bQ, b
′
Q)j,k −Ψl(Z; c, bQ, b

′
Q)j,k ∈


[−2cηDl

k, 0] if j = 1,uTZk ∈ (bQ, b
′
Q),

[−cηDl
k, cηD

l
k] if j = 1,uTZk /∈ [bQ, b

′
Q],

{0} if j 6= 1,

where we used Dl
k := maxj∈Alk u

TZj −minj∈Alk u
TZj for simplicity.

Errors introduced by ρ: All-max-shift operation. Next, we examine the approximation error of
the all-max-shift operation introduced by replacement of σH with ρ. Let us define the approximate
all-max-shift operation Ω̃l:

Ω̃l(Z; c) = Z + ce(1)ψ̃l(Z; 0).

From (15), we can check that the approximation error Ω̃l − Ωl of the all-max-shift operation is
bounded as

Ω̃l(Z; c)j,k − Ωl(Z; c)j,k ∈
{

[−cηDl
k, 0] if j = 1,

{0} if j 6= 1.

Errors in selective shift operations. Given these approximation error bounds of single operations,
we now analyze the accumulation of errors through multiple layers. We first consider the first pδ−d
self-attention layers in gc. Recall that they consist of selective shift layers Ψl2(·; δ−d, b−δ/2, b+δ/2)
for b ∈ [0 : δ : δ−d+1 − δ] and (p− 1)δ−d identity layers. A natural way to approximate these layers
with standard self-attention layers is to use approximate layers Ψ̃l2(·; δ−d, b− δ/2, b+ δ/2), with
sufficiently large t > 0. As we have seen above, there is no error introduced by ρ except for the first
row. Thus, we will analyze the approximation error of Ψ̃l2(·; δ−d, b− δ/2, b+ δ/2) for the first row
only.

Let us remind the readers how the first selective shift operation (done by the first pδ−d layers)
originally worked in gc. The input to gc is H , and we define zk := uTHk and ∆ =

∑d−1
i=0 δ

−i.
Recall from Eqs. (7) and (8) in § E.2 that

0 ≤ zγ(2) < zγ(3) < · · · < zγ(n) < zγ(1) ≤ (n− 1)∆ + δ−d+1 − δ < nδ−d
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and zγ(2) ∈ [0 : δ : δ−d+1 − δ], so zγ(2) will undergo the selective shift by one of the self-attention
layers, which updates the (1, γ(2))-th entry of the input. Let H̃γ(2) be the updated value of the
column and z̃γ(2) := uT H̃γ(2). The new sequence satisfies

∆ ≤ zγ(3) < · · · < zγ(n) < zγ(1) < z̃γ(2) < nδ−2d,

where the strict upper bound on z̃γ(2) is from Eq. (11).

In case of the approximation Ψ̃l2 , we have seen that the error depends on the gap between maximum
and minimum of uTZj’s, and this gap may grow larger as error accumulates; in the worst case, it
may grow exponentially. To see this, suppose a0 and b0 are the maximum and minimum value of
uTZj’s, and they go through a selective shift operation, but they do not belong to the range of the
operation (bQ, b

′
Q). Then, a0 and b0 will be updated to a1 and b1, which are bounded by

a1 ≤ a0 + δ−dη(a0 − b0), b1 ≥ b0 − δ−dη(a0 − b0).

After the next layer, we get

a2 ≤ a1 + δ−dη(a1 − b1) ≤ a0 + δ−dη(a0 − b0) + δ−dη(1 + 2δ−dη)(a0 − b0),

b2 ≥ b1 − δ−dη(a1 − b1) ≥ b0 − δ−dη(a0 − b0)− δ−dη(1 + 2δ−dη)(a0 − b0).

Similarly, after k such layers, we get

ak ≤ a0 + (a0 − b0)δ−dη

k−1∑
i=0

(1 + 2δ−dη)i,

bk ≥ b0 − (a0 − b0)δ−dη

k−1∑
i=0

(1 + 2δ−dη)i,

showing that the gap ak − bk may grow exponentially in the worst case:

ak − bk ≤ (1 + 2δ−dη)k(a0 − b0).

In the error-less case (σH), for any input sequence H , the maximum possible difference between
maximum and minimum of uTH is bounded above by nδ−d, and after one selective shift operation
was done on the γ(2)-th column, the difference is then bounded by nδ−2d. Therefore, the worst-case
possible error introduced by ρ is bounded above by the sum of the worst-case errors calculated
assuming that we started off with max-min difference nδ−2d. Using this observation, the error on
each first-row entry of the sequence after the first pδ−d layers is bounded above by

2nδ−2d · δ−dη
δ−d−1∑
i=0

(1 + 2δ−dη)i, (16)

where a factor of 2 is introduced because when the selective shift operation is applied to the γ(2)-th
column, it may introduce an error which is twice the magnitude of the error introduced to the other
columns. We want to make (16) smaller than δ

8n . By Assumption 2, we can always choose t > 0 that
satisfies the assumption for

ζ =
δ

2
, and η = 1

2δ
2d log

(
1 +

δ2dδ̃

8n2

)
> 0, where δ̃ := min

{
δ,

21−1/pε

n1/p

}
.

Using such t, we can control the total accumulated error by the first pδ−d selective shift operations
below δ̃

8n :

2nδ−2d · δ−dη
δ−d−1∑
i=0

(1 + 2δ−dη)i ≤ 2nδ−3dη
(1 + 2δ−dη)δ

−d − 1

(1 + 2δ−dη)− 1

= nδ−2d


1 +

log
(

1 + δ2dδ̃
8n2

)
δ−d

δ−d

− 1

 ≤ nδ−2d

(
exp log

(
1 +

δ2dδ̃

8n2

)
− 1

)

= nδ−2d δ
2dδ̃

8n2
=

δ̃

8n
.
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Therefore, after the first pδ−d selective shift layers, the accumulated error for each entry of the first
row is at most δ̃/8n.

We can also apply similar arguments to the remaining selective shift layers. For example, for the j-th
set of pδ−d selective shift layers where the operation is done on γ(j + 1)-th column of the input, the
gap between the maximum and the minimum, including the accumulated error from previous layers,
is bounded above by nδ−(j+1)d. Therefore, for this set of layers, the maximum accumulated error is
bounded by

2nδ−(j+1)d · δ−dη
δ−d−1∑
i=0

(1 + 2δ−dη)i.

So, choosing t > 0 that satisfies Assumption 2 for η = δ
2 and η = 1

2δ
2d log(1 + δ(j+1)dδ̃

8n2 ), we can
control the accumulated error introduced by the pδ−d layers below δ

8n :

2nδ−(j+1)d · δ−dη
δ−d−1∑
i=0

(1 + 2δ−dη)i ≤ 2nδ−(j+2)dη
(1 + 2δ−dη)δ

−d − 1

(1 + 2δ−dη)− 1

≤ nδ−(j+1)d


1 +

log
(

1 + δ(j+1)dδ̃
8n2

)
δ−d

δ−d

− 1

 ≤ δ̃

8n
.

In total, the accumulated error by the first p(n− 1)/δd layers, which correspond to the selective shift

operation part of the construction, is at most (n−1)δ̃
8n ≤ δ̃

8 .

Errors in all-max-shift operations. For all-max-shift operations, we approximate the hardmax
σH all-max-shift operations Ωl(Z;nδ−nd) with its ρ-counterparts, Ω̃l(Z;nδ−nd). We can similarly
bound the accumulated error in the all-max-shift operations. Recall from § E.2 that during the
whole series of all-max-shift operations, the maximum entry in the sequence is upper-bounded by
(2snδ−nd−1)snδ−nd and minimum entry is lower-bounded by (n−1)∆. Therefore, the gap between
the max and min elements, taking into consideration the errors from selective shift operations, is
bounded from above by (2snδ−nd−1)snδ−nd. Then, using a similar argument as the select shift
operation layers, the maximum error is bounded above by

(2snδ−nd−1)snδ−nd · nδ−ndη
s−1∑
i=0

(1 + nδ−ndη)i,

and we want to make it smaller than δ̃
8 . By Assumption 2, we can always choose t > 0 that satisfies

the assumption for

ζ =
δ

2
, and η =

δnd

sn
log

(
1 +

δs(nd+1)+ndδ̃

2s+3ssns+1

)
> 0.

Using such t, we can control the total accumulated error by the first pδ−d selective shift operations
below δ̃

8 :

(2snδ−nd−1)snδ−nd · nδ−ndη
s−1∑
i=0

(1 + nδ−ndη)i

≤ (2snδ−nd−1)snδ−nd · nδ−ndη (1 + nδ−ndη)s − 1

(1 + nδ−ndη)− 1

= (2snδ−nd−1)snδ−nd

1 +
log
(

1 + δs(nd+1)+ndδ̃
2s+3ssns+1

)
s

s

− 1


≤ (2snδ−nd−1)snδ−nd

δs(nd+1)+ndδ̃

2s+3ssns+1
=
δ̃

8
.
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So far, we have analyzed the total accumulated error of approximating the contextual mapping
function gc (constructed with hardmax σH) with an approximation g̃c (constructed with ρ). We have
seen that for any input H ∈ Hδ, the approximation error can be controlled so that the error by
the selective shift operation part is at most δ̃/8 and the all-max-shift operation part is at most δ̃/8.
Therefore, the total error of the (j, k)-th entry can be bounded as

g̃c(H)j,k − gc(H)j,k ∈

{
[− δ̃4 ,

δ̃
4 ] j = 1,

{0} j 6= 1,

for any H ∈ Hδ .

F.3 Approximating the value mapping gv (Lemma 8)

We now consider the approximation of the value mapping gv with standard feed-forward layers. In
gv, we implemented the function with layers of the form

Z 7→ Z+(f(H−E)k−gc(H)k)φ′(uTZ−uT gc(H)k1
T
n ), φ′(t) =

{
0 t < −δ/2 or t ≥ δ/2,
1 −δ/2 ≤ t < δ/2.

Since the output of contextual mapping gc(H) and its approximation g̃c(H) differ in only the first
row and by δ̃/4 ≤ δ/4, one can approximate each layer in gv by replacing φ′ with an approximation
φ̃′, implementable with four ReLU’s:

φ̃′(t) =


0 t < −δ/2 or t ≥ δ/2,
4
δ t+ 2 −δ/2 ≤ t < −δ/4,
1 −δ/4 ≤ t < δ/4,

− 4
δ t+ 2 δ/4 ≤ t < δ/2.

Let g̃v be the approximation of gv constructed this way. Because the error on g̃c is bounded by δ̃/4,
the error on the final output g̃v is also bounded by δ̃/4. That is, for any H ∈ Hδ ,

g̃v(g̃c(H))j,k − gv(gc(H))j,k ∈

{
[− δ̃4 ,

δ̃
4 ] j = 1,

{0} j 6= 1.

Hence, using δ̃ := min
{
δ, 21−1/pε

n1/p

}
, we have

‖g̃v(g̃c(H))− gv(gc(H))‖pp ≤ n
( δ̃

4

)p
≤ 1

2

( ε
2

)p
,

for all H ∈ Hδ .

F.4 Finishing the proof

Recall from § F.1 that the approximated quantization function g̃q maps most of the input X ∈ D to
H ∈ Hδ, and a small fraction of them (of measure at most 1− (1− α)nd) to something else. Note
now that the original function g = gv ◦ gc ◦ gq and the approximation g = g̃v ◦ g̃c ◦ g̃q are both
bounded, so there is a global constant B such chat ‖g(X + E)− g(X + E)‖p ≤ B for all X ∈ D.

We can divide the integral over D to two disjoint sets. The first one D1 := {X ∈ D | g̃q(X + E) ∈
Hδ} is the set of input X mapped to Hδ by g̃q, and the other is its complement D2 = D \ D1.

dp(g, g)p :=

∫
D
‖g(X + E)− g(X + E)‖pp dX

=

∫
D1

‖g(X + E)− g(X + E)‖pp dX +

∫
D2

‖g(X + E)− g(X + E)‖pp dX

≤ 1

2

( ε
2

)p
+ (1− (1− α)nd)Bp.

One can make α close enough to 1 so that the second term is less than 1
2

(
ε
2

)p
. This makes

dp(g, g) ≤ ε/2, hence finishing the proof.
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G Experimental setup

G.1 Copying task

We generated the synthetic dataset for the copying task. The input sequence to the copying task has
the format 0s0s, where s is a 127 length sequence of symbols randomly sampled from the range of
[0, 127]. The training set contains 100K sequences, while the testing set contains 10K sequences.

We implement the copying task as a masked-LM [10] style prediction task by masking all the tokens in
the second half of the sequence. For the test examples, each masked token is predicted independently.
For the results reported in § 5, we experiment with bidirectional models, where each token can attend
to both previous and future tokens.

The maximum sequence length is n = 256, and we use embedding dimension d = 256. The model
has 1 to 4 attention layers with h = 4 attention heads of size m = 64, followed by a feed-forward
hidden layer of size r = 512. We train the model with the AdamW optimizer with weight decay and
no dropout. We train the model using 3,000 warmup steps and a total of 500K training steps. The
learning rate is 1e−4. We use the batch size 1,024 on 8 TPUv3 chips.

For all sparsity patterns other than the RANDOM pattern, we choose the segment length w to be 16 for
all patterns. This segment length results in the sparsest level for the STRIDED and FIXED patterns. In
Table 1, we include the sparsity level as a reference. For this task, we report the prediction accuracy
for all the tokens.

G.2 Language modeling

For the language modeling task, we train on the One Billion Word Benchmark [5] which contains
almost one billion tokens and a vocabulary of more than 800K tokens.

We use the Transformer model in the Tensor2Tensor framework [29]. We use a 12-block (cf. (2))
Transformer, with embedding dimension d = 256, maximum sequence length n = 256, number
of heads h = 8, head size m = 64, and feed-forward hidden layer size r = 1024. Since language
modeling task is auto-regressive (attending to only past tokens) in nature, we evaluate the (sparse)
attention score matrices and mask them to be an upper-triangular matrix. We train the model with the
Adafactor with weight decay. We train the model using 10K warmup steps and a total of 240K steps.
We use the batch size 4,096 on 8 TPUv2 chips.

For this task, we report the perplexity.

G.3 Translation

For the translation task, we train on the WMT18 en-cs datasets (Europarl v7, Common Crawl
corpus, News Commentary v13, and CzEng), with a total of 15M pairs of sentences, and test on the
newstest2015 en-cs dataset, with 2,656 pairs.

We use the encoder-decoder architecture and apply the sparse attention on both encoder and decoder.
We use the Transformer model in the Tensor2Tensor framework [29] and the same setup as the
language modeling task, except for having 6 blocks in the Transformer networks, with head size
m = 32 and having autoregressive patterns only in decoders.

For this task, we report the cased BLEU score.

G.4 GLUE tasks

For the GLUE tasks, we use the pre-training and fine-tuning framework [10]. Following Devlin et al.
[10] we first pre-train a BERTBASE model for 450K steps on the BooksCorpus [36] (800M words)
and the English Wikipedia datasets (2,500M words). We later finetune the model on data from each
task separately. For each setting, we use the same sparsity pattern and head configuration in both the
pre-training and the fine-tuning stages. The sequence length is n = 128 in both stages.

We report the average accuracy of three runs on the dev set for all tasks. For each setting, we pre-train
a model and run fine-tuning three times.
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Table 2. Accuracy on the synthetic copying task when using an auto-regressive model. Percentages in
parentheses mark the sparsity levels.

STRIDED FIXED STAR RANDOM

Depth UNION
(87%)

MULTIHEAD
(93%)

SEQUENTIAL
(93%)

UNION
(87%)

MULTIHEAD
(93%)

SEQUENTIAL
(93%) (87%) (90%)

1-layer 0.79% 0.78% 0.78% 7.02% 7.04% 0.81% 0.77% 33.13%
2-layer 12.40% 8.26% 1.57% 73.43% 13.24% 92.10% 12.32% 67.30%
3-layer 94.50% 65.58% 60.88% 99.87% 70.82% 99.84% 14.03% 89.50%
4-layer 100% 100% 98.40% 99.97% 99.16% 99.97% 31.19% 95.88%

(a) WMT en-de (b) WMT de-en

Figure 3. Comparison of sparsity patterns and different head configurations on the WMT de-en and
en-de translation tasks.

(a) CoLA (b) MRPC

Figure 4. Comparison of sparsity patterns and different head configurations on the CoLA and MRPC
tasks for the BERTBASE model.

H Additional experimental results

We report additional experimental results in this section.

H.1 Copying task

We include the results for the copying task using auto-regressive (unidirectional) models as in LM,
where each token can only attend to previous tokens, in Table 2. In this case, the STAR pattern cannot
attend to the last replay token. Indeed, the STAR pattern shows better performance when the model is
bidirectional (cf. Table 1).

H.2 Translation

We present experimental results of the translation tasks on the WMT English-German and German-
English datasets in Figure 3. We train on WMT18 (Europarl v7, Common Crawl corpus and News
Commentary v13) and test on newstest 2015 datasets. The figures show similar trends to the results
on the WMT en-cs dataset in Figure 1b.
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H.3 GLUE tasks

Figure 4 presents the results comparing the sparsity patterns and the head configurations on the CoLA
and MRPC tasks using the BERTBASE model. CoLA is a single-sentence classification task, asking if
a sentence is a grammatical English sentence. MRPC is a sentence-pair classification task, where
each example is a pair of sentences and the label indicates whether the sentences are semantically
equivalent.
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