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Abstract

Operator-valued kernels have shown promise in supervised learning problems
with functional inputs and functional outputs. The crucial (and possibly restrictive)
assumption of positive definiteness of operator-valued kernels has been instrumental
in developing efficient algorithms. In this work, we consider operator-valued
kernels which might not be necessarily positive definite. To tackle the indefiniteness
of operator-valued kernels, we harness the machinery of Reproducing Kernel Krein
Spaces (RKKS) of function-valued functions. A representer theorem is illustrated
which yields a suitable loss stabilization problem for supervised learning with
function-valued inputs and outputs. Analysis of generalization properties of the
proposed framework is given. An iterative Operator based Minimum Residual
(OpMINRES) algorithm is proposed for solving the loss stabilization problem.
Experiments with indefinite operator-valued kernels on synthetic and real data sets
demonstrate the utility of the proposed approach.

1 Introduction

We consider the problem of learning a function-valued function F : X → Y between an input
space X and an output space Y of functions. Sometimes this problem is called functional regression
(Morris, 2015). Several applications (e.g. audio-visual apps, weather forecasting) motivate the
need for considering data as functions. Though practical data is typically discrete, the need to
consider inherent time-based correlations and its potential smoothness might be fruitful (Ramsay and
Silverman, 2007; Kokoszka and Reimherr, 2018). Among the machine learning methods to solve
the functional regression problem, we are interested in the functional reproducing kernel Hilbert
space (functional RKHS) idea introduced in (Lian, 2007) and substantially developed in (Kadri
et al., 2016). Functional RKHS extends the RKHS framework popularly used for multivariate data
(Schölkopf et al., 1999) to functional data. Similar to RKHS which is associated with a non-negative
(or positive) scalar-valued kernel with the so-called reproducing property, a representer theorem for
functional RKHS allows it to be associated with a corresponding non-negative (or positive definite)
operator-valued kernel with reproducing property (see (Lian, 2007) and Appendix A). However
construction of non-negative or positive definite operator-valued kernels is not straightforward and
particular examples with separable structure are provided in (Lian, 2007; Kadri et al., 2016). The
positive definiteness of operator-valued kernels is crucial for establishing technical results associated
with functional RKHS and also helps in designing efficient algorithms (Lian, 2007; Kadri et al.,
2016).

Note that demonstrating the positive definiteness property of operator-valued kernels (even for
particular cases) might be a difficult exercise in itself. Demanding the non-negativeness or positive
definiteness of operator-valued kernels effectively restricts practitioners from trying other useful
operator-valued kernels which might be indefinite, yet potentially useful for some applications (e.g.
similarity computation between function-valued data can involve indefinite operator-valued kernels).
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Similar concerns previously raised in the case of scalar-valued kernels (e.g. see (Ong et al., 2004)),
have led to interesting theory establishing a counterpart of RKHS, namely the reproducing kernel
Krein space (RKKS) suitable for non-positive kernels of certain type (Ong et al., 2004; Oglic and
Gärtner, 2018). Here, we embark on a similar pursuit to develop the necessary theoretical tools
which would help construct a function-valued RKKS for generalized operator-valued kernels which
might not be non-negative. The structure of generalized operator-valued kernels may seem as an
extension of generalized scalar-valued kernels considered in (Ong et al., 2004), however dealing with
operator-valued nature of the kernels brings in challenges. Designing a suitable algorithmic scheme
to make the framework of generalized operator-valued kernels useful for practical applications is
also challenging. Therefore, a systematic development and study of generalized operator-valued
kernels and related algorithms become imperative. We aim to address these objectives in this work
and outline our major contributions below.

Contributions: We introduce the concepts of generalized operator-valued kernel (which might be
indefinite) and function-valued RKKS. We show the relevant properties required to associate function-
valued RKKS with generalized operator-valued kernels. We remark that demonstrating the existence
of an associated RKKS for a generalized operator-valued kernel (more specifically, deriving Lemma
2.3 and Corollary 2.3.1 leading to the proof of Theorem 2.4 below) is mathematically challenging.
We then cast the functional regression problem over function-valued RKKS in an appropriate learning
setup using a regularized empirical loss stabilization formulation. We further prove a representer
theorem for the function-valued RKKS which yields a tractable solution of the loss stabilization
problem. To make the theoretical framework useful for practical scenarios, we devise an iterative
Krylov subspace method called Operator MINimum RESidual method (OpMINRES) to solve the
loss stabilization problem. Further, using an appropriate Rademacher average, we provide technical
results on generalization properties of the proposed learning setup. To the best of our knowledge, the
technical results connecting the framework of generalized operator-valued kernel and its associated
function-valued RKKS, and the proposed OpMINRES algorithmic scheme are new. An extensive
empirical evaluation on real data and comparison with benchmark methods demonstrate that the
proposed learning framework is competitive, while allowing for the flexibility of using indefinite
operator-valued kernels in functional data settings.

Paper organization: Generalized operator-valued kernels and function-valued RKKS are introduced
and their properties are discussed in Section 2. We formulate a regularized loss stabilization learning
problem and furnish a representer theorem for function-valued RKKS in Section 3. The iterative
OpMINRES algorithm used to solve the loss stabilization problem is illustrated in Section 4. Bounds
on the generalization error are established in Section 5. Related work is summarized briefly in Section
6. Experiments using the OpMINRES algorithm and comparative results are provided in Section 7.
Section 8 concludes the paper.

2 Generalized Operator-valued Kernels and Function-valued Reproducing
Kernel Krein Spaces

To appreciate the results introduced in this Section, it would be useful to recall the fundamentals
of Krein spaces, Reproducing Kernel Krein Spaces (RKKS) and generalized scalar-valued kernels.
We discuss them in Appendix B, where a scalar-valued RKKS with its associated generalized
reproducing kernel is shown to help in learning real-valued functions of the form f : X → R,
X being an appropriate input space. Here, we consider their extensions to learn functions of the
form F : X → Y , where X is a suitable input space and Y is an output space of functions. A
relevant framework of operator-valued kernels (Kadri et al., 2016) has been particularly useful in this
context. We note that operator-valued kernels have been proposed for infinite dimensional spaces
in other previous works (see e.g. (Caponnetto et al., 2008; Carmeli et al., 2010)) and also for finite
dimensional spaces (Micchelli and Pontil, 2005). We make the following assumption on X and Y ,
which would help us to avoid difficulties arising due to functional analysis considerations.

Assumption 2.1. X ,Y are Hilbert spaces of square integrable functions defined on compact sets.

For a compact Ω ⊂ R, it is well-known that X = Y = L2(Ω), the space of equivalence classes of
square integrable functions on Ω satisfy Assumption 2.1. To define an operator-valued kernel, we
require the set L(Y) of bounded linear operators over Y of the form f : Y → Y (for discussion on
linear operators and their properties, see e.g. (Kreyszig, 1989, Chapter 2)). Recall that in Appendix
B.2, scalar-valued kernels k : X ×X → R mapped a pair (x, x′) ∈ X ×X to k(x, x′) ∈ R. This
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notion can be extended to the functional setting enabling us to devise an operator-valued kernel to
map the elements of X × X to L(Y), as follows.
Definition 2.1. Operator-valued Kernel. (Kadri et al., 2016) An L(Y)-valued kernel K on X 2 is a
function K(·, ·) : X × X → L(Y), with the following properties:

1. K is Hermitian if ∀w, z ∈ X ,K(w, z) = K(z, w)∗, (where ∗ denotes the adjoint operator),
2. K is non-negative (or positive definite) on X 2 if it is Hermitian and for every natural

number r and all {(wi, ui)i=1,2,...,r} ∈ X × Y , the matrix with (i, j)-th entry given by
〈K(wi, wj)ui, uj〉Y is non-negative (or positive definite).

For an operator-valued kernel K, and for a set {zi}ni=1 ⊂ X , we can define a corresponding
matrix K ∈ L(Yn) called the block operator kernel matrix whose entries are Kij = K(zi, zj) ∈
L(Y). Then the trace Tr(K(zi, zj)) of operator K(zi, zj) can be defined as the trace Tr(Kij) of
the corresponding matrix Kij . Note that verifying the Hermitian and non-negativity properties in
Definition 2.1 is not straightforward and we need to consider specific forms which would satisfy
both these properties (Kadri et al., 2016). We now discuss a construction from (Kadri et al., 2016)
which would help us appreciate the structure of an operator-valued kernel. Suitable extensions of
this example will be considered later when we discuss the generalized operator-valued kernel case.
Note also that a similar construction is available in (Lian, 2007) and is used in other settings as
well (Micchelli and Pontil, 2005; Caponnetto et al., 2008; Alvarez et al., 2012). Consider now the
following operator-valued kernel with a separable structure (Kadri et al., 2016):

K(xi, xj) = k(xi, xj)T, (1)

where xi, xj ∈ X , T is a bounded linear operator on Y and k is a positive scalar-valued kernel on X 2.
Notice that the operator-valued kernel K(·, ·) construction in Eq. (1) assumes a positive scalar-valued
kernel k : X × X → R which is then used to scale an operator T ∈ L(Y). A concrete example for
K of the form in Eq. (1) can be given as:

(K(xi, xj)y)(t) = k(xi, xj)

∫
Ωy

h(s, t)y(s)ds, (2)

where, Ωx = Ωy = [0, 1],X =L2(Ωx),Y =L2(Ωy), k is a positive scalar-valued kernel on X 2and
h : Ωy×Ωy → R is a kernel on (Ωy)2. The linear integral operator used in Eq. (2) is especially useful
in applications involving data that can be well-approximated using continuous functions (Ramsay and
Silverman, 2007). The form of K considered in Eq. (2) is called a Hilbert-Schmidt integral operator
and is known to be non-negative (Kadri et al., 2016).

Significant impetus has been given in the literature to construct non-negative operator-valued kernels
which can be associated with a suitable functional RKHS (Lian, 2007; Carmeli et al., 2010; Kadri
et al., 2016). For an operator-valued kernel to be qualified as a Mercer kernel, Carmeli et al. (2010)
provide a characterization that the associated RKHS (whose elements are continuous functions) be
a subspace of the vector space C(X ,Y) of continuous functions from X to Y . Moreover operator-
valued kernels which are Mercer, are locally bounded and strongly continuous (Carmeli et al., 2006,
2010). Henceforth we will restrict our attention to only those function-valued RKHS whose associated
operator-valued kernel can be qualified as Mercer in the sense of Carmeli et al. (2010). Analogous to
the bijection between scalar-valued RKHS and Mercer kernels, there exists a bijection between the
space of operator-valued kernels and the space of function-valued RKHS (Kadri et al., 2016).

We now move on to accomplish one of the major goals of our current work here, which is to develop
suitable generalized operator-valued kernels (that might not be non-negative), which can then be
appropriately associated with a function-valued RKKS.

Definition 2.2. Generalized Operator-valued Kernel: A generalized L(Y)-valued kernel K̆ on
X 2 is a function K̆(·, ·) : X × X → L(Y) which can be written as K̆ = K1 −K2, where K1,K2 :
X × X → L(Y) are non-negative operator-valued kernels.

Similar to the non-negative operator-valued kernel case, it is possible to define a block operator kernel
matrix K̆ for a generalized operator-valued kernel. The definition of a generalized operator-valued
kernel is motivated by the generalized scalar-valued kernel k̆ in Theorem B.1 (see Appendix B),
where k̆ is represented as a difference of two positive scalar-valued kernels k1 and k2. The next
immediate goal is to establish a connection between the generalized operator-valued kernel and an
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appropriate RKKS, analogous to the result in Theorem B.2, where a generalized scalar-valued kernel
k̆ is associated with a scalar-valued RKKS. The following definition will help us to define the required
RKKS.
Definition 2.3. Function-valued RKKS: A Krein space F of functions from X to Y is called a
reproducing kernel Krein space if there is a L(Y)-valued kernel K̆ on X 2, such that:

1. the function z 7→ K̆(w, z)g belongs to F ,∀z, w,∈ X and ∀g ∈ Y ,
2. (reproducing property) 〈F, K̆(w, .)g〉F = 〈F (w), g〉Y , for every F ∈ F , w ∈ X , g ∈ Y .

Note that we have defined a function-valued RKKS by extending the definition provided for function-
valued RKHS in (Kadri et al., 2016). To establish a correspondence between generalized operator-
valued kernel and a function-valued RKKS, the following results are essential. Lemma 2.2 provides
a RKHS characterization of the intersection of the function-valued RKHS associated with two
non-negative operator-valued kernels on X 2. Lemma 2.3 helps to construct partially ordered set
I(K1,K2) which is also inductive (see (Bourbaki, 2004, Chapter III) for a definition of inductive
set).
Lemma 2.2. Let K1 and K2 be two L(Y)-valued non-negative kernels on X 2 with corresponding
function-valued RKHSH1 andH2 respectively. Then the intersectionH1∩H2 with the inner product

〈f, f〉H1∩H2
= 〈f, f〉H1

+ 〈f, f〉H2

is a RKHS contractively included inH1 andH2.

Note that for two L(Y)-valued non-negative kernels K1,K2, we let K1 ≤ K2 if 〈K1(x, x)y, y〉Y ≤
〈K2(x, x)y, y〉Y ,∀x ∈ X ,∀y ∈ Y . This notation is used in the next Lemma.
Lemma 2.3. Let K1 and K2 be two L(Y)-valued non-negative kernels on X 2 and let I(K1,K2)
denote the set of all functions K non-negative on X 2 and such that K ≤ K1 and K ≤ K2. Then
I(K1,K2) is inductive.

We now have the following corollary.
Corollary 2.3.1. Let K be a difference of two non-negative L(Y)-valued kernels on X 2, K =
K1−K2. Then, without loss of generality, one can chooseK1 andK2 with corresponding reproducing
kernel Hilbert spacesH1 andH2, respectively, such thatH1 ∩H2 = {0}.

The results stated in Lemma 2.2, Lemma 2.3 and Corollary 2.3.1 are extensions of similar results
proved in (Alpay, 1991) for the set Cm×m of all m×m matrices over field C of complex numbers.
We give their proofs in Appendix C. Corollary 2.3.1 especially helps in the construction of an
appropriate function valued RKKS for a generalized operator-valued kernel in the following result.
Theorem 2.4. Let K̆ be a L(Y)-valued kernel on X 2. Then there is an associated reproducing kernel
Krein space if and only if K̆ is a generalized L(Y)-valued kernel, that is, K̆ = K1 −K2, where K1

and K2 are non-negative L(Y)-valued kernels on X 2.

The proof of Theorem 2.4 follows the arguments in (Alpay, 1991, Theorem 2.1); details are given in
Appendix C.

An example for generalized operator-valued kernel: Having established the correspondence
between a generalized operator-valued kernel and function-valued RKKS, we consider an extension
of K in Eq. (1) as

K̆(xi, xj) = (g(xi, xj))(T1 − T2) or K̆(xi, xj) = (g1(xi, xj)− g2(xi, xj))T,

where xi, xj ∈ X , T, T1, T2 are bounded linear operators on Y and g, g1, g2 are positive scalar-valued
kernels on X 2. As a concrete example, consider a generalized operator-valued kernel analogous to
the one in Equation (2) as

(K̆(xi, xj)y)(t) = g(xi, xj)

∫
Ωy

h(s, t)y(s)ds, (3)

where, Ωx = Ωy = [0, 1],X =L2(Ωx),Y =L2(Ωy), g is a scalar-valued kernel on X 2 and h is
an output kernel on (Ωy)2, and either g or h is indefinite. We illustrate in Appendix D that the
operator-valued kernel constructed in Eq. (3) satisfies the properties in Definition (2.3).

We now move on to define a suitable learning problem involving generalized operator-valued kernels
and function-valued RKKS.
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3 Learning Problem Formulation

Let X = L2([a, b]), a < b and Y = L2([c, d]), c < d, thus satisfying Assumption 2.1. Con-
sider the supervised setting of learning a function F , such that F (xi) = yi, for the training data
((xi(s), yi(t)))

n
i=1 ∈ (X × Y)

n, where s ∈ [a, b], t ∈ [c, d]. We consider a Krein space K of
operators from X to Y . Inspired by Ong et al. (2004), we now formulate the learning problem as a
regularized empirical loss stabilization problem over the functions in K, as follows.

F̃λ = arg stabilize
F∈K

n∑
i=1

‖yi − F (xi)‖2Y + λ〈F, F 〉K, (4)

where λ > 0 is the regularization parameter. Note that problem (4) considers risk stabilization (to
find a stationary point) instead of the usual risk minimization, as the regularization term 〈F, F 〉K can
be negative, which makes the problem non-convex. We now furnish a representer theorem which
provides a representation of the solution of problem (4) using the generalized operator-valued kernel
K̆ associated with the Krein space K.

Theorem 3.1 (Representer theorem). Let K̆ be a generalized operator-valued kernel andK(= K1⊕
K2 = {F1 +F2|F1 ∈ K1, F2 ∈ K2}) its corresponding function-valued RKKS. The solution F̃λ ∈ K
of the regularized stabilization problem Θ(F ) = stabilizeF∈K

∑n
i=1 ‖yi − F (xi)‖2Y + λ〈F, F 〉K,

where λ > 0, F (= F1+F2) ∈ K, has the following form: F̃λ(.) =
∑n
i=1 K̆(xi, .)ui, where ui ∈ Y.

Theorem 3.1 can be proved by finding the Gateaux derivative of the optimization function Θ(F )
and equating it to zero. Proof details are given in Appendix E. Using Theorem 3.1, we can cast
optimization problem (4) over Yn as

ũλ = arg stabilize
u∈Yn

n∑
i=1

∥∥∥∥∥∥yi −
n∑
j=1

K̆(xi, xj)uj

∥∥∥∥∥∥
2

Y

+ λ

〈 n∑
i=1

K̆(xi, .)ui,

n∑
j=1

K̆(xj , .)uj

〉
K
,

which can be simplified to the following equivalent problem using the reproducing property of K̆:

ũλ = arg stabilize
u∈Yn

n∑
i=1

∥∥∥∥∥∥yi −
n∑
j=1

K̆(xi, xj)uj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i=1,j=1

〈K̆(xi, xj)ui, uj〉Y . (5)

The optimization problem (5) needs to be solved in order to determine the vectors ui, i = 1, . . . , n,
to learn the function-valued function F using Theorem 3.1. By using the conditions for finding
stationary points of problem (5) (see Appendix F), we obtain

(K̆ + λI)u = y, (6)

where K̆ is a block operator kernel matrix, y is a column vector of output functions corresponding
to inputs xi’s, i = 1, . . . , n. The u computed from Equation (6) consists of a column vector of
operators ui ∈ L(Y) using which the prediction for an unseen example x̂ is obtained as: F (x̂) =∑n
i=1 K̆(xi, x̂)ui. The final operator matrix relation in Eq. (6) closely resembles the one obtained in

(Kadri et al., 2016); however a simple inversion of (K̆ + λI) might no longer possible in Eq. (6). To
tackle this difficulty, we propose in the next section, an iterative algorithm which can be used to solve
Eq. (6).

4 Operator Minimum Residual (OpMINRES) Algorithm to solve (6)

To solve for u in problem (6), we follow Ong et al. (2004) and adapt the minimum residual (MINRES)
algorithm used for solving a system of linear equations (Paige and Saunders, 1975). MINRES is
a Krylov subspace method (see e.g. (Barrett et al., 1994; Choi, 2006) and Appendix G) and is
well-suited for problems of the type given in Eq. (6), since the matrix of operators (K̆ + λI) is
Hermitian (or symmetric), may be indefinite, and more importantly, MINRES would help us in
approximating the problem in an infinite dimensional setting to a problem in Rk for some suitable
k ≥ 1 (as described below). We call the adapted version Operator minimum residual (OpMINRES).
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The norm used in conventional MINRES is the usual vector `2-norm (Paige and Saunders,
1975), however for OpMINRES we need to consider the norm of a vector of functions. Let
v = [v1,v2, . . . ,vn]> ∈ Yn, where Y = L2([0, 1]) is assumed for simplicity; note however
that the norm can be suitably modified for any Y satisfying Assumption 2.1. One possible definition

of norm of v is given by ‖v‖Yn=
√∑n

i=1

∫ 1

0
v2
i (t)dt. Now letting A := (K̆ + λI) in Eq. (6), we

have the equivalent form Au = y and we see that A is a symmetric n×nmatrix of self-adjoint linear
bounded operators on Y(= L2([0, 1])) and u,y ∈ Yn. To solve Au = y, OpMINRES minimizes
the norm ‖y −Au‖Yn , and at each iteration OpMINRES is composed of the following major steps:

1. A scheme for transforming the linear operator system into a linear system in Rk using a
Lanczos-based method (Lanczos, 1950), which we call OpLanczos.

2. Using QR decomposition to solve the linear system obtained in the previous step.
3. A transformation to obtain back the solution in Yn.

We provide a summary of these steps here, relegating all details to Appendix H. OpMINRES attempts
to find a solution in the Krylov subspace obtained at the k-th iteration, denoted by Kk(A,y) =
span{y,Ay,A2y, . . . ,Ak−1y}, using

uk = arg min
x∈Kk(A,y)

‖y −Ax‖Yn . (7)

The OpLanczos method helps to transform problem (7) into a problem in Rk. The OpLanczos method
at the k-th iteration, tridiagonalizes A to get AVk = VkTk, where Tk has a tridiagonal structure and
Vk = [v1 v2 . . . vk], where the vi’s belonging to Yn are orthonormal and v1 is generally assumed to
be y/‖y‖Yn . Further, the relation AVk = Vk+1T k is also satisfied for a suitably defined T k. Using
Vk, x ∈ Yn can be written as x = Vkx. Hence we have:

min
x∈Kk(A,y)

‖y −Ax‖Yn = min
x∈Rk

‖y −AVkx‖Yn = min
x∈Rk

‖y − Vk+T kx‖Yn

= min
x∈Rk

‖Vk+1(β1e1 − T kx)‖Yn ,

(where β1 = ‖y‖Yn , e1 = [1 0 . . . 0]> and v1 = y/‖y‖Yn)

= min
x∈Rk

‖β1e1 − T kx‖2. (‖.‖2 is the standard Euclidean norm.)

Solving for xk = arg minx∈Rk ‖β1e1 − T̄kx‖2 can be done using QR decomposition (Choi, 2006).
Now, the transformation from Rk back to Yn to obtain uk is achieved using by the following:
uk = Vkxk = Vk

(
arg minx∈Rk ‖β1e1 − T̄kx‖2

)
.

5 Bounds on Generalization Error

Let K̆ be a generalized L(Y)-valued kernel on X 2 associated with the function-valued RKKS K.
Let K̆ = K1 − K2, where K1,K2 are non-negative L(Y)-valued kernels. From the discussion
in Appendix B, an associated function-valued RKHS HK can be obtained for the decomposition
K̆ = K1 −K2 with the non-negative L(Y)-valued kernel K = K1 +K2 whose Hilbertian topology
defines the strong topology of the Krein space K. We follow Ong et al. (2004) and consider the
set BK defined as BK =

{
F ∈ K

∣∣‖F1‖21 + ‖F2‖22 = ‖F‖2HK
≤ 1

}
. Consider training data S =

{(xi, yi)}ni=1 ⊂ (X × Y) drawn i.i.d. from an unknown distribution µ. The loss `y : Y → [0,+∞)
is defined for every y ∈ Y and F ∈ K acting on an input x ∈ X as `y(F (x)). The generalization
error (or risk) is defined as R(F ) =

∫
`y(F (x))dµ(x, y). The empirical error of F ∈ BK over the

training set S is given by Re(S, F ) = 1
n

∑n
i=1 `yi(F (xi)). We make the following assumptions.

Assumption 5.1. ∃0 < κ < +∞ such that ∀x ∈ X ,Tr(K(x, x)) < κ.

Assumption 5.2. The loss `y is Lipschitz continuous for every y ∈ Y with a Lipschitz constant
σ > 0.
Assumption 5.3. ∃β > 0 such that ‖y‖Y < β,∀y ∈ Y.

Assumption 5.1 requires the non-negative L(Y) kernel K of the associated RKHS HK to be trace
class. A similar assumption is also used in (Caponnetto and De Vito, 2006).

Define the Rademacher average of BK on a sample (x1, . . . , xn) ∈ Xn to be Rn(BK) =
EµEε supF∈BK

∑n
i=1 εi`yi(F (xi)), where εi’s are independent Rademacher random variables
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uniformly distributed over {+1,−1}. Now from Assumptions 5.1-5.3 and from (Maurer,
2016, Section 4.3), we have the following bound on the Rademacher average: Rn(BK) ≤√

2σβ
√∑n

i=1 Tr(K(xi, xi)). The bound on the Rademacher complexity can now be used in
(Mendelson, 2003, Corollary 3) to obtain the following result: there is an absolute constant C
such that if n ≥ C

ε2 max{R2
n(BK), log 1

δ }, then it holds

Pr{ sup
F∈BK

|Re(S, F )−R(F )| ≥ ε} ≤ δ. (8)

However as noted in (Kadri et al., 2016, Remark 2, page 32), Assumption 5.1 is not always satisfied
for all non-negative operator-valued kernels, in which case establishing a bound on the Rademacher
average becomes difficult.

The stabilization problem (4) in Section 3, inspired from (Ong et al., 2004) helps in deriving the
result in Representer Theorem 3.1. On the other hand, when the stabilizer F̃λ from Eq. (4) belongs to
the ball BK of fixed radius r (defined with r = 1), it enjoys the generalization bounds in Eq. (8). It
is not clear how the stabilizer would behave when it does not belong to BK. Note that adapting the
minimization problem formulation in (Oglic and Gärtner, 2018) would not help here since it leads to
complicated variance constraints involving integrals. Further, using a Gateaux derivative approach
for the constrained or unconstrained minimization problem similar to that in (Oglic and Gärtner,
2018), leads to difficulties in obtaining the Representer Theorem 3.1 in our work. As a consequence
of these facts, we can only resort to an empirical cross-validation approach which we have used in
our experiments to ensure that the stabilizer of problem (4) is not far away from BK.

6 Related Work

Since the pioneering works of Ramsay (1982) and Ramsay and Dalzell (1991) on functional data
analysis (FDA), there have been significant developments in developing FDA techniques (see e.g.
non-parametric FDA (Ferraty and Vieu, 2006) and wavelets based FDA (Morettin et al., 2017)).
Kernels have been extensively used in machine learning for scalar-valued data (Schölkopf et al.,
1999), vector-valued data (Micchelli and Pontil, 2005) and function-valued data (Kadri et al., 2016).
Theoretical study on understanding properties of different types of kernels has also been extensive
(see e.g. (Alpay, 1991, 2001; Carmeli et al., 2006; Caponnetto and De Vito, 2006)). Machine learning
with non-positive kernels and scalar-valued RKKS were first proposed for scalar-valued settings in
(Ong et al., 2004) and efficient algorithms have been developed in (Oglic and Gärtner, 2018, 2019).

In the context of operator-valued kernels, a prior work by (Zhang et al., 2012) investigates the
construction of a positive definite operator-valued kernel Kr called the refinement kernel for a
different but fixed positive definite operator-valued kernel K, particularly used in multi-task learning.
In (Kadri et al., 2012), a finite (positive) linear combination of positive definite operator-valued
kernels has been considered, which leads to another positive definite operator-valued kernel. A similar
approach can also be found in (Audiffren and Kadri, 2013), where online learning is accomplished
using multiple operator-valued kernels.

Among other works on learning using function-valued data, Oliva et al. (2015) approximate function-
valued data using projections onto a custom orthogonal basis (called 3BE). This yields a regression
problem where the basis coefficients associated with input functional data are used to estimate the
basis coefficients of output functional data. A related projection-based approach KPL in (Bouche
et al., 2020) approximates the output space Y by a finite-dimensional Euclidean space Y ⊂ RD,
assumed to be the linear span of a suitable (not necessarily orthogonal) basis. Thus Bouche et al.
(2020) propose to learn the function h : X → Y, by optimizing a suitable regularized functional loss.
Empirical loss minimization in purely functional setup for additive function-on-function regression is
considered in (Reimherr and Sriperumbudur, 2017). A Bayesian approach considered in (Shi and
Choi, 2011), imposes a data-driven Gaussian process prior for estimating a function-valued function.

7 Experiments

We consider the functional regression problem for our experiments. Let X = L2(Ωx), Y = L2(Ωy)
for some suitable Ωx and Ωy. The aim is to learn a function-valued function F : X → Y . However
as noted in Section 1, in practical applications, x(s) ∈ X and y(t) ∈ Y are not available ∀s ∈ Ωx
and ∀t ∈ Ωy. Instead only discrete observations {xp}Pp=1 ⊂ Ωx and {yq}Qq=1 ⊂ Ωy are observed.
However we can approximate these discrete observations as functions using FDA techniques like
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B-splines or Fourier bases, so that the generalized operator-valued framework introduced in the
previous sections can be used. The error metric used for evaluating output functions is residual sum
of squares error (RSSE) defined as RSSE =

∫ ∑
i{yi(t)− ŷi(t)}2dt (Kadri et al., 2016), where yi

is the actual output and ŷi is the predicted output function. We use RSSE since it is suitable for the
functional nature of the outputs in a functional regression problem. Numerical integration techniques
(Hamming, 2012) were used to compute the integrals.

Speech Inversion. We consider the application of speech inversion, where based on input audio
signals, the Vocal Tract (VT) variables (e.g. Lip Aperture (LA), Lip Protrusion (LP), Jaw Angle (JA))
are approximated in order to understand the movements of human body parts which create particular
sounds. Speech inversion finds use in applications like lip reading and speech understanding. We
use the Haskins IEEE Rate Comparison DB dataset available at https://yale.app.box.com/
s/cfn8hj2puveo65fq54rp1ml2mk7moj3h (Tiede et al., 2017). The dataset details are given in
Appendix I. The data was pre-processed to trim the samples to the smallest speech recording (≈1.73
seconds). Recordings where complete data was not available were excluded. The input sounds were
used to create 13 mel cepstral coefficients (MFCCs) acquired each 12 milliseconds with a window
duration of 46 milliseconds. For each input audio sample, the MFCCs are available as 13 vectors
each of size 149. Each output function of Lip Aperture (LA) VT variable is sampled at 174 points.
The functional output data corresponding to LA was constructed using an orthonormal trigonometric
basis of nb elements.

Experimental Setting: All methods were coded in Python 3.6 and the codes are made public1. All
experiments were run on a Linux box with 182 Gigabytes main memory and 28 CPU cores. The
experiments performed used 320 samples for training and 80 samples for testing. For hyperparameter
tuning, we used 3-fold multi-grid cross validation for all the methods. For the encoding of LA
functions, we cross-validated the nb parameter from the set {10, 20, 30, 40, 50} for all methods. The
following methods are considered for comparison.

OpMINRES. We considered the generalized operator-valued kernel in Eq. (3), where we used
the following choices for output kernel h(s, t): e−γ|t−s| (ABS), e−γ(t−s)2 (SQ), e−γ1|t−s| −
e−γ2|t−s| (DIFFABS), e−γ1(t−s)2 − e−γ2(t−s)2 (DIFFSQ), e−γ1|t−s| − e−γ2(t−s)2 (DIFFABSSQ)
and e−γ1(t−s)2 − e−γ2|t−s| (DIFFSQABS). The following choices for the input kernel g(x, z) were
used: e−η‖x−z‖

2

(RBF), e−η1‖x−z‖
2 − e−η2‖x−z‖

2

(DIFFGAUSS) and max(0, 1 − η‖x − z‖2)
(EPAN). λ was chosen from {10−3, 10−2, 0.1, 1, 10, 100}. γ, γ1, γ2, η, η1, η2 were chosen from
{0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1, 2, . . . , 10, 20, . . . , 100}. The
per-iteration complexity for OpMINRES is O(nQ3 + nQ2nb + n3Qnb), where n is number train-
ing samples, Q is the discretization size in each LA output and nb is the cardinality of the basis
considered.

3BE. (Oliva et al., 2015) Here, the encoding was done only for the output functions using a trigono-
metric basis of nb elements and the input MFCCs were considered in their vector form. An RBF
kernel e−η‖x−z‖

2

for inputs was considered and range for η was chosen similar to OpMINRES. The
regularization parameter λ of 3BE was chosen from {10−3, 10−2, 0.1, 1, 10, 100}.
KPL. (Bouche et al., 2020) The dictionary for LA outputs was an orthonormal basis of nb trigono-
metric functions. A separable kernel of the type K(xi, xj) = g(xi, xj)B was chosen where B
is a n × n diagonal matrix with Bii = 1/bn−i. An RBF kernel e−η‖x−z‖

2

for the inputs was
chosen where η was chosen similar to OpMINRES. For matrix B, the value of b was chosen from
{0.1, 1, 10, 20, 50, 100}. Computing the ηk parameter using sample average did not yield good
results, hence we chose ηk = Φ#

(n)y (Bouche et al., 2020). The regularization parameter λ of KPL
was chosen from {10−3, 10−2, 0.1, 1, 10, 100}.
Non-negative Operator-valued kernel approach (NOVK). (Kadri et al., 2016) Note that the resul-
tant matrix operator equation in (Kadri et al., 2016) is similar to Eq. (6). Hence OpMINRES was
used for obtaining the solution. ABS and SQ were used as output kernels. RBF was used as input
kernel. All parameters were cross-validated similar to OpMINRES.

The results given in Table 1 show that OpMINRES for the proposed generalized operator-valued
kernel and function valued RKKS approach attains comparable performance, while allowing for more

1The codes used for experiments can be found at https://github.com/akashsaha06/NeurIPS-2020/
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choices and flexibility in choosing the input and output kernels. In terms of runtime, 3BE was faster
than all methods. The time taken for KPL, OpMINRES for NOVK and OpMINRES for our approach
were comparable. Experiments on other data sets are provided in Appendix I.

Method Input Kernel Output kernel Best Test RSSE

NOVK RBF ABS 5.4031
NOVK RBF SQ 5.4836

3BE RBF – 5.4314
KPL RBF – 5.3566

OpMINRES RBF DIFFABS 5.4897
RBF DIFFSQ 5.5169
RBF DIFFABSSQ 5.4905
RBF DIFFSQABS 5.5167

DIFFGAUSS ABS 5.3956
DIFFGAUSS SQ 5.4007

EPAN ABS 5.3494
EPAN SQ 5.4086

Table 1: Test RSSE Comparison Results

8 Conclusion

In this paper, we have developed theoretical tools useful for generalized operator-valued kernels,
which are not necessarily non-negative, and have discussed results establishing the association
between generalized operator-valued kernel and its associated function-valued reproducing kernel
Krein space (RKKS). We formulated a learning problem and provided a representer theorem, and
analyzed the generalization error bounds. We proposed an iterative operator minimum residual
algorithm for solving an operator matrix equation resulting from the learning problem, which has
been implemented on practical data sets. Experiments show the usefulness of the proposed theoretical
framework, allowing for flexible choices of indefinite kernels in functional regression problems.

Broader Impact

The theoretical tools introduced in the paper for generalized operator-valued kernels and function-
valued Reproducing Kernel Krein Spaces (RKKS) are new and will promote research in investigating
more sophisticated techniques for handling function data and other data with complicated structures.
The proposed methods and algorithms have been applied on a speech inversion problem and accurate
predictions of function-valued outputs in such applications might be useful for improving the current
understanding of the speech generation process in humans. To the best of our knowledge, our work
does not have any negative impact.
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