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Abstract

Reasoning about the physical world requires models that are endowed with the
right inductive biases to learn the underlying dynamics. Recent works im-
prove generalization for predicting trajectories by learning the Hamiltonian or La-
grangian of a system rather than the differential equations directly. While these
methods encode the constraints of the systems using generalized coordinates, we
show that embedding the system into Cartesian coordinates and enforcing the con-
straints explicitly with Lagrange multipliers dramatically simplifies the learning
problem. We introduce a series of challenging chaotic and extended-body sys-
tems, including systems with N-pendulums, spring coupling, magnetic fields,
rigid rotors, and gyroscopes, to push the limits of current approaches. Our ex-
periments show that Cartesian coordinates with explicit constraints lead to a 100x
improvement in accuracy and data efficiency.
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Figure 1: By using Cartesian coordinates with explicit constraints, we simplify the Hamiltonians and La-
grangians that our models learn, resulting in better long term predictions and data-efficiency than Neural ODEs
and Hamiltonian Neural Networks (HNNs). Left: a spinning gyroscope with the ground truth trajectory and
predictions of each model. Predicted trajectories by our model (CHNN) overlaps almost exactly with the
ground truth (black). Middle: Geometric mean of the relative error over 100 timesteps as a function of number
of training trajectories. On the gyroscope system, our model can be 100 times more data efficient or 260 times
more accurate. Right: The Hamiltonian expressed in Cartesian coordinates is simpler and easier to learn than
when expressed in angular coordinates.

1 Introduction

Although the behavior of physical systems can be complex, they can be derived from more abstract
functions that succinctly summarize the underlying physics. For example, the trajectory of a physical
system can be found by solving the system’s differential equation for the state as a function of time.
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Figure 2: A visualization of how abstracting the physical system reduces the complexity that our model must
learn. For systems like the 3-Pendulum, the trajectory is so complex that there is no closed form solution.
Although the dynamics 2 do have a closed form, they require a long description. The Hamiltonian 7 of the
system is simpler, and modeling at this higher level of abstraction reduces the burden of learning. Separating
out the constraints from the learning problem, the Hamiltonian for CHNNS is even more succinct.

For many systems, these differential equations can in turn be derived from even more fundamental
functions known as Hamiltonians and Lagrangians. We visualize this hierarchy of abstraction in
Figure 2. Recent work has shown that we can model physical systems by learning their Hamiltonians
and Lagrangians from data [9, 14, 20]. However, these models still struggle to learn the behavior of
sophisticated constrained systems [2, 3, 7-9, 22]. This raises the question of whether it is possible
to improve model performance by further abstracting out the complexity to make learning easier.

Constraints in physical systems are typically enforced by generalized coordinates, which are
coordinates formed from any set of variables that describe the complete state of the sys-
tem. For example, the 2D 2-pendulum in Figure 3 can be described by two angles rel-
ative to the vertical axis, labelled as ¢ = (qi,¢2), instead of the Cartesian coordinates
x of the masses. By expressing functions in generalized coordinates, we ensure that con-
straints, like the distances from each pendulum mass to its pivot, are always satisfied im-
plicitly. However, if we have a mechanism to explicitly enforce constraints, we can in-
stead use Cartesian coordinates, which more naturally describe our three dimensional world.

In this paper, we show that generalized coordi-
nates make the Hamiltonian and the Lagrangian Implicit constraints in generalized coordinates:
of a system difficult to learn. Instead, we pro- Slal = [ £(g,d, t)dt

pose to separate the dual purposes played by
generalized coordinates into independent enti- Explicit constraints with Euclidean coordinates:
ties: a state represented entirely in Cartesian Sle, N = [ L(z,d,t) — ©(x) TA(t)dt
coordinates x, and a set of constraints ®(z) that o
are enforced explicitly via Lagrange multipli- N
ers A. Our approach simplifies the functional
form of the Hamiltonian and Lagrangian and
allows us to learn complicated behavior more
accurately, as shown in Figure 1.
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Figure 3: A 2D 2-pendulum expressed in terms of gen-
eralized coordinates g and Cartesian coordinates x with
.. explicit constraints ®(z) = 0 for the Lagrangian for-
data. (2) We shpw how to le.arn Haml'ltonl- malism and the constrained Lagrangian formalism. £
ans and Lagrangians in Cartesian coordinates is the Lagrangian, a scalar function that summarizes the

via explicit con.straints u.sing' networks that  eptire behavior of the system, entries of \ are the La-
we term Constrained Hamiltonian Neural Net-  grange multipliers, and S is a functional that is mini-

works (CHNNs) and Constrained Lagrangian mized by the system’s true trajectory.

Neural Networks (CLNNs). (3) We show how

to apply our method to arbitrary rigid extended-

body systems by showing how such systems

can be embedded purely into Cartesian coordinates. (4) We introduce a series of complex phys-



ical systems, including chaotic and 3D extended-body systems, that challenge current approaches
to learning Hamiltonians and Lagrangians. On these systems, our explicitly-constrained CHNNs
and CLNNs are 10 to 100 times more accurate than HNNs [9] and DeLaNs [14], which are
implicitly-constrained models, and more data-efficient. Code for our experiments can be found
at: https://github.com/mfinzi/constrained-hamiltonian-neural-networks.

2 Background on learning dynamical systems

An ordinary differential equation (ODE) is a system of differential equations which can be described
by 2 = f(z,t) where z(t) € RP is the state as a function of time ¢ and # is shorthand for dz/dt. f
is known as the dynamics of the system since it alone specifies how the state changes with respect
to time. A neural network fy can approximate the dynamics f by learning from trajectory data z(t)
[1]. We can make predictions 2(t) by integrating, 2(t) = ODESolve(zo, fy,t), and compute the
gradients of the loss function L(6; z, £) with ordinary backpropagation or the adjoint method [1].

For many physical systems, the differential equations can be derived from one of two scalar func-
tions, a Hamiltonian 7 or a Lagrangian £, depending on the formalism. For example, the differential
equations of a Hamiltonian system can be written as

2= JVH(z),  where J= [—I?)/z I%/Q} . (1)

In this context the state z = (q,p) is a concatenation of the generalized coordinates q¢ € RP /2
and the generalized momenta p € RP/? which parametrize the system’s states on a manifold. The
differential equations of a Lagrangian system can be written in a similar way except that they are
only expressed in terms of ¢ and ¢. Typically, ¢ and p are related by p = M (q)q , a generalization
of momentum from introductory physics, p = md, where M (¢) is the mass matrix.

Recent approaches predict trajectories by learning # or £ instead of f. Greydanus et al. [9] proposed
Hamiltonian Neural Networks (HNNs) which parametrize H with a neural network. Concurrently,
Lutter et al. [14] proposed to learn £ with Deep Lagrangian Networks (DeLaNs), which was used in
robotics applications with additional control inputs. There are two main advantages of this approach:
(1) the network only has to learn a scalar function, £ or H, whose functional form is simpler than the
dynamics f, and (2) integrating the differential equations derived from the learned approximations
Ly or He will result in trajectory predictions that better conserve energy since the true dynamics
governed by £ and H conserve energy. Naively, learning 7 requires training trajectories with states
z = (q, p). However, in real systems, the states are more commonly available in the form z = (g, ¢).
This inconvenience can be addressed for most systems since p = M(q)¢ and we can learn M to
convert between ¢ and p [20].

3 Related work

In addition to the work on learning physical systems above, Chen et al. [2] showed how symplectic
integration and recurrent networks stabilize Hamiltonian learning including on stiff dynamics. Finzi
et al. [7] showed how learned dynamics can be made to conserve invariants such as linear and angular
momentum by imposing symmetries on the learned Hamiltonian. Zhong et al. [21] showed how to
extend HNNS to dissapative systems, and Cranmer et al. [3] with LNNs showed how DeLaNs could
be generalized outside of mechanical systems such as those in special relativity.

Our method relies on explicit constraints to learn Hamiltonians and Lagrangians in Cartesian coor-
dinates. Constrained Hamiltonian mechanics was developed by Dirac [5] for canonical quantization
— see Date [4] for an introduction. The framework for constrained Lagrangians is often used in
physics engines and robotics [6, 17] — see LaValle [10] for an introduction. However, our paper
is the first to propose learning Hamiltonians and Lagrangians with explicit constraints. Our ap-
proach leads to two orders of magnitude improvement in accuracy and sample efficiency over the
state-of-the-art alternatives, especially on chaotic systems and 3D extended-body systems.


https://github.com/mfinzi/constrained-hamiltonian-neural-networks

4 Simplifying function approximation with a change of coordinates

Previous works express the position of a system using generalized coordinates g, which has the
advantage of automatically satisfying constraints, as explained in Section 1. However, the conve-
nience of using generalized coordinates comes at the cost of making  and £ harder to learn. These
complications disappear when we embed the system in the underlying Cartesian coordinates.

We use a simple example to demonstrate how Cartesian coordinates can vastly simplify the functions
that our models must learn. Suppose we have a chain of N pendulums ¢ = 1,..., N with point
masses m; in 2D subject to a downward gravitational acceleration g. Indexing from top to bottom,
pendulum i is connected to pendulum ¢ — 1 by a rigid rod of length ¢;, as shown in Figure 3.

In Cartesian coordinates, the Hamiltonian and Lagrangian are simply

N ¢ T N

P; Pi . m; . 1.

H(z,p) = E [ QZm: +migesx;| and L(z,i) = E {#xjxi — migeq X;|
i=1 i=1

where we used bold to denote the spatial vectors for the position and momentum x; € R? and
pi € R? of mass i respectively. Here x and p are concatenations of x; and p; over i.

We can also describe the system with generalized coordinates which implicitly encode the con-
straints. In this case, let ¢; be the angle of pendulum i relative to the negative y axis and p; the
corresponding generalized momentum. In these coordinates, the Hamiltonian is

N i
1 _
Ha,p) = 50" M(0)'p =g > milicosqy )
=1 k=1
where the mass matrix has a complicated form with entries M(q);; = cos(q; —

q;)0:l; Zg:max(i, ) Mk which we derive in Appendix F.2. The Lagrangian is the same as Equa-
tion 2 except that the first term is replaced by ¢ M (q)q/2 and the second term is negated.

The expression in Cartesian coordinates is linear in the state x and quadratic in p and & with a
constant and diagonal mass matrix with entries M;; = m,;, while the expression in angular coordi-
nates is nonlinear in ¢ and has off diagonal terms in M (q) that vary with time as ¢ varies in time.
Moreover, the easiest way to derive the Hamiltonian and Lagrangian in angular coordinates is by
first writing it down in Cartesian coordinates and then writing z in terms of g. This difference in
functional form is even more drastic in 3-dimensions where the Cartesian expression is identical,
but the Hamiltonian and Lagrangian are substantially more complex. In Appendix F we derive addi-
tional examples showcasing the complexity difference between coordinates that implicitly enforce
constraints and Cartesian coordinates. The constant mass matrix M is in fact a general property of
using Cartesian coordinates for these systems as shown in Section 6. By simplifying the functional
form of H and £, we make it easier for our models to learn.

S Learning under explicit constraints

Although Cartesian coordinates reduce the functional complexity of the Hamiltonian and La-
grangian, they do not encode the constraints of the system. Therefore, we enforce the constraints
explicitly for both Hamiltonian dynamics and Lagrangian dynamics using Lagrange multipliers.

Hamiltonian mechanics with explicit constraints. The dynamics of a Hamiltonian system can be
derived by finding the stationary point of the action functional®

S[2] :/E(z(t))dt: 7/[%z(t)TJz'(t)+’H(z)}dt, 3)

like in Lagrangian mechanics. Enforcing the necessary condition of a stationary point §5 = 0
3 yields the differential equation of the system 2 = JVH from Equation 1, which is shown in
Appendix C.1. We can enforce constraints explicitly by turning this procedure into a constrained
optimization problem via Lagrange multipliers.

2Which is in fact exactly the Lagrangian action of the original system, see Appendix C.1 for more details.
38,5 is the variation of the action with respect to z, using the calculus of variations.



Suppose we have C' holonomic* constraints {®(z); = 0}5_, collected into a vector ®(z) = 0. We
can differentiate the constraints to form an additional C' constraints that depend on the momentum
p, since 0 = & = (D®)i = (DP)V,H where D® is the Jacobian of ® with respect to z. If we
collect ® and ®, we have 0 = ¥(z) = (&, ) € R2C as the set of 2C' constraints that we must
enforce when finding a stationary point of .S. We can enforce these constraints by augmenting the
state z with a vector of time dependent Lagrange multipliers A\(t) € R2¢, giving the augmented
action

Sz, \] = —/ [%ZTJZ—F’H(Z) +W(z) T N)]dt. )

Enforcing 65 = 0 yields the differential equations that describe the state z under explicit constraints
d(x) =0:

i =J[VH(2) + (D¥(z)) " A], 5)
where DV is the Jacobian of ¥ with respect to z. Notice that each row j of DV is the gradient of the

constraint ¥(z); and is orthogonal to the constraint surface defined by ¥(z); = 0. Left multiplying
by (DV) to project the dynamics along these orthogonal directions gives (DW¥)z = d¥/dt = 0

which can then be used to solve for A to obtain A = —[(DW).J(D¥) | ~!(DW)JVH. Defining the

projection matrix P := I — J(D¥)" [(DV)J(D¥)"] 71(D\I/), satisfying P? = P, the constrained
dynamics of Equation 5 can be rewritten as

(2= P(2)IVH(2)) (6)

Equation 6 can be interpreted as a projection of the original dynamics from Equation 1 onto the
constraint surface defined by ¥(x) = 0 in a manner consistent with the Hamiltonian structure.

Lagrangian mechanics with explicit constraints. We can perform a similar derivation for a con-
strained system with the Lagrangian £. Given C holonomic constraints ®(x) = 0, we show in
Appendix C.1 that the constrained system is described by

(2= 317 — a2 0e) T (Do) ()] (D@ + (DB)E]). @)

where D® is the Jacobian of ® with respect to x, M = V;V; L is the mass matrix, and f = f, + f.
is the sum of conservative forces and Coriolis-like forces. >

Learning. To learn # and £, we parametrize them with a neural network and use Equation 6 and
Equation 7 as the dynamics of the system. This approach assumes that we know the constraints
®(x) and can compute their Jacobian matrices. Since mechanical systems in Cartesian coordinates
have separable Hamiltonians and Lagrangian with constant M, our method can parametrize M ~*
with a learned positive semi-definite matrix instead of how it is usually done with a neural network
[2, 14]. . For CHNN, we convert from % to p and back using the learned mass matrix so that the
model can be trained from regular position-velocity data.

6 Embedding 3D motion in Cartesian coordinates

Our goal is to learn in Cartesian coordinates, but how can we actually represent our systems in
Cartesian coordinates? Point masses can be embedded in Cartesian coordinates by using a diagonal
mass matrix, but it is less obvious how to represent extended rigid bodies like a spinning top. Below
we show a general way of embedding rigid-body dynamics in an inertial frame while avoiding all
non-Cartesian generalized coordinates such as Euler angles, quaternions, and axis angles which are
commonly used in physics simulations [6, 19]. Additionally by avoiding quaternions, Euler angles,
and cross products which are specialized to R?, we can use the same code for systems in any R<.

Extended bodies in d-dimensions. In Hamiltonian and Lagrangian mechanics, we may freely use
any set of coordinates that describe the system as long as the constraints are either implicitly or

“Holonomic constraints are equations that give the relationship between position coordinates in the system.

Sfu(x, z) = VzLand fec(x,) = —(ViVaL)z, but fo = 0 in Cartesian coordinates.

5To enforce positive semi-definiteness of M ~*, we parametrize the Cholesky decomposition of the matrix
M. In practice, we use a more specialized parametrization of M that is block diagonal but still fully general
even when we do not know the ground truth Hamiltonian or Lagrangian, shown in Equation 9



explicitly enforced. In fact, at the expense of additional constraints, any non-colinear set of d points
X1, ...,Xgq of arigid body in R? are fixed in the body frame of the object and completely specify the
orientation and center of mass of the object. The rigidity of the object then translates into distance
constraints on these points.

Given an extended object with mass density p that may be rotating and translating in space, coor-
dinates in the body frame y and coordinates in the inertial frame x are related by x = Ry + Xcm,
where R is a rotation matrix and X.,, is the center of mass of the object in the inertial frame. As
shown in Appendix C.2, the kinetic energy can be written in terms of R and %, as

T = m||Xem||?/2 + mTr(RERT) /2, (8)
where 3 = E[yy '] is the covariance matrix of the mass distribution p(y) in the body frame.

Collecting points {yi}f-l:l that are fixed in the body frame, we can solve x; = Ry; + X¢p, for R
to obtain the rotation matrix as a function of x..,,, and {xi}le. We may conveniently choose these
d points to be unit vectors aligned with the principal axes that form the eigenvectors of X written
in the inertial frame. As we show in Appendix C.2, when these principal axes and the center of
mass are collected into a matrix X = [X¢m,X1,...,X4] € R (d+1) e have R = XA where
A = [~1,I5q)7. Plugging in R = X A into Equation 8 and collecting the i, term gives

. . . -\

T=Tr(XMX")/2 where M=m 1+_Z):\i/\l diag(k) ; )
where the A = diag(X) are the eigenvalues of X are collected into a vector A. Furthermore,
M=t = m~ (117 + diag([0,A\;',...,A;'])). Finally, the mass matrix of multiple extended
bodies is block diagonal where each block is of the form in Equation 9 corresponding to one of the
bodies. Our framework can embed bodies of arbitrary dimension into Cartesian coordinates, yield-
ing the primitives Obj0D, Obj1D, Obj2D, Obj3D corresponding to point masses, line masses, planar
masses, and 3d objects.

Rigidity Constraints. To enforce the rigidity of the d 4 1 points that describe one of these extended
bodies we use the distance constraints ®(X);; = [|x; — x;||* — £;; = 0 on each pair. Technically

li;; = 1fori = 0orj = 0and /2 otherwise, although these values are irrelevant. Given an
ObjdD in d ambient dimensions, this translates to (”J{l) internal constraints which are automatically
populated for the body state X € R**(+1),

Joints between extended bodies. For robotics applications we need to encode movable joints be-
tween two extended bodies. Given two bodies A, B with coordinate matrices X 4 X g, we use the
superscripts A, B on vectors to denote the body frame in which a given vector is expressed. A joint
between two extended bodies A and B is specified by point at the pivot that can be written in the
body frame of A at location c” and in the body frame of B at location cZ. Converting back to
the global inertial frame, these points must be the same. This equality implies the linear constraint
B(X4,Xp) = X84 — XpéP = 0 where ¢ = Ac + e. In Appendix C.2, we show how we
incorporate axis restrictions, and how potentials and external forces can be expressed in terms of the
embedded state X .

Simple Links. For the links between point masses (ObjOD) of pendulums, we use the simpler
O(X4,Xp)=|Xa—Xg||* 3 = 0distance constraints on the d dimensional state vectors X 4
and X € R¥*!. Since P from Equation 6 depends only on D®, the gradients of the constraints,
we need not know £ op in order to enforce these constraints, only the connectivity structure.

Summary. To a learn a new system, we must specify a graph that lists the objects (of type Ori-
gin, ObjOD, Obj1D, Obj2D, Obj3D) and any constraint relationships between them (Link, Joint,
Joint+Axis). These constraints are then converted into constraint Jacobians D®, DW, written out in
Appendix D.4 which define the relevant projection matrices. For each body of type ObjND, we ini-
tialize a set of positive learnable parameters m, {\; }7_; which determine a mass matrix M and M ~!
using Equation 9 and therefore the kinetic energy 7". Combined with a neural network parametrizing
the potential V' (X), these form a Hamiltonian H(z) = H (X, P) = Tr(PM~1P")/2 + V(X) or
Lagrangian £(X, X) = Tr(XM X ")/2 — V(X), which could be augmented with additional terms
to handle friction or controls as done in Zhong et al. [21]. Finally, 2 = P(z)JV?H (Equation 6) and
Equation 7 define the constrained Hamiltonian and Lagrangian dynamics that are integrated using a
differentiable ODE solver.



7 Experiments
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Figure 4: Systems with complicated dynamics that we simulate. In order from left to right: The N-pendulum,
the 3-coupled-pendulum, the magnet pendulum, the gyroscope, and the rigid rotor.

Datasets and simulated systems. Previous work has considered relatively simple systems such
as the 1 and 2-pendulum [3, 9], Cartpole, and Acrobot [2]. We extend the number of links and
randomize both masses and joint lengths in the pendulum system to make it more challenging, shown
in Figure 4(a). We also add four new benchmarks that test the ability to learn complicated trajectories
in 3D. Figure 4(b) shows a sequence of 3 pendulums on ball joints that are coupled together with
springs, Figure 4(c) shows a ball joint pendulum with a magnetic tip suspended above two repelling
magnets with a complicated potential coming from the magnetic field, inducing chaotic behavior,
Figure 4(d) shows a spinning top which exhibits both precession and nutation, and Figure 4(e) shows
a free floating rigid rotor with unequal moments of inertia demonstrating the Dzhanibekov effect.
Appendix E describes each system in detail and explains our data generation procedure.

Training details. Following [2, 18, 20] we minimize the error integrated over the trajecto-
ries. For each initial condition (zp,%o) in a training minibatch corresponding to a true trajec-
tory ((zo,t0), (21,%1),---,(2n,tn)), the model predictions are rolled out with the ODE integra-
tor (21, 22, ..., 2n) = ODESolve(zo, fo, (t1,ta,...,tn)) where fy is the learned dynamics. For
each trajectory, we compute the L; loss averaged over each timestep of the trajectory’ L(z,2) =
L5 1 l12i = 2l and compute gradients by differentiating through ODESolve directly. We use
n = 4 timesteps for our training trajectories and average L(z, Z) over a minibatch of size 200. To
ensure a fair comparison, we first tune all models and then train them for 2000 epochs which was
sufficient for all models to converge. For more details on training and settings, see Appendix D.2.

Evaluating performance. We evaluate the relative error between the model predicted trajectory
Z2(t) and the ground truth trajectory z(t) over timescales that are much longer than trajectories used
at training. Our notion of relative error is Err(t) = [|2(t) — 2(t)|l2/ (||Z(¥)||2 + ||2(¢)||2), which
can be seen as a bounded version of the usual notion of relative error ||2(t) — z(t)|]2/]]2(t)]]2-
Err(t) measures error independent of the scale of the data and approaches 1 as predictions become
orthogonal to the ground truth or ||Z|| > ||z||. Since the error in forward prediction compounds
multiplicatively, we summarize the performance over time by the geometric mean of the relative
error over that time interval. The geometric mean of a continuous function i from¢ =0tot =T is

h = exp( foT log h(t)dt/T'), which we compute numerically using the trapezoid rule. We compare
our Constrained Hamiltonian and Lagrangian Neural Networks (CHNNs, CLNNs) against Neural-
ODE:s [1], Hamiltonian Neural Networks (HNNs) [9], and Deep Lagrangian Networks (DeLaNs)
[14] on the systems described above. We also evaluate the models’ abilities to conserve the energy
of each system in Appendix B.1 by plotting the relative error of the trajectories’ energies.

Performance on N-pendulum systems. The dynamics of the N-pendulum system becomes pro-
gressively more complex and chaotic as IV increases. For each model, we show its relative er-
ror over time averaged over the Ny .5, = 100 initial conditions from the test set in Figure 5 with
N =1,2,3,5. Note that each training trajectory within a minibatch for the N-pendulum systems
is only Thninivater, = 0.125 long whereas Figure 5 evaluates the models for 3s. All models perform
progressively worse as N increases, but CHNN and CLNN consistently outperform the competing
methods with an increasing gap in the relative error as N increases and the dynamics become in-
creasingly complex.We present Figure 5 in linear scale in Appendix B, emphasizing that CHNN and
CLNN have lower variance than the other methods.

Figure 6 left shows the quality of predictions on the 2-pendulum over a long time horizon of 15s
with the y coordinate of the second mass for a given initial condition. As the trajectories for N-

"We found that the increased robustness of L1 to outliers was beneficial for systems with complex behavior.
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Figure 5: The relative error in the state for rollouts of the baseline NN, HNN, LNN models compared to CHNN
and CLNN on the Pendulum Chain tasks. Curves are averaged over N¢.s; = 100 initial conditions and shaded
regions are 95% confidence intervals. The vertical axis is log-scaled, meaning that CHNN and CLNN actually
have lower variance than the other models. We show this figure in linear scale in Appendix B.
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Figure 6: Left: The rollout predictions for the y coordinate of the second bob of a 2-pendulum and relative
error over an extended timespan foor CHNN and HNN. Trajectories are faded out several steps after reaching
50% relative error. As the dynamics are chaotic, we also plot a ground truth trajectory that has been perturbed
by ¢ = 1075 showing the natural chaotic growth of error.Right: CHNN and CLNN can achieve the same
performance with significantly less data than the baselines. Curves are averaged over Nics; = 100 initial
conditions and shaded regions are 95% confidence intervals.

pendulum are chaotic for N > 2, small errors amplify exponentially. Even a small perturbation of
the initial conditions integrated forward with the ground truth dynamics leads to noticeable errors
after 15s. Notably, our models produce accurate predictions over longer timespans, generalizing
well beyond the training trajectory length of T;nibatcn, = 0.12 seconds.

Data-efficiency. As shown in Section 4, the analytic form of the Hamiltonian, and the Lagrangian,
are overwhelmingly simpler in Cartesian coordinates. Intuitively, simpler functions are simpler to
learn, which suggests that our explicitly-constrained models should be more data-efficient. Figure 6
right compares the data-efficiency of the models on the chaotic 2-pendulum task. We choose this
system because it has been evaluated on in prior work [3], and it is one that previous models can
still learn effectively on. Our CHNN and CLNN models achieve a lower geometric average error
rate using Ny,qin = 20 trajectories than HNN with Ny,.q;, = 200 trajectories and Neural ODE with
Nirain = 1600 trajectories.

Performance on 3D systems. The pure intrinsic constraint generalized coordinate approach for 3D
systems must rely on spherical coordinates and Euler angles, which suffer from coordinate singu-
larities such as gimbal lock. These coordinate singularities lead to singular mass matrices which
can destabilize training. We had to apply rotated coordinate systems to avoid singularities when
training the baselines models as decribed in Appendix E. In contrast, CHNN and CLNN naturally
circumvent these problems by embedding the system into Cartesian coordinates. As shown in Fig-
ure 7, CHNN and CLNN outperform the competing methods both on the tasks where the complexity
derives primarily from the coordinate system, the Gyroscope and the Rigid rotor, and on the tasks
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Figure 7: The geometric mean of relative error averaged over Ny.s; = 100 initial conditions with 95% con-
fidence interval error bars. Models with explicit constraints outperform competing methods on all systems.
Left: The 2D N-pendulum systems which are chaotic for N > 2. Right: The 3D systems of which the
spring-coupled pendulum and the Magnet-Pendulum are chaotic.

where the complexity comes from the potential: the spring coupling in 3-CoupledPendulum and the
magnetic field in MagnetPendulum.

8 Conclusion

We have demonstrated that Cartesian coordinates combined with explicit constraints make the
Hamiltonians and Lagrangians of physical systems easier to learn, improving the data-efficiency
and trajectory prediction accuracy by two orders of magnitude. We have also shown how to embed
arbitrary extended body systems into purely Cartesian coordinates. As such, our approach is ap-
plicable to rigid body systems where the state is fully observed in a 3D space, such as in robotics.
However, Cartesian coordinates are only possible for systems in physical space, which precludes our
method from simplifying learning in some Hamiltonian systems like the Lotka-Volterra equations.

There are many exciting directions for future work. Our approach is compatible with recent works
that learn dynamical systems with controls [14, 20] and in the presence of dissipative forces [21].
While we develop the method in a continuous time, there are circumstances involving collision,
contacts, and friction where discrete time would be advantageous. Although we used the explicit
constraint framework only for Cartesian coordinates in this paper, they can also enforce additional
constraints in generalized coordinates, allowing us to pick the best coordinate system for the job.
We hope that this approach can inspire handling other kinds of constraints such as gauge constraints
in modeling electromagnetism.Finally, although our method requires the constraints to be known, it
may be possible to model the constraints with neural networks and propagate gradients through the
Jacobian matrices to learn the constraints directly from data.

9 Broader Impacts

Being able to model physical systems accurately has broad applications in robotics, model-based
reinforcement learning, and data-driven control systems. A model that can learn the dynamics of
arbitrary systems would greatly reduce the amount of expert-time needed to design safe and accurate
controllers in a new environment. Although we believe that there are many advantages for using
generic neural networks in robotics and control over traditional expert-in the-loop modeling and
system identification, neural network models are harder to interpret and can lead to surprising and
hard-to-understand failure cases. The adoption of neural network dynamics models in real world
control and robotics systems will come with new challenges and may not be suitable for critical
systems until we better understand their limitations.

Acknowledgements. This research is supported by an Amazon Research Award, Facebook Re-
search, Amazon Machine Learning Research Award, NSF I-DISRE 193471, NIH RO1 DA048764-
01A1, NSF 1IS-1910266, and NSF 1922658 NRT-HDR: FUTURE Foundations, Translation, and
Responsibility for Data Science.



References

[1] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571—
6583, 2018.

[2] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neu-
ral networks. arXiv preprint arXiv:1909.13334, 2019.

[3] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley
Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

[4] Ghanashyam Date. Lectures on constrained systems. arXiv preprint arXiv:1010.2062, 2010.

[5] Paul Adrien Maurice Dirac. Generalized hamiltonian dynamics. Canadian journal of mathe-
matics, 2:129-148, 1950.

[6] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[7] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing con-
volutional neural networks for equivariance to lie groups on arbitrary continuous data. arXiv
preprint arXiv:2002.12880, 2020.

[8] Ayush Garg and Sammed Shantinath Kagi. Neurips 2019 reproduciblity challenge: Hamilto-
nian neural networks. Neurips 2019 Reproducibilty Challenge, 2019.

[9] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
Advances in Neural Information Processing Systems, pages 15353—-15363, 2019.

[10] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[11] Benedict J Leimkuhler and Robert D Skeel. Symplectic numerical integrators in constrained
hamiltonian systems. Journal of Computational Physics, 112(1):117-125, 1994.

[12] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[14] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as
model prior for deep learning. arXiv preprint arXiv:1907.04490, 2019.

[15] David JC MacKay. Bayesian model comparison and backprop nets. In Advances in neural
information processing systems, pages 839-846, 1992.

[16] Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter count-
ing in deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139,
2020.

[17] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

[18] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian
graph networks with ode integrators. arXiv preprint arXiv:1909.12790, 2019.

[19] David E Stewart. Rigid-body dynamics with friction and impact. SIAM review, 42(1):3-39,
2000.

[20] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learn-
ing hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077, 2019.

[21] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative symoden: En-
coding hamiltonian dynamics with dissipation and control into deep learning. arXiv preprint
arXiv:2002.08860, 2020.

[22] Aiqing Zhu, Pengzhan Jin, and Yifa Tang. Deep hamiltonian networks based on symplectic
integrators. arXiv preprint arXiv:2004.13830, 2020.

10



	Introduction
	Background on learning dynamical systems
	Related work
	Simplifying function approximation with a change of coordinates
	Learning under explicit constraints
	Embedding 3D motion in Cartesian coordinates
	Experiments
	Conclusion
	Broader Impacts

