Supplementary Material

Code and data to reproduce results and figures are available from https://github.com/wichmann-lab/er
ror-consistency.

The supplementary material is structured as follows. We start with terminology in Section[S.1] afterwards we
derive bounds of c,,s and kappa in SectionlSiZl (limiting possible consistency), followed by a description of how
we simulated the confidence intervals for cc.;, and kappa under the null hypothesis of independent observers in
Section[S.3] Finally, we provide method details for Brain-Score and the evaluated CNNs in Section[S.5]and
report accuracies across experiments in Table [T]

In addition to method details, we provide extended experimental results in Figure |SE.3|(error consistency of all
PyTorch models for cue conflict and edge stimuli) as well as Figures @IE [SE8](detailed analyses
of CORnet-S vs. ResNet-50). Figures[SF.9] [SF.10]and [SE1T] and [SE12| (investigating the relationship between
Brain-Score metrics and error consistency).

Furthermore, Figure [SF4] visualises qualitative error differences by plotting which stimuli were particularly easy
for humans and CNNs, respectively.

S.1 Terminology: “error consistency”

We would like to briefly clarify the name error consistency. Our analysis helps to compare the consistency of two
decision makers. Two decision makers necessarily show some degree of consistency due to chance agreement.
Error consistency helps to examine whether the two decision makers show significantly more consistency than
expected by chance by analysing behavioural error patterns. However, this analysis takes into account not only
the consistency of errors but also the consistency of correctly answered trials, hence ‘error consistency’ may
sound imprecise at first. Nonetheless, we believe that the term captures the most crucial aspect of this analysis:
Humans and CNNs —which are particularly well suited for our analysis—are often close to ceiling performance
or at least have high accuracies. Thus trials where the decision makers agree do not provide much evidence for
distinguishing between processing strategies. In contrast, the (few) errors of the decision makers are the most
informative trials in this respect: Hence the name error consistency.

S.2  Derivation of bounds for c,;; and kappa given c.,,

How much observed consistency can we expect at most for a given expected consistency? We assume two
independent observers ¢ and j with accuracies p; and p;. For given p;, p; only a certain range of cops is possible:
Cobsmas = L — |Pi = pj| and cobs,,,;,, = [Pj +pi — 1. ©)

Ideally, we also want to express the bounds of c.s directly as a function of cc.p. We obtain the following
bounds:

0 < Cobsr; <1 —/T= 2cemps, if Ceap, <05, @®)
\ QCexpi,j —-1< Cobs; ; <1 ’Lf Cexp; ; > 0.5. (9)

These bounds are visualised in Figure[2]

The derivation is as follows. We distinguish between two cases.

Casel: p; <05&p; <0.50rp; >0.5&p; > 0.5 < ceap; ; > 0.5

The expected consistency then lies in the interval of [0.5, 1], see Figure First we calculate the upper bound
bobsymas EIVEN Ceqp, ;. Please note that a specific ceap, ; can be obtained by multiple combinations of values for
p; and p;. For a given cep, ; We choose p; = p;. We can calculate the exact value of p; in this case with eq.
(1. However since p; = p; we get with eq. (@) that bops,,,, = 1. Thus we directly obtain from eq. (7) that the
upper bound of cops; jis always 1 for all Cexp; ; in the interval [0.5, 1].

It is a bit more challenging to derive the lower bound beps,,,;,, given Cezp, ;. Using equation [ and (1) we
obtain
Cezpi'j +pz -1

b = 1. 10
0bsmin p 2pz -1 ( )
Setting (%";% = 0 to find the minimum results in
1 1 7266217' ; + 2
o=y ——2 11
Pirin 2 \/4 4 ( )
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We only take the positive term in eq. (TI) since p; > 0.5 by definition. Checking the second order derivative
confirms a minimum. Finally using equation eq. (IT) with eq. (I0) we calculate

b"bsmin = \/W, thus (12)
\/W S Cobsiwj S 1. (13)

Case2: p;>05&p; <050rp; <0.5&p; > 0.5 <= Ceap; ; <0.5

The expected consistency then lies in the interval of [0, 0.5[, see Figure This case is point symmetric to the
right part. Thus we obtain for the bounds of the left part

bObSmamz =1- bobsmin(l — cGﬂCPi,j)7 (14)
bobs,min, = 0 and finally (15)

0< Cobs; ; <1l- vV 1- 2Ce:cp,i‘j- (16)

Bounds for kappa If we plug in the bounds of ¢,y s;,; into the equation of kappa, we obtain the following
bounds for kappa:

c 1= /T= 2, — Ceun, .
N& < Kij < 1 - - if ceap, ; < 0.5, a7
- Cezp,;yj - cﬁzpi,j ’
V2Ceap, ;, —1—c
exp;, j TPy ki <1 if Ceap, ; > 0.5. (18)
1 —ceap, ; Y

S.3 Calculating 95% percentiles of observed overlap and kappa for the null hypothesis of
independent observers given an expected consistency

Here we describe the procedure to calculate 95% percentiles of x and cops.

Our null hypothesis is that two decision makers are independent. Assuming independence, we can easily simulate
these two observers. Based on p;, p; (the accuracies of decision makers 7 and j) we sample n trials and calculate
Cewp, ;5 Cobs; 5, andk; ; accordingly based on these simulated values. This process is repeated systematically
for different p; and p;. For this purpose we sample a grid of 4200 x 4200 points in the range [[0, 1], [0, 1]].
For each individual combination of p; and p;, the sampling is repeated five times, thus in total we simulate
4200 x 4200 x 5 = 88,200, 000 values|”|

The grid is not divided equally. 66% of p; and p; are located in the upper and lower 15% of the domain. This is
important because kappa diverges for large values of c.s, (small and large values of p; and p;); thus a dense
sampling is necessary there.

Based on these simulated data we obtain 95% percentiles for c,»s and «. We binned the data in 1% steps and
used the standard quantile-function of R (type 7, see [66]]). It is important to note that we have only a small
number of trials (160 or IZSO)E] Therefore cops can take a maximum number of 161 or 1281 values respectively.
The range of uniquely observed values is very small for a given cesp. This implies that the accuracy of our
percentiles is limited for data points that are very close to the quantiles. However, this does not influence our
findings.

Please note that the denominator of kappa gets very small for high values of cc.p. Thus we see some instability
of kappa towards high expected consistencies. Figure|SE.1|shows diagnostic plots for both cases.

S.4 Disentangling of Error consistency and Accuracy

Our argument for the disentanglement between kappa and accuracy is as follows. For independent observer
no correlation between accuracy and kappa is observed, e.g. In Figure , K and ceqzp | | are not correlated
(r=-0.00015, p > 0.05). As expressed by the bounds in Figure 2] « is limited by accuracy. If two observers have
an accuracy for 90%, only certain levels of (dis-)agreement are possible. Error consistency (measured by x) aims
to correct for accuracy and thus in our experiments different kinds of correlations between error consistency and
overall accuracy occur. We observe zero correlation in (Figures [3p, Bb) and positive correlation in Figure Bf. In
Figure Bl we observe a negative correlation between accuracy and error consistency. We conclude that there is

!4The more values are simulated, the better: we chose the maximum number of samples feasible to simulate
on our hardware within reasonable time.

SPercentiles for a different number of trials can also be computed with the code that we provide.

16Accuracy and cez)p are linked as one can see in ﬁgure
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Figure SF.1: Simulated data of cczp, cops and « for 160 (top) and 1280 (bottom) trials per block. Black
dots show 100.000 randomly drawn blocks from our simulation. Blue lines show analytical bounds.
Red lines show the 95% percentiles. Orange dashed lines show the wrong binomial confidence
interval (left) and the erroneous confidence interval for x (right) reported in many papers.

no correlation between consistency (k) and accuracy for independent observers whilst for dependent (consistent)
observers correlations are possible. Kappa corrects for accuracy but is not independent from it.

S.5 Method details for Brain-Score and CNNs

Human responses were compared against classification decisions of all available CNN models from the PyTorch
model zoo (for torchvision version 0.2.2) [67], namely alexnet, vggll-bn, vggl3-bn, vggl6-bn,
vggl9-bn, squeezenetl-0, squeezenetl-1, densenetl2l, densenetl169, densenet201,

inception-v3, resnetl18, resnet34, resnet50, resnetl01l, resnet152. For the VGG model
family [68], we used the implementation with batch norm. CORnet-S, an additional recurrent model
[46] analysed in Section was obtained from the author’s github implementationm The comparison
to Brain-Score in Figures [SF.9] [SF.10] [SF.11] and [SF.12] uses Brain-Score values obtained from the
Brain-Score website(date of download: April 17, 2020) and error consistency values obtained by us. Note
that the model implementations differ slightly: we consistently used PyTorch models whereas Brain-Score
tested models from a few different frameworks (the full list can be seen here). Namely, squeezenet1-0,
squeezenetl-1, resnetl8, resnet-34 are identical (PyTorch); the VGG models use Keras instead
(without batch norm) and so do the Brain-Score DenseNet models; inception_v3, resnet50_v1,
resnet101_v1l, resnet152_v1 are TFSlim models. Since model implementations usually differ slightly

"https://github.com/dicarlolab/CORnet
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across frameworks, a small variation in the results can be expected depending on the chosen model and
framework.

S.6 Error consistency of shape-biased models

We analyzed three CNNs with different degrees of stylized training data from [[11]. Model shape bias predicts
human-CNN error consistency for cue conflict stimuli, indicating that networks basing their decisions on object
shape (rather than texture) make more human-like errors:

model shape bias (%) | 20.5 | 21.4 | 34.7 | 81.4
human-CNN consistency (k) | .066 | .068 | .098 | .195

observer / model cue conflict edge silhouette

1 subject-01 0.69 0.89 0.80
2 subject-02 0.76 0.94 0.66
3 subject-03 0.84 0.93 0.80
4 subject-04 0.62 0.84 0.78
5 subject-05 0.85 0.89 0.77
6  subject-06 0.82 0.93 0.72
7 subject-07 0.76 0.81 0.76
8  subject-08 0.78 0.96 0.64
9  subject-09 0.86 0.61 0.76
10  subject-10 0.77 0.92 0.85
11  alexnet 0.19 0.29 0.43
12 vggll-bn 0.12 0.14 0.46
13 vggl3-bn 0.12 0.25 0.36
14 vggl6-bn 0.14 0.22 0.47
15 vggl9-bn 0.15 0.28 0.46
16  squeezenetl-0 0.14 0.15 0.24
17  squeezenetl-1 0.17 0.14 0.29
18 densenet121 0.19 0.24 0.42
19 densenet169 0.21 0.33 0.53
20 densenet201 0.21 0.38 0.51
21 inception-v3 0.27 0.28 0.54
22  resnetl8 0.19 0.20 0.47
23 resnet34 0.19 0.16 0.45
24 resnet50 0.18 0.14 0.54
25 resnetl01 0.20 0.24 0.49
26 resnetl52 0.21 0.21 0.56
27  cornet-s 0.18 0.25 0.46

Table 1: Accuracies for human observers and CNNs for all three experiments. In the cue conflict
experiment case, an answer is counted as correct in this table if this answer corresponds to the correct
shape category (other choices are possible).
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Error consistency (k)

Figure SF.2: Values that c.4;, can take depending on p; and p; for two independent observers.
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Figure SE.3: Error consistencs vs. expected error overlap for all PyTorch models.
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(c) Silhouette stimuli

Figure SF.4: “Easy” stimuli for humans and CNNs. For each experiment, the images in the top
row were those that most humans correctly classified. In the bottom row: stimuli that most CNNs
correctly classified. If there were more than five images where humans were very accurate on, we
here selected those where CNNs were the least accurate, and vice versa. ImageNet stimuli are not
visualised due to image permission reasons.
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Figure SE.5: Shape bias of CORnet-S and ResNet-50 in comparison to human observers. Human
observers categorise objects by shape rather than texture [11]], which differentiates them from standard
ImageNet-trained CNNSs like ResNet-50 (categorising predominantly by texture). In this experiment,
CORnet-S again behaves similarly to ResNet-50 but does not show a human-like shape bias as would
be expected for an accurate model of human object recognition. Small bar plots on the right indicate
accuracy (answer corresponds to either correct texture category or correct shape category). This
pattern was also observed by Hermann and Kornblith [69], who performed a detailed investigation of
the factors that influence model shape bias.
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Figure SE.8: Confusion matrices for humans, ResNet-50 and CORnet-S. Different rows correspond to
different experiments. Top row: cue conflict stimuli, second row: edge stimuli, third row: silhouette
stimuli, last row: ImageNet stimuli.

22



Error consistency (k)

Error consistency (k)

Error consistency (k)

00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

00 01 02 03 04 05 06 07

T CNN vs. CNNs: 0.63 £ 0.01

humans vs. humans: 0.33 + 0.02

0.30 0.32 0.34 0.36

Brain—Score: 'average' score

T CNN vs. CNNs: 0.63 £ 0.01

humans vs. humans: 0.33 + 0.02

0.26

Brain—Score: 'V2' score

T CNN vs. CNNs: 0.63 +0.01

7 humans vs. humans: 0.33 + 0.02

3 CNN vs. humans

Brain—Score: 'IT" score

Error consistency (k)

Error consistency (k)

Error consistency (k)

00 01 02 03 04 05 06 0.7

01 02 03 04 05 06 0.7

0.0

00 01 02 03 04 05 06 0.7

CNN vs. CNNs: 0.63 £ 0.01

humans vs. humans: 0.33 + 0.02

Brain—Score: 'V1' score

CNN vs. CNNs: 0.63 £ 0.01

humans vs. humans: 0.33 + 0.02

__________ te§ gl & - g buma

I T T T 1
0.58 0.60 0.62

Brain—Score: 'V4' score

CNN vs. CNNs: 0.63 £ 0.01

humans vs. humans: 0.33 + 0.02

L

I T T T T T T 1
025 030 035 040 045 050 055 0.60

Brain—Score: ‘behaviour' score

Figure SE.9: Error consistency vs. Brain-Score metrics for PyTorch models, “cue conflict” stimuli.
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Figure SF.10: Error consistency vs. Brain-Score metrics for PyTorch models, “edge” stimuli.
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Figure SF.11: Error consistency vs. Brain-Score metrics for PyTorch models, “silhouette” stimuli.
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Figure SF.12: Error consistency vs. Brain-Score metrics for PyTorch models, “ImageNet” stimuli.
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