
We would like to thank the reviewers for their helpful comments. We will revise accordingly in the revision.1

Reviewer 1: (General RKHS) Our KOVI algorithm can be applied for any RKHS in generalized. As shown in the2

discussion below Theorem 4.3, we can set β = O(H
√
logN∞) and obtain a H2

√
logN∞γTT regret, where N∞ is3

the ε∗-covering number of the value function class in Eq. (4.2) in the `∞-norm with ε∗ = H/T and γT is the effective4

dimension of the RKHS. Here β is set in this way to ensure optimism and N∞ appears due to a uniform concentration5

argument. See Lemma C.2. We will revise Lemma C.2 for handling general RKHS in the revision.6

(Eigen-decay conditions) As discussed above, our analysis can be applied to general RKHS. For the general case,7

we only need to bound logN∞ and γT . When the kernel has rank r, logN∞ = Õ(r2) and γT = Õ(r), where Õ(·)8

omits log T terms. Then we obtain a H2
√
r3T regret, which recovers the linear case in Ref [33]. When the kernel has9

polynomial eigen-decay (σj . j−ν , ν > 1), our Lemma D.4 gives an upper bound of γT and our Lemmas D.2 and D.310

can be modified to bound logN∞. It can be shown that NOVI also achieves sublinear regret when ν is sufficiently large.11

(Concrete examples of kernels) The Gaussian RBF kernel on the sphere Sd−1 satisfies Assumption 4.2 for any fixed12

τ ∈ (0, 1). (See {1}). Moreover the NTK induced by sinusoidal activations recovers the Gaussian RBF (See {2}). The13

ReLU NTK satisfy the polynomial eigen-decay condition with ν = 1/d. We will add concrete examples in the revision.14

Reviewer 2: (Computational complexity) The computation complexity of KOVI is dominated by solving HT kernel15

ridge regression (KRR) problems, each with no more than T data points. Thus, the total computation needed is16

Hpoly(T ). Moreover, with sublinear regret, to achieve any fixed accuracy level ε, it suffices to set T = poly(H, 1/ε).17

Thus, the total computation needed to achieve ε accuracy is polynomial in H and 1/ε and is thus efficient. Moreover,18

in the low-rank and exponential eigen-decay cases, the regret is Õ(
√
T ), thus T depends on 1/ε only through ε−2.19

For polynomial decay we can also obtain a sublinear regret, which gives a poly(H, 1/ε) computation complexity. For20

NOVI, it is well-known that gradient descent converges linearly in training overparameterized NN (Refs [2,3,4,23]).21

Since width m is polynomial in T and H , the computation in the neural setting is also poly(H, 1/ε) and thus efficient.22

(Assumption 4.1) (i) We would like to emphasize that the Bellman rank of the MDP model we consider is infinity as23

we consider a infinite-dimensional function class. Our model only fall in the low Bellman-rank framework when the24

RKHS kernel is low-rank. In this case, we recover the result in linear setting (Ref [33]). (ii) Even when restricted to25

the linear case, it seems that [Zanette 2020] did not show that Assumption 4.1 is equivalent to having linear transition.26

Instead, their Proposition 2 prove that when the inherent Bellman error is zero for all linear functions with parameters27

in the unbounded set Rp, the transition is linear. However, we require the Bellman operator maps any bounded function28

with values in [0, H] to a linear function with bounded parameters. [Zanette 2020]’s result does not apply. (iii) Our29

assumption is implicit as it does not assume the transition to have a particular form and only assume Bellman operator30

maps bounded functions to a bounded RKHS ball. (iv) Such an assumption is required because without any structural31

assumption, the regret lower bound is
√
|S||A|H3T , which is infinity when S × A is an uncountable set. To have32

meaningful result, we need to assume the target function T?hf belongs to a function class with bounded capacity (in33

terms of `∞-norm), which is standard in supervised learning. Here we consider the class of infinite-dimensional34

RKHS-norm ball. (v) The complexity of RKHS is determined by its eigenvalues, and is fixed once the RKHS is35

specified. Thus, it seems impossible to “reduce the complexity of kernel space”. We show that the regret bound depends36

on such intrinsic complexity through the covering number N∞ and effective dimension γT , both can be computed using37

the eigenvalues. Moreover, γT is previously used in analyzing the regret of kernel bandit (Refs [16,34,49]) and N∞38

captures the temporal structure of MDP, which also appears in linear MDP (Ref [33]). Our work extends previous work39

on linear setting to the infinite-dimensional kernel and neural settings with a general framework of regret analysis.40

Reviewer 3: (Impact on RL practice) Most of the existing deep RL approaches adopt heuristic exploration strategies.41

NOVI can be readily incorporated into the framework of neural fitted Q-learning (NFQ) in practice, which is the batch42

version of DQN. NOVI proposes to add a bonus term to each NFQ-iteration. When using overparameterized neural43

networks, we have proved that such an exploration scheme solves the deep RL problem with sample efficiency.44

(KOVI v.s. NOVI) The regret of NOVI is worse than that of KOVI by βTH · ι, which is negligible when m is a45

polynomial of T andH . Thus, KOVI and NOVI essentially have the same regret whenm is large. Besides, KOVI solves46

kernel ridge regressions, which requires the closed form of the solution. In contrast, NOVI solves the least-squares47

problems using gradient descent and can be applied to the case where we do not know the form of kernel function K.48

Reviewer 4: (Long horizon setting) We consider the episodic setting where H is fixed. In this case, the regret lower49

bound is
√
H3T (Ref [32]) and our upper bound is

√
H-larger in terms of H . The H2

√
T -upper bound also appear in50

various previous works with (generalized) linear function approximation (Refs [33,58,64,65,66], their T is equal to51

our TH). Moreover, our algorithms can be modified for the infinite-horizon discounted or ergodic settings. In these52

settings, we only need to slightly modify Eq.(3.2) due to having different forms of Bellman equation. With the added53

bonus term, we can similarly establish the optimism principle and sample complexity upper bounds.54

(Assumptions 4.2 and 4.5) The eigen-decay condition captures the intrinsic complexity of RKHS. As discussed in the55

first two points for Reviewer 1, our results can be extended to general RKHS by bounding the the covering number56

N∞ and the effective dimension γT under different eigen-decay conditions. Our assumption of exponential decay is57

common in nonparametric statistics, which leads to an infinite-dimensional RKHS. We will add results for general58

RKHS in revision.59
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