
Paper ID: 2097. Title: A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a1

precise phase transition, and the corresponding double descent.2

We would like to thank the reviewers for their positive support and for their thorough and helpful remarks. The final3

submission of the paper will reflect their suggested revisions. The typographical errors will be fixed, and more details4

will be added to clarify the discussions and the proofs. Before addressing the reviewers’ concerns individually, we5

wish to insist that, built upon previous efforts (e.g., of Mei and Montanari), one of the major objectives of this article6

is to extend the existing double descent analysis to a more practical setting. To this end, we proposed to analyze the7

popular random Fourier feature method, and to work with more generic data models. This allows us to conclude that8

double descent is intrinsic to random feature model and is independent of the underlying data model, as long as our9

mild technical assumptions are met. For the three most confident reviewers we focus on a few clarifying remarks. The10

fourth least confident reviewer had an anomalously-low score, and we focus on using his/her remarks to help clarify our11

main results for ML readers more generally.12

Reviewer #1: We thank the reviewer for the positive support and constructive feedback.13

Reviewer #2: Our result is a natural extension of the analysis of Mei and Montanari (1908.05355) and their results can14

be retrieved by taking data uniformly distributed on the unit sphere (which is a popular example of concentrated random15

vectors in our Assumption 2). By specifying the data and target model, Mei and Montanari reached more explicit results16

and established the double descent test curve. Our results hold for a much broader range of data models, and are thus of17

more practical interest. The proposed analysis, despite depending on the data kernel matrices, is still fully capable of18

characterizing the double descent phenomena and matches real-world experiments. More discussions will be made to19

better distinguish this work from previous efforts.20

Reviewer #3: Assumption 2 does not impose any constraints on the number of training or test data in each class and is21

needed to bound the operator norms of matrices of the type QΣT
X̂
/
√
n and QΣT

XΣX̂/n. While we have the natural22

control ‖QΣT
X/
√
n‖2 ≤ ‖QΣT

XΣXQ/n‖ ≤ λ−1, it is in general not true under Assumption 1 if we replace ΣX by23

ΣX̂. This is needed in both Z1 and Z2 in the proof of Theorem 3 in Appendix D, for instance in the first approximation24

of Z1 to bound the difference when we replace I2 + 1
nUT

i Q−iUi by its expectation (with respect to W). More details25

will be added to the discussions and proofs to clarify more explicitly when and how Assumption 2 is used.26

With respect to the divergent behavior of the test error as λ→ 0, it is indeed due to the two-by-two matrix Ω (instead of27

Q̄) in Theorem 3 that scales like λ−1 as λ→ 0 for 2N = n. This is briefly discussed in Remark 3 and Section 3.3, with28

a proof in Lemma 5 of the appendix. We will state these results more explicitly in the final version of the submission.29

Reviewer #4: We would like to clarify what appear to be several misunderstanding on the part of the review, and these30

constructive comments will be incorporated into the final version of this submission to help clarify the following issues.31

Significance of this work: the theoretical analysis in the large n, p,N regime (with in particular the number of random32

features N not much larger than the sample size n) proposed in this work is, by itself, of considerable practical33

significance. While random feature techniques are proposed to alleviate the computational burden of large kernel34

matrices, and one thus expect to take N < n, our analysis shows in this practical N ∼ n ∼ p regime that there is a35

significant mismatch between results obtained with the popular random Fourier feature and the “expected” Gaussian36

kernel. This is numerically supported by Figure 1 and theoretically explained by our Theorem 1-3. We thus argue that37

the simple substitution of the random Fourier Gram matrix by the Gaussian kernel matrix can be hazardous in most38

random feature-based methods, in the more practical n ∼ N regime.39

Simpler characterization of double descent: as a consequence of the under- to over-parametrization phase transition40

behavior of the resolvent Q̄ discussed in Section 3.2, we observe in Remark 3 that the double descent test curve is a41

direct consequence of this phase transition and more precisely, of the singular behavior of the two-by-two matrix Ω42

(that scales like λ−1 as λ → 0 at 2N = n, with a proof in Lemma 5 of the appendix) in the second term of Ētest in43

Theorem 3. We will state these results more explicitly in the final version of the submission.44

With respect to the empirical results in Section 3, artificial noise is only added to the training data in Figure 5 of Section45

3.3. There, the objective of adding Gaussian noise is to study, in a qualitative manner, the impact of training-and-test46

data similarity on the double descent test curve. More discussions will be added to better clarify this point.47

We agree with the reviewer that, by taking the training loss to be 1
n‖y−ΣTβ‖2+λ‖β‖2 (instead of ‖y−ΣTβ‖2+λ‖β‖248

proposed by the reviewer), with λ > 0 and Σ = σ(WX) the feature of data X, we implicitly choose the scaling of the49

regularization λ. This scaling is chosen here so that the feature Gram matrix and the regularization are set “on even50

ground”, in the sense that with, say, linear activation σ(t) = t we have β = 1
nWX( 1

nXTWTWX + λIn)−1y, so that51
1
nXTWTWX and λIn are both of operator norm of order O(1), with standard Gaussian W under Assumption 1.52

We thank the reviewers again for their time and help in improving our contribution.53


