
6 Supplemental material

6.1 Statistics of retinal wiring

One key goal of this work is to introduce an approach to sparse coding which respects the spatially
localized connectivity present in the early visual pathway (from images projected onto the retina,
to representations in the retinal ganglion cells). In the visual system, each RGC is connected to a
subset of photoreceptors which gather light from a contiguous, roughly circular region of an image
termed its receptive field. It has been shown that the receptive fields of individual RGCs partially
overlap with those of neighboring RGCs. In summary the connectivity of the visual system is sparse
and spatially localized. Our intention is to capture the essence of local wiring in the retina, as such
support of each row of Φ are restricted to a small range. However neither the block/band size nor the
degree of overlap are intended to be a direct fit to levels of localization and overlap in the biological
retina. Instead we focus on characterizing a range of levels of localization to better understand the
theoretical and empirical implications of this approach.

The properties of the retina are highly non-uniform in space, with a central fovea containing a high
density of cones (∼ 50kcells/mm2) and an outer periphery of relatively higher density of rods
(at peak, ∼ 150kcells/mm2) [18, 42]. The density of RGCs peaks at an intermediate distance
(∼ 30kcells/mm2) and decreases further out [17, 44]. From this, we can infer that the ratio of
photoreceptors to RGCs varies between close to 2:1 or 1:1 near the fovea, up to 100s of rods:1 RGC
in the periphery. Including the pooling of photoreceptors introduced by horizontal and amacrine cells
each RGC may pool up anywhere from 1 to 1000 nearby photoreceptors [19] depending on cell-type
and location in the retina. In summary, retinal anatomy generally shows a spatially localized pooling
of inputs from photoreceptors to neural representation at the level of RGCs.

6.2 Spatially-localized image pre-processing

As part of the sparse coding approach we transform a 2D image into a 1D vector x. In order to
emulate the local connectivity constraints of the retina, we would like neighboring pixels in 2D
image-space to map to neighboring pixels in 1D vector-space. To accomplish this we borrow the
Hilbert curve (figure 5), because of its simple construction and locality-preserving property. This step
involves generating a space-filling curve which traces a path through the pixels of the image, then
assigning indices in the 1D vector according to their position along the curve [37].

It has been shown that using Hilbert curves, nearby indices in 1D dimension are mapped to nearby
pixels in 2D. While the converse is not always guaranteed (that neighboring pixels in 2D must map to
neighboring elements of their 1D vector) it has been shown that the Hilbert curve approach maintains
locality better than several alternatives [48]. As such, it has been applied to various applications
from image compression [69, 43] to storing geographic coordinates in contiguous segments of a 1D
memory address register [54].

Because the vector x uses a spatially contiguous representation of the image, and because of the
local structure present in the compression matrix Φ, local regions of image space also correspond to
localized segments of y. This is further illustrated in figure 6 where we show smoothly varying 2D
images map to qualitatively smooth 1D vectors.

6.3 Proof of Theorem 1

Draw a random matrix according to the construction specified in section 3.2 and fix it. Under the
conditions of the theorem, we first establish that for either random matrix construction, the combined
matrix ΦΨ satisfies a Restricted Isometry Property (RIP)

(1− δ)||a||22 ≤ ||ΦΨa||22 ≤ (1 + δ)||a||22 (6)

for all a that are 2k-sparse (i.e., ‖a‖0 ≤ 2k) with 0 ≤ δ < 1.

First we consider BDM matrices. Theorem 1 in [23] establishes that BDM matrices satisfy the
RIP with isometry constant 0 < δ < 1 for M ≥ Ck log2 k log2N with C that depends on δ and
with probability greater than O(1 − N− logN log2 k). Note that Theorem 1 in [23] depends on the
incoherence of the sparsity dictionary with the canonical basis (denoted µ̃ in Theorem 1 of [23]),
which is established as µ̃ = 1 for the Fourier basis in [23]. We also observe that this result is
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Figure 5: Procedure for preserving locality in models of sparse coding with wiring constraints. While
images are represented as values in 2D space, the sparse coding approach presented here operates
on 1D vectors. In order to map pixel locations to vector indices, a Hilbert curve is drawn through
the image. Positions along the curve correspond to indices in the vector which can be thought
of as unwrapping the curve into a line. By combining this unwrapping with compressed sensing
matrices, representations in this method maintain locality from 2D image space, to the compressed
representation.

modifiable in a straightforward way for other sparsity bases with known incoherence. Finally, we
also note that the failure probably goes to zero as N →∞.

Next we consider BRM martices, with the same discarding of edge effects in the BRM matrix as
done in [13]. Theorem 2 in [13] establishes that BRM matrices satisfy the RIP with isometry constant
0 < δ < 1 for M ≥ Ck (log(N/k) + 1) with C that depends on δ and with probability greater than
1− 2e−CMδ2 . Examining these conditions, we see that

k (log(N/k) + 1) = k (log(N)− log(k) + 1)

< τk (log2(N)) < τ̃k
(
log2(N) log2(k)

)
,

where the second line follows as long as k > 1, with τ and τ̃ constants due to a change of log base.
The final quantity establishes that the conditions of the present theorem ensure that the conditions of
Theorem 2 in [13] hold. While we have presented one unified result for both matrix types, note that
this result is not tight for the BRM matrices and a much more aggressive compression (i.e., lower M )
is permissible, but at the expense of generality to other type of sparsity bases. Finally, we also note
that the failure probably goes to zero as M →∞, which is necessary as N →∞.

When RIP holds, for any pair of k-sparse vectors a1 and a2, ΦΨ(a1 − a2) = 0 implies that a1 = a2.
This can be restated as

ΦΨa1 = ΦΨa2 =⇒ a1 = a2,

which is known as the spark condition that characterizes the linear dependence structure of the
columns of ΦΨ. Given the spark condition satisfied for ΦΨ, Corollary 2 in [32] establishes that with
probability one, for D = (k + 1)

(
N
k

)
datapoints drawn randomly (i.e., uniformly choose the support

set of nonzeros in a followed by choosing coefficient values uniformly from (0, 1]), any k-sparse
encoding of the dataset is equivalent up to an arbitrary permutation and scaling of the columns of ΦΨ
and coefficients bi. �
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Figure 6: Illustration of preserved image features after unwrapping. (a) smoothly-varying pixel
values for a 16x16 image (b) The Hilbert curve method involves assigning an order to pixels based
on the curve’s path shown in black. (c) Using the curve’s ordering, pixels in 2D space are arranged
or unraveled into a 256x1 vector. Pixel values are seen to relate to their spatial neighbors in a
smoothly-varying fashion qualitatively similar to the original 2D image. (d) An alternative approach
would be to simply stack the columns to reshape the image. The equivalent path through 2D space is
again visualized in black. (e) As a result of the discontinuities between columns, the image flattened
with this approach exhibits periodic jumps in pixel intensity not present in the original 2D image.

6.4 Result of changing compression

Additional tests were run to determine the effect of the compression ratio on the generalization error.
This error was computed with the sparse coding objective in the data space (as in (1)), with patches
not used in training. With a constant localization L = 1/4 for the BDM and BRM matrices, we tested
compression ratios of 1/2, 3/8, and 1/4. The results can be seen in Figure 7, where we see a small
increase in generalization error with more compression. Note that as the compression ratio increases,
the measurement function has fewer parameters to support gathering information for learning and
more of the training data is discarded. It can also be seen that the generalization error is only slightly
higher for localized matrices at each compression ratio.

6.5 Gabor feature quantification

To understand the characteristics of receptive fields estimated through our technique, we quantified
width, height, asymmetry and eccentricity of the receptive fields (see experimental results, figure 4).
Figure 8 compares the two dimensional distribution of asymmetry and eccentricity between receptive
fields learned through the methods presented here, to those fit to neural visual system data. The
distributions cover a similar range across methods.

In figure 9 we show the one-dimensional distribution of each of these features and compare across
methods. Width and height occupy a similar range across all conditions except the macaque neural
data which has larger Gabor envelopes.

In testing for significant differences in Gabor features across methods, we performed a multiple
comparisons test. This extends the Kruskal-Wallis analysis shown in the main text, for which the null
hypothesis is that all groups of data come from the same underlying distribution. From this analysis,
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Figure 7: Coding performance of learned representations with varying degrees of compression and
localization held constant to L = 1/4. Tested on 20, 000 validation patches not used in training.

Figure 8: Comparing receptive field asymmetry and eccentricity between learned models and macaque
V1 measurements [61]. Asymmetry is calculated from the normalized difference in intensity above
and below the midline of the wavelet. Eccentricity is measured as abs(log10(H/W )). Distribution
centroids are marked with triangles for dictionary learning and squares for centroid of V1 neural data.
Learning in the compressed space results in receptive field shapes which are qualitatively similar to
observed neural data, even for high degrees of localization (L=1/16).

we have evidence to reject the null hypothesis at a significance level α = 0.05 with P = 3.6 ∗ 10−6.
In this multiple comparisons test, we look at pairs of groups (i.e. uncompressed versus BRM) and
calculate P-values shown in table 1. For these tests, the null hypothesis is that data from the two
groups comes from the same distribution. As such, these P-values represent an upper bound on the
probability of falsely identifying significant differences between groups [34].

dense BDM BRM neural
uncompressed 0.298 0.226 0.040 9.11e-06

dense 0.999 0.906 0.025
BDM " 0.951 0.038
BRM " " 0.221

Table 1: P-values from comparing asymmetry across pairs of conditions through Kruskal-Wallis
analysis of variance. BDM, BRM are shown for localization L = 1/16. P-values less than a
significance level of α = 0.05 are highlighted in bold. The null hypothesis that the medians of all
groups are equal can be rejected with P = 3.6 ∗ 10−6

17



Figure 9: Comparing 1D distribution of receptive field characteristics between learned models and
macaque V1 measurements [61]. Box plots shows distributions of Gabor features across conditions.
Median, 25th, and 75th percentile shown as box boundaries. BDM, BRM are shown for localization
L = 1/16
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