A Proof of Theorem 1

Recall that under maximum entropy RL, the Q-function is defined as QT (o, ao) = Ex[ro +
oo (re + ¢H™ (24))] where H*(z;) is the entropy of the distribution 7 (- | ;). The Bellman
equation for Q-function is naturally

Q" (0, a0) = Ex[ro +vcH™ (1) +7Q" (21, a1)].
Let the optimal policy be 7. The relationship between the optimal policy and its Q-function
is Tl'em(a |) o exp(egl"‘(x a)/c). We seek to establish Qeg“‘(:co,ao) > E,[ro + yeH! (z1) +
iy V(e M (041)) + 7T Q@ ar)] for any policy i,

We prove the results using induction. For the base case T' = 1,

61%“ ($07 a‘O) ETF* [TO + ’YCHﬂ-em* (1'1) + fYQeI:m(xla al)]

ent

= Eq, mp(-fzosa0) [0 + YEH™ (1) + VErz [Qet (21, a1)]]
>]Emy\/p('\a?o,ao) [TO + ’YCHH(‘Tl) + VE/L[Q;;M(IM al)]]
> By mp(-20,a0) [T0 + YEH! (21) + VEL QT (21, 01)]]-
(10)

In the above, to make the derivations clear, we single out the reward r(and state 21 ~ p(- | zo, ag),
note that the distributions of these two quantities do not depend on the policy. The first inequality
follows from the fact that 7}, (- | z) = argmax,[cH"(z) + Eqor(.|s)Qent (x,a)]. The second

inequality follows from Qe;m (z,a) > QT (z,a) for any policy .
With the base case in place, assume that the result holds for 7" < k — 1. Consider the case T' = k
T—1
E,[ro + ycH" (1) + Z Y (re + cHM (24041)) + 4 QL (z7, ar)]

=1
<E [7”0 +ycH! (1) + VE,| eﬁ{“(xlv al)u

< Qelim (l’o, ao)a

When 7 = p we have the special case E,,[> 7%, vir:] < V™ (z), the lower bound which motivated
the original lower-bound Q-learning based self-imitation learning [8].

B Proof of Theorem 2

For notational simplicity, let2/ == (7#)"~'T7™ andlet UQ(z, a) = Q(z,a)+[UQ(x,a)—Q(z,a)] .
As a result, we could write 7% = (1 — B)T™ + (1 — a) 8U + a8U.

nsil T
First, we prove the contraction properties of 773’:1’5“. Note that by construction |Z/~{Q1(m, a) —
UQa(x, a)| < max(|Q1(z,a) — QQ(x a)l, IUQl(x a) — UQz(waa)I) < || @ — Q2 || oo Then
through the triangle inequality, || 7,7 50, — Tosi 50, oo < A=) 1T Q1—T"Q2 || oo+ (1—

@)B | UQL~UQ: || o+ [|UQ1 ~UQ: || o < [(1=B)y+(1-a)B+afy"] | Q1 —Q2 || .
This proves the upper bound on the contractlon rates of 7’ 5116 Letn(a,B)=(1-B8)v+ (1 —a)f+

afBy™ and set n(a, B) < 7,

Next, we show properties of the fixed point Q. This point uniquely exists because I'(n‘i;lﬁ) <1
if (1 —a)B < 1. From 7;?;;?@‘1’5 = Q™”, we could derive by rearranging terms (1 — 3)(77Q —
Q) aﬁ(UQ Q) (1 — a)B(Z;{Q Q) < 0. This further implies that 77Q < Q. Now let
T = 1 B+aﬁ Tm+ — 5 + BZ/{ This simplifies to TQ Q < 0. By the monotonicity of 7, we see

Qtr+(1—tiu"lr > limg_, (T)¥Q = Q™ where t =

—B
1- B+a5

For the another set of inequalities, define HQ = (1 — 8)T* + (1 — a)BUQ + aB(T*)", where
recall that 7 is the optimality Bellman operator.

13

First, note H has Q™ as its unique fixed point. To see why, let Qbea generic fixed point of H such
that HQ = Q. By rearranging terms, it follows that (1 — 8)(7*Q — Q) + aB((T*)"Q — Q) =
—(1 = a)BUQ — Q) < 0. However, by construction (7*)'Q > Q,Vi > 1,¥Q. This implies that
(1-B)(T*Q— Q) +aB(T*)"Q—Q) > 0. Asaresult, (1 B)(T*Q— Q) +aB(T*)"Q—Q) = 0
and Q is a fixed point of ¢7* + (1 — ¢)(7*)™. Since tT* + (1 — t)(T*)™ is strictly contractive as
LT+ (1 =) (T*)™) <ty+ (1 —t)y™ <~ < 1,its fixed point is unique. It is straightforward to
deduce that Q™ is a fixed point of t7* + (1 — ¢)(7*)"™ and we conclude that the only possible fixed
point of HisQ=Q" . Finally, recall that by construction HQ > Q. VQ. By monotonicity, Q7 =
limy o0 (H)*Q%# > Q. In conclusion, we have shown QI T(1=D1" " < Qo8 < Q7"

C Additional theoretical results

Theorem 3. Let ©* be the optimal policy and V™ its value function under standard RL formulation.
Given a partial trajectory (z, at)}_,, the following inequality holds for any n,

n—1

V™ (20) > Bu[Y 4+ "V ()] (11)
t=0

Proof. Let 7, be any policy and 7* the optimal policy. We seek to show V™ (z9) >
E, [ZtT;ol vty + TV ™ (27)] forany T > 1.

We prove the results using induction. For the base case T = 1, V™ (z0) = E+[Q™ (20, a0)] >
E.[Q™ (z0,a0)] = Eu[ro + V™ (21)] > E,[ro + vV 7 (1)), where the first inequality comes
from the fact that 7*(- | z) = arg max, Q™ (z¢,a). Now assume that the statement holds for any
T <k — 1, we proceed to the case T' = k.

—1 k—2
Eu[Y_v're + 7V (@) = Eulro +9Eu[3_ 4're + 447V ()]
=0 t=0

<Eulro +9V™ (21)] < V™ (20),

where the first inequality comes from the induction hypothesis and the second inequality fol-
lows naturally from the base case. This implies that n-step quantities of the form V™ (o) >

E, [Z;:Ol ytry + 4"V 7 (1) are lower bounds of the optimal value function V™ (1) for any
n > 1.

D Experiment details

Implementation details. The algorithmic baselines for deterministic actor-critic (TD3 and DDPG)
are based on OpenAl Spinning Up https://github.com/openai/spinningup [51]. The base-
lines for stochastic actor-critic is based on PPO [18] and SIL+PPO [8] are based on the author code base
https://github.com/junhyukoh/self-imitation-learning. Throughout the experiments,
all optimizations are carried out via Adam optimizer [52].

Architecture. Deterministic actor-critic baselines, including TD3 and DDPG share the same network
architecture following [51]. The Q-function network Qg(x,a) and policy 74(x) are both 2-layer
neural network with 4 = 300 hidden units per layer, before the output layer. Hidden layers are
interleaved with relu(x) activation functions. For the policy 74 (x), the output is stacked with a
tanh(x) function to ensure that the output action is in [—1,1]. All baselines are run with default
hyper-parameters from the code base.

Stochastic actor-critic baselines (e.g. PPO) implement value function V4 (z) and policy 74 (a | x)
both as 2-layer neural network with h = 64 hidden units per layer and tanh activation. The stochastic
policy ms(a | z) is a Gaussian a ~ N (ue(x), 0%) with state-dependent mean p4(x) and a global
variance parameter o2, Other missing hyper-parameters take default values from the code base.

14

https://github.com/openai/spinningup
https://github.com/junhyukoh/self-imitation-learning

Table 1: Summary of the performance of algorithmic variants across benchmark tasks. We use
uncorrected to denote prioritized sampling without IS corrections. Return-based SIL is represented
as SIL with n = co. For each task, algorithmic variants with top performance are highlighted (two
are highlighted if they are not statistically significantly different). Each entry shows mean =+ std
performance.

SILn =5 SILn =1

Tasks SILn =5 (uncor- (uncor- 5-step 1-step SIL n = 00

rected) rected)

DMWALKERRUN 642+ 107 675+15 500 £ 138 246 £ 49 274 £+ 100 320 £ 111
DMWALKERSTAND 979 + 2 947 + 18 899 + 55 749 £ 150 487 £ 177 748 4+ 143
DMWALKERWALK 731 £ 151 622 £+ 197 601 £ 108 925 + 10 793 £ 121 398 £ 203
DMCHEETAHRUN 830 + 36 597 4+ 64 702 £ 72 553 4 92 643 + 83 655 4+ 59

ANT 4123 + 364 3059 +£360 3166+ 390 1058 +281 3968 +£401 3787 +411
HALFCHEETAH 8246 £ 784 9976 £252 10417 £3646178+151 10100 £ 481 8389 £ 386
ANT(B) 2954 £ 54 1690 £564 1851 £416 2920+84 1866 £623 1884 +631

HALFCHEETAH(B) 2619 £129 2521 +128 2420+ 109 1454+338 2544 +£31 2014+ 378

D.1 Further implementation and hyper-parameter details

Generalized SIL for deterministic actor-critic. We adopt TD3 [27] as the baseline for determin-
istic actor-critic. TD3 maintains a Q-function network Qg (z, a) and a deterministic policy network
mg(z) with parameter §. The SIL subroutines adopt a prioritized experience replay buffer: the
return-based SIL samples tuples according to the priority [R¥(z, a) — Q¢(x, a)]+ and minimizes the
loss function [R¥(z, a) — Qg (x, a)]+; the generalized SIL samples tuples according to the priority
[L™*™(z,a) — Qp(z,a)]+ and minimizes the loss function [L™*™(z,a) — Qo (x, a)]+. The experi-
ence replay adopts the parameter « = 0.6, 5 = 0.1 [53]. Throughout the experiments, TD3-based
algorithms all employ o = 1073 for the network updates.

To calculate the update target L™ (xq, ag) = leol Vire+ Qo (T, mor (1)) with partial trajectory
(2, ag, r4)} along with the target value network Qg (z, a) and policy network 7y (z). The target
network is slowly updated as 8’ = 76’ + (1 — 7)0 where 7 = 0.995 [14].

Generalized SIL for stochastic actor-critic. We adopt PPO [18] as the baseline algorithm and im-
plement modifications on top of the SIL author code base https://github.com/junhyukoh/
self-imitation-learning as well as the original baseline code https://github.com/
openai/baselines [54]. All PPO variants use the default learning rate « = 3 - 10~* for both
actor mg(a | =) and critic V(). The SIL subroutines are implemented as a prioritized replay with
a = 0.6, 5 = 0.1. For other details of SIL in PPO, please refer to the SIL paper [8].

The only difference between generalized SIL and SIL lies in the implementation of the prioritized
replay. SIL samples tuples according to the priority [R*(x, a) — Vy(z)]+ and minimize the SIL loss
function ([R*(x,a) — Vp(z)]+)? for the value function, and — log 7y (a | x)[R*(x, a) — Vi (z)]+ for
the policy. Generalized SIL samples tuples according to the priority ([L™*"(z,a) — Vy(x)]+)?, and
minimize the loss ([L™*"(x,a) — Vp(z)]1)? and —log mg(a | x)[L™*" (X, a) — Vy(x)]y for the
value function/policy respectively.

To calculate the update target L™ (zg,aq) = ?;01 yiry + Vor(x,) with partial trajectory
(x4, as, r1)} along with the target value network Vp:(x). We apply the target network technique
to stabilizie the update, where 6’ is a delayed version of the major network 6 and is updated as
0 =710+ (1 — 7)0 where 7 = 0.995.

D.2 Additional experiment results

Comparison across related baselines. We make clear the comparison between related baselines
in Table 1. We present results for n-step TD3 with n € {1,5}; TD3 with generalized SIL with
n = 5 and its variants with different setups for prioritized sampling; TD3 with return-based SIL
(n = o0). We show the results across all 8 tasks - in each entry of Table 1 we show the mean =+ std
of performance averaged over 3 seeds. The performance of each algorithmic variant is the average
testing performance of the last 10* training steps (from a total of 10° training steps). The best

15

https://github.com/junhyukoh/self-imitation-learning
https://github.com/junhyukoh/self-imitation-learning
https://github.com/openai/baselines
https://github.com/openai/baselines

Table 2: Comparison between different replay schemes. For each task, algorithmic variants with top
performance are highlighted (two are highlighted if they are not statistically significantly different).
Each entry shows mean = std performance.

SILn = 5 SILn = 5
Tasks SILn =5 (uncorrected) (no priority)
DMWALKERRUN 642 + 107 675+ 15 424 + 127
DMWALKERSTAND 979 + 2 947 £ 18 634 + 184
DMWALKERWALK 731+ 151 622 + 197 766 +103
DMCHEETAHRUN 830 + 36 597 + 64 505 + 182
ANT 4123 + 364 3059 + 360 4358 + 496
HALFCHEETAH 8246 + 784 9976 + 252 8927 + 596
ANT(B) 2954 + 54 1690 £ 564 2910 + 88
HALFCHEETAH(B) 2619 + 129 2521 +128 2284 + 85
(a) DMWalkerRun (b) DMWalkerStand (c) Ant (d) HalfCheetah

Figure 4: Standard evaluations on 4 simulation tasks for DDPG baselines. Different colors represent different
algorithmic variants. Each curve shows the mean =+ 0.5std of evaluation performance during training, averaged
across 3 random seeds. The x-axis shows the time steps and the y-axis shows the cumulative returns.

algorithmic variant is highlighted in bold. We see that in general generalized SIL with n = 5 performs
the best.

Ablation on the prioritized sampling. In prioritized sampling [53], when the tuples d =
(@i, a4,7;)} € D are sampled with priorities s4, it is sampled with probability p(d) o s§. During
updates, the IS correction consists in optimizing the loss E;[wgl4] where [, is the loss computed
from tuple d and the IS correction weight wq = (N - pg) ~? where N is the number of tuples in the
buffer D.

We compare several prioritized sampling variants of generalized SIL in Table 2. There are three
variants: SIL n = 5 with both prioritized sampling (o« = 0.6) and IS correction (3 = 0.1); SILn =5
with prioritized sampling (&« = 0.6) only and without IS correction (6 = 0.0); SIL n = 5 with no
prioritized sampling (o« = 8 = 0.0). The performance setup in Table 2 is the same as in Table 1. It
can be seen from Table 2 that generalized SIL performs the best with full prioritized sampling.

Results on DDPG. DDPG is a baseline actor-critic algorithm with a deterministic actor [15]. Com-
pared to TD3, DDPG does not adopt a double-critic approach [27] and suffers from over-estimation
bias of the Q-function [30].

We present the baseline evaluation result of DDPG in Figure 4, where we show the results for a few
variants: DDPG with n-step update, n € {1,5}; DDPG with generalized SIL n = 5 and DDPG with
return-based SIL (n = oco). We see that the performance gains of DDPG with generalized SIL n = 5
are not as significant - indeed, overall DDPG with n = 5 has the best performance. We speculate that
this is partly due to the over-estimation bias of DDPG: the formulation of generalized SIL is motivated
by shifting the fixed point Q™ with an positive bias. The baseline algorithm benefits the most from
generalized SIL when indeed in practice QQy ~ Q™. However, this is not the case for DDPG as the
algorithm already has high positive bias in that Q¢ > Q™, which reduces the potential gains that
come from generalized SIL.

16

	Proof of Theorem 1
	Proof of Theorem 2
	Additional theoretical results
	Experiment details
	Further implementation and hyper-parameter details
	Additional experiment results

