A Proof of Theorem 1 Recall that under maximum entropy RL, the Q-function is defined as $Q_{\text{ent}}^{\pi}(x_0, a_0) \coloneqq \mathbb{E}_{\pi}[r_0 + \sum_{t=1}^{\infty} \gamma^t(r_t + c\mathcal{H}^{\pi}(x_t))]$ where $\mathcal{H}^{\mu}(x_t)$ is the entropy of the distribution $\pi^{\mu}(\cdot \mid x_t)$. The Bellman equation for Q-function is naturally $$Q^{\pi}(x_0, a_0) = \mathbb{E}_{\pi}[r_0 + \gamma c \mathcal{H}^{\pi}(x_1) + \gamma Q^{\pi}(x_1, a_1)].$$ Let the optimal policy be π_{ent}^* . The relationship between the optimal policy and its Q-function is $\pi_{\text{ent}}^*(a \mid x) \propto \exp(Q_{\text{ent}}^{\pi_{\text{ent}}^*}(x,a)/c)$. We seek to establish $Q_{\text{ent}}^{\pi_{\text{ent}}^*}(x_0,a_0) \geq \mathbb{E}_{\mu}[r_0 + \gamma c \mathcal{H}^{\mu}(x_1) + \sum_{t=1}^{T-1} \gamma^t (r_t + c \mathcal{H}^{\mu}(x_{t+1})) + \gamma^T Q_{\text{ent}}^{\pi}(x_T,a_T)]$ for any policy μ,π . We prove the results using induction. For the base case T=1, $$Q_{\text{ent}}^{\pi_{\text{ent}}^{*}}(x_{0}, a_{0}) = \mathbb{E}_{\pi_{\text{ent}}^{*}}[r_{0} + \gamma c \mathcal{H}^{\pi_{\text{ent}}^{*}}(x_{1}) + \gamma Q_{\text{ent}}^{\pi_{\text{ent}}^{*}}(x_{1}, a_{1})]$$ $$= \mathbb{E}_{x_{1} \sim p(\cdot | x_{0}, a_{0})}[r_{0} + \gamma c \mathcal{H}^{\pi_{\text{ent}}^{*}}(x_{1}) + \gamma \mathbb{E}_{\pi_{\text{ent}}^{*}}[Q_{\text{ent}}^{\pi_{\text{ent}}^{*}}(x_{1}, a_{1})]]$$ $$\geq \mathbb{E}_{x_{1} \sim p(\cdot | x_{0}, a_{0})}[r_{0} + \gamma c \mathcal{H}^{\mu}(x_{1}) + \gamma \mathbb{E}_{\mu}[Q_{\text{ent}}^{\pi_{\text{ent}}^{*}}(x_{1}, a_{1})]]$$ $$\geq \mathbb{E}_{x_{1} \sim p(\cdot | x_{0}, a_{0})}[r_{0} + \gamma c \mathcal{H}^{\mu}(x_{1}) + \gamma \mathbb{E}_{\mu}[Q_{\text{ent}}^{\pi}(x_{1}, a_{1})]].$$ (10) In the above, to make the derivations clear, we single out the reward r_0 and state $x_1 \sim p(\cdot \mid x_0, a_0)$, note that the distributions of these two quantities do not depend on the policy. The first inequality follows from the fact that $\pi_{\text{ent}}^*(\cdot \mid x) = \arg\max_{\pi}[c\mathcal{H}^{\pi}(x) + \mathbb{E}_{a \sim \pi(\cdot \mid x)}Q_{\text{ent}}^{\pi_{\text{ent}}}(x,a)]$. The second inequality follows from $Q_{\text{ent}}^{\pi_{\text{ent}}}(x,a) \geq Q_{\text{ent}}^{\pi}(x,a)$ for any policy π . With the base case in place, assume that the result holds for $T \leq k - 1$. Consider the case T = k $$\mathbb{E}_{\mu}[r_{0} + \gamma c \mathcal{H}^{\mu}(x_{1}) + \sum_{t=1}^{T-1} \gamma^{t}(r_{t} + c \mathcal{H}^{\mu}(x_{t+1})) + \gamma^{T} Q_{\text{ent}}^{\pi}(x_{T}, a_{T})]$$ $$\leq \mathbb{E}_{\mu}[r_{0} + \gamma c \mathcal{H}^{\mu}(x_{1}) + \gamma \mathbb{E}_{\mu}[Q_{\text{ent}}^{\pi_{\text{ent}}^{*}}(x_{1}, a_{1})]]$$ $$\leq Q_{\text{ent}}^{\pi_{\text{ent}}^{*}}(x_{0}, a_{0}),$$ When $\pi = \mu$ we have the special case $\mathbb{E}_{\mu}[\sum_{t=0}^{\infty} \gamma^t r_t] \leq V^{\pi^*}(x_0)$, the lower bound which motivated the original lower-bound Q-learning based self-imitation learning [8]. # B Proof of Theorem 2 For notational simplicity, let $\mathcal{U} \coloneqq (\mathcal{T}^{\mu})^{n-1}\mathcal{T}^{\pi}$ and let $\tilde{\mathcal{U}}Q(x,a) \coloneqq Q(x,a) + [UQ(x,a) - Q(x,a)]_+$. As a result, we could write $\mathcal{T}_{n,\mathrm{sil}}^{\alpha,\beta} = (1-\beta)\mathcal{T}^{\pi} + (1-\alpha)\beta\tilde{\mathcal{U}} + \alpha\beta\mathcal{U}$. First, we prove the contraction properties of $\mathcal{T}^{\mu}_{\beta,\mathrm{n,sil}}$. Note that by construction $|\tilde{\mathcal{U}}Q_1(x,a) - \tilde{\mathcal{U}}Q_2(x,a)| \leq \max(|Q_1(x,a) - Q_2(x,a)|, |\mathcal{U}Q_1(x,a) - \mathcal{U}Q_2(x,a)|) \leq \|Q_1 - Q_2\|_{\infty}$. Then through the triangle inequality, $\|\mathcal{T}^{\alpha,\beta}_{\mathrm{n,sil}}Q_1 - \mathcal{T}^{\alpha,\beta}_{\mathrm{n,sil}}Q_2\|_{\infty} \leq (1-\beta) \|\mathcal{T}^{\pi}Q_1 - \mathcal{T}^{\pi}Q_2\|_{\infty} + (1-\alpha)\beta \|\tilde{\mathcal{U}}Q_1 - \tilde{\mathcal{U}}Q_2\|_{\infty} + \alpha\beta \|\mathcal{U}Q_1 - \mathcal{U}Q_2\|_{\infty} \leq [(1-\beta)\gamma + (1-\alpha)\beta + \alpha\beta\gamma^n] \|Q_1 - Q_2\|_{\infty}$. This proves the upper bound on the contraction rates of $\mathcal{T}^{\alpha,\beta}_{\mathrm{n,sil}}$. Let $\eta(\alpha,\beta) = (1-\beta)\gamma + (1-\alpha)\beta + \alpha\beta\gamma^n$ and set $\eta(\alpha,\beta) < \gamma$, we deduce $\alpha > \frac{1-\gamma}{1-\gamma^n}$. Next, we show properties of the fixed point $\tilde{Q}^{\alpha,\beta}$. This point uniquely exists because $\Gamma(\mathcal{T}_{n,sil}^{\alpha,\beta}) < 1$ if $(1-\alpha)\beta < 1$. From $\mathcal{T}_{n,sil}^{\alpha,\beta}\tilde{Q}^{\alpha,\beta} = \tilde{Q}^{\alpha,\beta}$, we could derive by rearranging terms $(1-\beta)(\mathcal{T}^\pi\tilde{Q}-\tilde{Q}) + \alpha\beta(\mathcal{U}\tilde{Q}-\tilde{Q}) = -(1-\alpha)\beta(\tilde{\mathcal{U}}\tilde{Q}-\tilde{Q}) \leq 0$. This further implies that $\mathcal{T}^\pi\tilde{Q} \leq \tilde{Q}$. Now let $\mathcal{T} := \frac{(1-\beta)}{1-\beta+\alpha\beta}\mathcal{T}^\pi + \frac{\alpha\beta}{1-\beta+\alpha\beta}\mathcal{U}$. This simplifies to $\mathcal{T}\tilde{Q}-\tilde{Q} \leq 0$. By the monotonicity of \mathcal{T} , we see $Q^{t\pi+(1-t)\mu^{n-1}\pi} \geq \lim_{k\to 0} (\mathcal{T})^k\tilde{Q} = Q^\pi$ where $t = \frac{1-\beta}{1-\beta+\alpha\beta}$. For the another set of inequalities, define $\tilde{H}Q := (1-\beta)\mathcal{T}^* + (1-\alpha)\beta\tilde{\mathcal{U}}Q + \alpha\beta(\mathcal{T}^*)^n$, where recall that \mathcal{T}^* is the optimality Bellman operator. First, note \tilde{H} has Q^{π^*} as its unique fixed point. To see why, let \tilde{Q} be a generic fixed point of \tilde{H} such that $\tilde{H}\tilde{Q}=\tilde{Q}$. By rearranging terms, it follows that $(1-\beta)(\mathcal{T}^*\tilde{Q}-\tilde{Q})+\alpha\beta((\mathcal{T}^*)^n\tilde{Q}-\tilde{Q})=-(1-\alpha)\beta(\tilde{U}\tilde{Q}-\tilde{Q})\leq 0$. However, by construction $(\mathcal{T}^*)^iQ\geq Q, \forall i\geq 1, \forall Q$. This implies that $(1-\beta)(\mathcal{T}^*\tilde{Q}-\tilde{Q})+\alpha\beta((\mathcal{T}^*)^n\tilde{Q}-\tilde{Q})\geq 0$. As a result, $(1-\beta)(\mathcal{T}^*\tilde{Q}-\tilde{Q})+\alpha\beta((\mathcal{T}^*)^n\tilde{Q}-\tilde{Q})=0$ and \tilde{Q} is a fixed point of $t\mathcal{T}^*+(1-t)(\mathcal{T}^*)^n$. Since $t\mathcal{T}^*+(1-t)(\mathcal{T}^*)^n$ is strictly contractive as $\Gamma(t\mathcal{T}^*+(1-t)(\mathcal{T}^*)^n)\leq t\gamma+(1-t)\gamma^n\leq \gamma<1$, its fixed point is unique. It is straightforward to deduce that Q^{π^*} is a fixed point of $t\mathcal{T}^*+(1-t)(\mathcal{T}^*)^n$ and we conclude that the only possible fixed point of \tilde{H} is $\tilde{Q}=Q^{\pi^*}$. Finally, recall that by construction $\tilde{H}Q\geq Q, \forall Q$. By monotonicity, $Q^{\pi^*}=\lim_{k\to\infty}(\tilde{H})^k\tilde{Q}^{\alpha,\beta}\geq \tilde{Q}^{\alpha,\beta}$. In conclusion, we have shown $Q^{t\pi+(1-t)\mu^{n-1}\mu}\leq \tilde{Q}^{\alpha,\beta}\leq Q^{\pi^*}$. ## C Additional theoretical results **Theorem 3.** Let π^* be the optimal policy and V^{π^*} its value function under standard RL formulation. Given a partial trajectory $(x_t, a_t)_{t=0}^n$, the following inequality holds for any n, $$V^{\pi^*}(x_0) \ge \mathbb{E}_{\mu}\left[\sum_{t=0}^{n-1} \gamma^t r_t + \gamma^n V^{\pi}(x_k)\right]$$ (11) *Proof.* Let π, μ be any policy and π^* the optimal policy. We seek to show $V^{\pi^*}(x_0) \ge \mathbb{E}_{\mu}[\sum_{t=0}^{T-1} \gamma^t r_t + \gamma^T V^{\pi}(x_T)]$ for any $T \ge 1$. We prove the results using induction. For the base case T=1, $V^{\pi^*}(x_0)=\mathbb{E}_{\pi^*}[Q^{\pi^*}(x_0,a_0)]\geq \mathbb{E}_{\mu}[Q^{\pi^*}(x_0,a_0)]=\mathbb{E}_{\mu}[r_0+\gamma V^{\pi^*}(x_1)]\geq \mathbb{E}_{\mu}[r_0+\gamma V^{\pi}(x_1)]$, where the first inequality comes from the fact that $\pi^*(\cdot\mid x_0)=\arg\max_a Q^{\pi^*}(x_0,a)$. Now assume that the statement holds for any $T\leq k-1$, we proceed to the case T=k. $$\mathbb{E}_{\mu}\left[\sum_{t=0}^{k-1} \gamma^{t} r_{t} + \gamma^{k} V^{\pi}(x_{k})\right] = \mathbb{E}_{\mu}\left[r_{0} + \gamma \mathbb{E}_{\mu}\left[\sum_{t=0}^{k-2} \gamma^{t} r_{t} + \gamma^{k-1} V^{\pi}(x_{k})\right]\right]$$ $$\leq \mathbb{E}_{\mu}\left[r_{0} + \gamma V^{\pi^{*}}(x_{1})\right] \leq V^{\pi^{*}}(x_{0}),$$ where the first inequality comes from the induction hypothesis and the second inequality follows naturally from the base case. This implies that n-step quantities of the form $V^{\pi^*}(x_0) \geq \mathbb{E}_{\mu}[\sum_{t=0}^{n-1} \gamma^t r_t + \gamma^n V^{\pi}(x_T)]$ are lower bounds of the optimal value function $V^{\pi^*}(x_0)$ for any $n \geq 1$. # **D** Experiment details Implementation details. The algorithmic baselines for deterministic actor-critic (TD3 and DDPG) are based on OpenAI Spinning Up https://github.com/openai/spinningup [51]. The baselines for stochastic actor-critic is based on PPO [18] and SIL+PPO [8] are based on the author code base https://github.com/junhyukoh/self-imitation-learning. Throughout the experiments, all optimizations are carried out via Adam optimizer [52]. **Architecture.** Deterministic actor-critic baselines, including TD3 and DDPG share the same network architecture following [51]. The Q-function network $Q_{\theta}(x,a)$ and policy $\pi_{\phi}(x)$ are both 2-layer neural network with h=300 hidden units per layer, before the output layer. Hidden layers are interleaved with relu(x) activation functions. For the policy $\pi_{\phi}(x)$, the output is stacked with a $\tanh(x)$ function to ensure that the output action is in [-1,1]. All baselines are run with default hyper-parameters from the code base. Stochastic actor-critic baselines (e.g. PPO) implement value function $V_{\theta}(x)$ and policy $\pi_{\phi}(a \mid x)$ both as 2-layer neural network with h=64 hidden units per layer and tanh activation. The stochastic policy $\pi_{\phi}(a \mid x)$ is a Gaussian $a \sim \mathcal{N}(\mu_{\phi}(x), \sigma^2)$ with state-dependent mean $\mu_{\phi}(x)$ and a global variance parameter σ^2 . Other missing hyper-parameters take default values from the code base. Table 1: Summary of the performance of algorithmic variants across benchmark tasks. We use $\mathit{uncorrected}$ to denote prioritized sampling without IS corrections. Return-based SIL is represented as SIL with $n=\infty$. For each task, algorithmic variants with top performance are highlighted (two are highlighted if they are not statistically significantly different). Each entry shows mean \pm std performance. | Tasks | $\operatorname{SIL} n = 5$ | SIL $n = 5$ (uncorrected) | $\begin{aligned} \mathbf{SIL} \; n &= 1 \\ \mathbf{(uncorrected)} \end{aligned}$ | 5-step | 1-step | $\text{SIL } n = \infty$ | |--------------------------|---|--|--|------------------------------|---------------------------------|----------------------------------| | DMWALKERRUN | $\textbf{642} \pm \textbf{107}$ | $\textbf{675} \pm \textbf{15}$ | 500 ± 138 | 246 ± 49 | 274 ± 100 | 320 ± 111 | | DMWALKERSTAND | 979 ± 2 | 947 ± 18 | 899 ± 55 | 749 ± 150 | 487 ± 177 | 748 ± 143 | | DMWALKERWALK | 731 ± 151 | 622 ± 197 | 601 ± 108 | 925 ± 10 | 793 ± 121 | 398 ± 203 | | DMC HEETAHRUN | 830 ± 36 | 597 ± 64 | 702 ± 72 | 553 ± 92 | 643 ± 83 | 655 ± 59 | | ANT | $\textbf{4123} \pm \textbf{364}$ | 3059 ± 360 | 3166 ± 390 | 1058 ± 281 | 3968 ± 401 | 3787 ± 411 | | HALFCHEETAH | 8246 ± 784 | 9976 ± 252 | 10417 ± 364 | 16178 ± 151 | 10100 ± 48 | 18389 ± 386 | | ANT(B)
HALFCHEETAH(B) | $egin{array}{c} {f 2954 \pm 54} \ {f 2619 \pm 129} \end{array}$ | 1690 ± 564
2521 \pm 128 | 1851 ± 416
2420 ± 109 | 2920 ± 84 1454 ± 338 | 1866 ± 623
2544 ± 31 | 1884 ± 631
2014 ± 378 | ### D.1 Further implementation and hyper-parameter details Generalized SIL for deterministic actor-critic. We adopt TD3 [27] as the baseline for deterministic actor-critic. TD3 maintains a Q-function network $Q_{\theta}(x,a)$ and a deterministic policy network $\pi_{\theta}(x)$ with parameter θ . The SIL subroutines adopt a prioritized experience replay buffer: the return-based SIL samples tuples according to the priority $[R^{\mu}(x,a)-Q_{\theta}(x,a)]_{+}$ and minimizes the loss function $[R^{\mu}(x,a)-Q_{\theta}(x,a)]_{+}$, the generalized SIL samples tuples according to the priority $[L^{\pi,\mu,n}(x,a)-Q_{\theta}(x,a)]_{+}$. The experience replay adopts the parameter $\alpha=0.6,\beta=0.1$ [53]. Throughout the experiments, TD3-based algorithms all employ $\alpha=10^{-3}$ for the network updates. To calculate the update target $L^{\pi,\mu,n}(x_0,a_0) = \sum_{t=0}^{n-1} \gamma^t r_t + Q_{\theta'}(x_n,\pi_{\theta'}(x_n))$ with partial trajectory $(x_t,a_t,r_t)_{t=0}^n$ along with the target value network $Q_{\theta'}(x,a)$ and policy network $\pi_{\theta'}(x)$. The target network is slowly updated as $\theta' = \tau \theta' + (1-\tau)\theta$ where $\tau = 0.995$ [14]. Generalized SIL for stochastic actor-critic. We adopt PPO [18] as the baseline algorithm and implement modifications on top of the SIL author code base https://github.com/junhyukoh/self-imitation-learning as well as the original baseline code https://github.com/openai/baselines [54]. All PPO variants use the default learning rate $\alpha=3\cdot 10^{-4}$ for both actor $\pi_{\theta}(a\mid x)$ and critic $V_{\theta}(x)$. The SIL subroutines are implemented as a prioritized replay with $\alpha=0.6, \beta=0.1$. For other details of SIL in PPO, please refer to the SIL paper [8]. The only difference between generalized SIL and SIL lies in the implementation of the prioritized replay. SIL samples tuples according to the priority $[R^{\mu}(x,a)-V_{\theta}(x)]_{+}$ and minimize the SIL loss function $([R^{\mu}(x,a)-V_{\theta}(x)]_{+})^{2}$ for the value function, and $-\log\pi_{\theta}(a\mid x)[R^{\mu}(x,a)-V_{\theta}(x)]_{+}$ for the policy. Generalized SIL samples tuples according to the priority $([L^{\pi,\mu,n}(x,a)-V_{\theta}(x)]_{+})^{2}$, and minimize the loss $([L^{\pi,\mu,n}(x,a)-V_{\theta}(x)]_{+})^{2}$ and $-\log\pi_{\theta}(a\mid x)[L^{\pi,\mu,n}(X,a)-V_{\theta}(x)]_{+}$ for the value function/policy respectively. To calculate the update target $L^{\pi,\mu,n}(x_0,a_0)=\sum_{t=0}^{n-1}\gamma^tr_t+V_{\theta'}(x_n)$ with partial trajectory $(x_t,a_t,r_t)_{t=0}^n$ along with the target value network $V_{\theta'}(x)$. We apply the target network technique to stabilize the update, where θ' is a delayed version of the major network θ and is updated as $\theta'=\tau\theta'+(1-\tau)\theta$ where $\tau=0.995$. #### D.2 Additional experiment results Comparison across related baselines. We make clear the comparison between related baselines in Table 1. We present results for n-step TD3 with $n \in \{1,5\}$; TD3 with generalized SIL with n=5 and its variants with different setups for prioritized sampling; TD3 with return-based SIL $(n=\infty)$. We show the results across all 8 tasks - in each entry of Table 1 we show the mean \pm std of performance averaged over 3 seeds. The performance of each algorithmic variant is the average testing performance of the last 10^4 training steps (from a total of 10^6 training steps). The best Table 2: Comparison between different replay schemes. For each task, algorithmic variants with top performance are highlighted (two are highlighted if they are not statistically significantly different). Each entry shows mean \pm std performance. | Tasks | $\operatorname{SIL} n = 5$ | $\begin{array}{l} \mathbf{SIL} \; n \; = \; 5 \\ \mathbf{(uncorrected)} \end{array}$ | SIL $n = 5$ (no priority) | |----------------------|---------------------------------|--|---------------------------------| | DMWALKERRUN | $\textbf{642} \pm \textbf{107}$ | $\textbf{675} \pm \textbf{15}$ | 424 ± 127 | | DMWALKERSTAND | 979 ± 2 | 947 ± 18 | 634 ± 184 | | DMWALKERWALK | $\textbf{731} \pm \textbf{151}$ | 622 ± 197 | $\textbf{766} \pm \textbf{103}$ | | DMC HEETAHRUN | 830 ± 36 | 597 ± 64 | $\textbf{505} \pm \textbf{182}$ | | Ant | 4123 ± 364 | 3059 ± 360 | 4358 ± 496 | | HALFCHEETAH | 8246 ± 784 | 9976 ± 252 | 8927 ± 596 | | ANT(B) | 2954 ± 54 | 1690 ± 564 | 2910 ± 88 | | HALFCHEETAH(B) | 2619 ± 129 | 2521 ± 128 | 2284 ± 85 | Figure 4: Standard evaluations on 4 simulation tasks for DDPG baselines. Different colors represent different algorithmic variants. Each curve shows the mean \pm 0.5std of evaluation performance during training, averaged across 3 random seeds. The x-axis shows the time steps and the y-axis shows the cumulative returns. algorithmic variant is highlighted in bold. We see that in general generalized SIL with n=5 performs the best. Ablation on the prioritized sampling. In prioritized sampling [53], when the tuples $d = (x_i, a_i, r_i)_{i=0}^n \in \mathcal{D}$ are sampled with priorities s_d , it is sampled with probability $p(d) \propto s_d^{\alpha}$. During updates, the IS correction consists in optimizing the loss $\mathbb{E}_d[w_d l_d]$ where l_d is the loss computed from tuple d and the IS correction weight $w_d = (N \cdot p_d)^{-\beta}$ where N is the number of tuples in the buffer \mathcal{D} . We compare several prioritized sampling variants of generalized SIL in Table 2. There are three variants: SIL n=5 with both prioritized sampling ($\alpha=0.6$) and IS correction ($\beta=0.1$); SIL n=5 with prioritized sampling ($\alpha=0.6$) only and without IS correction ($\beta=0.0$); SIL n=5 with no prioritized sampling ($\alpha=\beta=0.0$). The performance setup in Table 2 is the same as in Table 1. It can be seen from Table 2 that generalized SIL performs the best with full prioritized sampling. **Results on DDPG.** DDPG is a baseline actor-critic algorithm with a deterministic actor [15]. Compared to TD3, DDPG does not adopt a double-critic approach [27] and suffers from over-estimation bias of the Q-function [30]. We present the baseline evaluation result of DDPG in Figure 4, where we show the results for a few variants: DDPG with n-step update, $n \in \{1,5\}$; DDPG with generalized SIL n=5 and DDPG with return-based SIL $(n=\infty)$. We see that the performance gains of DDPG with generalized SIL n=5 are not as significant - indeed, overall DDPG with n=5 has the best performance. We speculate that this is partly due to the over-estimation bias of DDPG: the formulation of generalized SIL is motivated by shifting the fixed point Q^π with an positive bias. The baseline algorithm benefits the most from generalized SIL when indeed in practice $Q_\theta \approx Q^\pi$. However, this is not the case for DDPG as the algorithm already has high positive bias in that $Q^\theta > Q^\pi$, which reduces the potential gains that come from generalized SIL.