
A Proof of Theorem 1

Recall that under maximum entropy RL, the Q-function is defined as Qπent(x0, a0) := Eπ[r0 +∑∞
t=1 γ

t(rt + cHπ(xt))] where Hµ(xt) is the entropy of the distribution πµ(· | xt). The Bellman
equation for Q-function is naturally

Qπ(x0, a0) = Eπ[r0 + γcHπ(x1) + γQπ(x1, a1)].

Let the optimal policy be π∗ent. The relationship between the optimal policy and its Q-function
is π∗ent(a | x) ∝ exp(Q

π∗ent
ent (x, a)/c). We seek to establish Qπ

∗
ent

ent (x0, a0) ≥ Eµ[r0 + γcHµ(x1) +∑T−1
t=1 γt(rt + cHµ(xt+1)) + γTQπent(xT , aT)] for any policy µ, π.

We prove the results using induction. For the base case T = 1,

Q
π∗ent
ent (x0, a0) = Eπ∗ent

[r0 + γcHπent∗ (x1) + γQ
π∗ent
ent (x1, a1)]

= Ex1∼p(·|x0,a0)

[
r0 + γcHπent∗ (x1) + γEπ∗ent

[Q
π∗ent
ent (x1, a1)]

]
≥ Ex1∼p(·|x0,a0)

[
r0 + γcHµ(x1) + γEµ[Q

π∗ent
ent (x1, a1)]

]
≥ Ex1∼p(·|x0,a0)

[
r0 + γcHµ(x1) + γEµ[Qπent(x1, a1)]

]
.

(10)
In the above, to make the derivations clear, we single out the reward r0 and state x1 ∼ p(· | x0, a0),
note that the distributions of these two quantities do not depend on the policy. The first inequality
follows from the fact that π∗ent(· | x) = arg maxπ[cHπ(x) + Ea∼π(·|x)Qπent

ent (x, a)]. The second

inequality follows from Q
π∗ent
ent (x, a) ≥ Qπent(x, a) for any policy π.

With the base case in place, assume that the result holds for T ≤ k − 1. Consider the case T = k

Eµ[r0 + γcHµ(x1) +

T−1∑
t=1

γt(rt + cHµ(xt+1)) + γTQπent(xT , aT)]

≤ Eµ
[
r0 + γcHµ(x1) + γEµ[Q

π∗ent
ent (x1, a1)]

]
≤ Qπ

∗
ent

ent (x0, a0),

When π = µ we have the special case Eµ[
∑∞
t=0 γ

trt] ≤ V π
∗
(x0), the lower bound which motivated

the original lower-bound Q-learning based self-imitation learning [8].

B Proof of Theorem 2

For notational simplicity, let U := (T µ)n−1T π and let ŨQ(x, a) := Q(x, a)+[UQ(x, a)−Q(x, a)]+.
As a result, we could write T α,βn,sil = (1− β)T π + (1− α)βŨ + αβU .

First, we prove the contraction properties of T µβ,n,sil. Note that by construction |ŨQ1(x, a) −
ŨQ2(x, a)| ≤ max(|Q1(x, a) − Q2(x, a)|, |UQ1(x, a) − UQ2(x, a)|) ≤ ‖ Q1 − Q2 ‖ ∞. Then
through the triangle inequality, ‖ T α,βn,sil Q1 −T α,βn,sil Q2 ‖ ∞ ≤ (1− β) ‖ T πQ1 −T πQ2 ‖ ∞ + (1−
α)β ‖ ŨQ1−ŨQ2 ‖ ∞+αβ ‖ UQ1−UQ2 ‖ ∞ ≤ [(1−β)γ+(1−α)β+αβγn] ‖ Q1−Q2 ‖ ∞.
This proves the upper bound on the contraction rates of T α,βn,sil . Let η(α, β) = (1− β)γ + (1− α)β +

αβγn and set η(α, β) < γ, we deduce α > 1−γ
1−γn .

Next, we show properties of the fixed point Q̃α,β . This point uniquely exists because Γ(T α,βn,sil) < 1

if (1− α)β < 1. From T α,βn,sil Q̃
α,β = Q̃α,β , we could derive by rearranging terms (1− β)(T πQ̃−

Q̃) + αβ(UQ̃ − Q̃) = −(1 − α)β(ŨQ̃ − Q̃) ≤ 0. This further implies that T πQ̃ ≤ Q̃. Now let
T := (1−β)

1−β+αβT
π + αβ

1−β+αβU . This simplifies to T Q̃− Q̃ ≤ 0. By the monotonicity of T , we see

Qtπ+(1−t)µn−1π ≥ limk→(T)kQ̃ = Qπ where t = 1−β
1−β+αβ .

For the another set of inequalities, define H̃Q := (1 − β)T ∗ + (1 − α)βŨQ + αβ(T ∗)n, where
recall that T ∗ is the optimality Bellman operator.

13

First, note H̃ has Qπ
∗

as its unique fixed point. To see why, let Q̃ be a generic fixed point of H̃ such
that H̃Q̃ = Q̃. By rearranging terms, it follows that (1 − β)(T ∗Q̃ − Q̃) + αβ((T ∗)nQ̃ − Q̃) =

−(1− α)β(ŨQ̃− Q̃) ≤ 0. However, by construction (T ∗)iQ ≥ Q,∀i ≥ 1,∀Q. This implies that
(1−β)(T ∗Q̃−Q̃)+αβ((T ∗)nQ̃−Q̃) ≥ 0. As a result, (1−β)(T ∗Q̃−Q̃)+αβ((T ∗)nQ̃−Q̃) = 0

and Q̃ is a fixed point of tT ∗ + (1− t)(T ∗)n. Since tT ∗ + (1− t)(T ∗)n is strictly contractive as
Γ(tT ∗ + (1− t)(T ∗)n) ≤ tγ + (1− t)γn ≤ γ < 1, its fixed point is unique. It is straightforward to
deduce that Qπ

∗
is a fixed point of tT ∗ + (1− t)(T ∗)n and we conclude that the only possible fixed

point of H̃ is Q̃ = Qπ
∗
. Finally, recall that by construction H̃Q ≥ Q,∀Q. By monotonicity, Qπ

∗
=

limk→∞(H̃)kQ̃α,β ≥ Q̃α,β . In conclusion, we have shown Qtπ+(1−t)µn−1µ ≤ Q̃α,β ≤ Qπ∗ .

C Additional theoretical results

Theorem 3. Let π∗ be the optimal policy and V π
∗

its value function under standard RL formulation.
Given a partial trajectory (xt, at)

n
t=0, the following inequality holds for any n,

V π
∗
(x0) ≥ Eµ[

n−1∑
t=0

γtrt + γnV π(xk)] (11)

Proof. Let π, µ be any policy and π∗ the optimal policy. We seek to show V π
∗
(x0) ≥

Eµ[
∑T−1
t=0 γtrt + γTV π(xT)] for any T ≥ 1.

We prove the results using induction. For the base case T = 1, V π
∗
(x0) = Eπ∗ [Qπ

∗
(x0, a0)] ≥

Eµ[Qπ
∗
(x0, a0)] = Eµ[r0 + γV π

∗
(x1)] ≥ Eµ[r0 + γV π(x1)], where the first inequality comes

from the fact that π∗(· | x0) = arg maxaQ
π∗(x0, a). Now assume that the statement holds for any

T ≤ k − 1, we proceed to the case T = k.

Eµ[

k−1∑
t=0

γtrt + γkV π(xk)] = Eµ
[
r0 + γEµ[

k−2∑
t=0

γtrt + γk−1V π(xk)]
]

≤ Eµ[r0 + γV π
∗
(x1)] ≤ V π

∗
(x0),

where the first inequality comes from the induction hypothesis and the second inequality fol-
lows naturally from the base case. This implies that n-step quantities of the form V π

∗
(x0) ≥

Eµ[
∑n−1
t=0 γ

trt + γnV π(xT)] are lower bounds of the optimal value function V π
∗
(x0) for any

n ≥ 1.

D Experiment details

Implementation details. The algorithmic baselines for deterministic actor-critic (TD3 and DDPG)
are based on OpenAI Spinning Up https://github.com/openai/spinningup [51]. The base-
lines for stochastic actor-critic is based on PPO [18] and SIL+PPO [8] are based on the author code base
https://github.com/junhyukoh/self-imitation-learning. Throughout the experiments,
all optimizations are carried out via Adam optimizer [52].

Architecture. Deterministic actor-critic baselines, including TD3 and DDPG share the same network
architecture following [51]. The Q-function network Qθ(x, a) and policy πφ(x) are both 2-layer
neural network with h = 300 hidden units per layer, before the output layer. Hidden layers are
interleaved with relu(x) activation functions. For the policy πφ(x), the output is stacked with a
tanh(x) function to ensure that the output action is in [−1, 1]. All baselines are run with default
hyper-parameters from the code base.

Stochastic actor-critic baselines (e.g. PPO) implement value function Vθ(x) and policy πφ(a | x)
both as 2-layer neural network with h = 64 hidden units per layer and tanh activation. The stochastic
policy πφ(a | x) is a Gaussian a ∼ N (µφ(x), σ2) with state-dependent mean µφ(x) and a global
variance parameter σ2. Other missing hyper-parameters take default values from the code base.

14

https://github.com/openai/spinningup
https://github.com/junhyukoh/self-imitation-learning

Table 1: Summary of the performance of algorithmic variants across benchmark tasks. We use
uncorrected to denote prioritized sampling without IS corrections. Return-based SIL is represented
as SIL with n =∞. For each task, algorithmic variants with top performance are highlighted (two
are highlighted if they are not statistically significantly different). Each entry shows mean ± std
performance.

Tasks SIL n = 5
SIL n = 5

(uncor-
rected)

SIL n = 1
(uncor-
rected)

5-step 1-step SIL n =∞

DMWALKERRUN 642± 107 675± 15 500 ± 138 246 ± 49 274 ± 100 320 ± 111
DMWALKERSTAND 979± 2 947 ± 18 899 ± 55 749 ± 150 487 ± 177 748 ± 143
DMWALKERWALK 731 ± 151 622 ± 197 601 ± 108 925± 10 793 ± 121 398 ± 203
DMCHEETAHRUN 830± 36 597 ± 64 702 ± 72 553 ± 92 643 ± 83 655 ± 59

ANT 4123± 364 3059± 360 3166± 390 1058± 281 3968± 401 3787± 411
HALFCHEETAH 8246± 784 9976± 252 10417± 364 6178± 151 10100± 481 8389± 386

ANT(B) 2954± 54 1690± 564 1851± 416 2920± 84 1866± 623 1884± 631
HALFCHEETAH(B) 2619± 129 2521± 128 2420± 109 1454± 338 2544 ± 31 2014± 378

D.1 Further implementation and hyper-parameter details

Generalized SIL for deterministic actor-critic. We adopt TD3 [27] as the baseline for determin-
istic actor-critic. TD3 maintains a Q-function network Qθ(x, a) and a deterministic policy network
πθ(x) with parameter θ. The SIL subroutines adopt a prioritized experience replay buffer: the
return-based SIL samples tuples according to the priority [Rµ(x, a)−Qθ(x, a)]+ and minimizes the
loss function [Rµ(x, a)−Qθ(x, a)]+; the generalized SIL samples tuples according to the priority
[Lπ,µ,n(x, a)−Qθ(x, a)]+ and minimizes the loss function [Lπ,µ,n(x, a)−Qθ(x, a)]+. The experi-
ence replay adopts the parameter α = 0.6, β = 0.1 [53]. Throughout the experiments, TD3-based
algorithms all employ α = 10−3 for the network updates.

To calculate the update targetLπ,µ,n(x0, a0) =
∑n−1
t=0 γ

trt+Qθ′(xn, πθ′(xn)) with partial trajectory
(xt, at, rt)

n
t=0 along with the target value network Qθ′(x, a) and policy network πθ′(x). The target

network is slowly updated as θ′ = τθ′ + (1− τ)θ where τ = 0.995 [14].

Generalized SIL for stochastic actor-critic. We adopt PPO [18] as the baseline algorithm and im-
plement modifications on top of the SIL author code base https://github.com/junhyukoh/
self-imitation-learning as well as the original baseline code https://github.com/
openai/baselines [54]. All PPO variants use the default learning rate α = 3 · 10−4 for both
actor πθ(a | x) and critic Vθ(x). The SIL subroutines are implemented as a prioritized replay with
α = 0.6, β = 0.1. For other details of SIL in PPO, please refer to the SIL paper [8].

The only difference between generalized SIL and SIL lies in the implementation of the prioritized
replay. SIL samples tuples according to the priority [Rµ(x, a)− Vθ(x)]+ and minimize the SIL loss
function ([Rµ(x, a)− Vθ(x)]+)2 for the value function, and − log πθ(a | x)[Rµ(x, a)− Vθ(x)]+ for
the policy. Generalized SIL samples tuples according to the priority ([Lπ,µ,n(x, a)− Vθ(x)]+)2, and
minimize the loss ([Lπ,µ,n(x, a)− Vθ(x)]+)2 and − log πθ(a | x)[Lπ,µ,n(X, a)− Vθ(x)]+ for the
value function/policy respectively.

To calculate the update target Lπ,µ,n(x0, a0) =
∑n−1
t=0 γ

trt + Vθ′(xn) with partial trajectory
(xt, at, rt)

n
t=0 along with the target value network Vθ′(x). We apply the target network technique

to stabilizie the update, where θ′ is a delayed version of the major network θ and is updated as
θ′ = τθ′ + (1− τ)θ where τ = 0.995.

D.2 Additional experiment results

Comparison across related baselines. We make clear the comparison between related baselines
in Table 1. We present results for n-step TD3 with n ∈ {1, 5}; TD3 with generalized SIL with
n = 5 and its variants with different setups for prioritized sampling; TD3 with return-based SIL
(n =∞). We show the results across all 8 tasks - in each entry of Table 1 we show the mean± std
of performance averaged over 3 seeds. The performance of each algorithmic variant is the average
testing performance of the last 104 training steps (from a total of 106 training steps). The best

15

https://github.com/junhyukoh/self-imitation-learning
https://github.com/junhyukoh/self-imitation-learning
https://github.com/openai/baselines
https://github.com/openai/baselines

Table 2: Comparison between different replay schemes. For each task, algorithmic variants with top
performance are highlighted (two are highlighted if they are not statistically significantly different).
Each entry shows mean± std performance.

Tasks SIL n = 5
SIL n = 5

(uncorrected)
SIL n = 5

(no priority)

DMWALKERRUN 642± 107 675± 15 424 ± 127
DMWALKERSTAND 979± 2 947 ± 18 634 ± 184
DMWALKERWALK 731± 151 622 ± 197 766± 103
DMCHEETAHRUN 830± 36 597 ± 64 505± 182

ANT 4123± 364 3059 ± 360 4358 ± 496
HALFCHEETAH 8246 ± 784 9976± 252 8927 ± 596

ANT(B) 2954± 54 1690 ± 564 2910± 88
HALFCHEETAH(B) 2619± 129 2521± 128 2284 ± 85

(a) DMWalkerRun (b) DMWalkerStand (c) Ant (d) HalfCheetah

Figure 4: Standard evaluations on 4 simulation tasks for DDPG baselines. Different colors represent different
algorithmic variants. Each curve shows the mean± 0.5std of evaluation performance during training, averaged
across 3 random seeds. The x-axis shows the time steps and the y-axis shows the cumulative returns.

algorithmic variant is highlighted in bold. We see that in general generalized SIL with n = 5 performs
the best.

Ablation on the prioritized sampling. In prioritized sampling [53], when the tuples d =
(xi, ai, ri)

n
i=0 ∈ D are sampled with priorities sd, it is sampled with probability p(d) ∝ sαd . During

updates, the IS correction consists in optimizing the loss Ed[wdld] where ld is the loss computed
from tuple d and the IS correction weight wd = (N · pd)−β where N is the number of tuples in the
buffer D.

We compare several prioritized sampling variants of generalized SIL in Table 2. There are three
variants: SIL n = 5 with both prioritized sampling (α = 0.6) and IS correction (β = 0.1); SIL n = 5
with prioritized sampling (α = 0.6) only and without IS correction (β = 0.0); SIL n = 5 with no
prioritized sampling (α = β = 0.0). The performance setup in Table 2 is the same as in Table 1. It
can be seen from Table 2 that generalized SIL performs the best with full prioritized sampling.

Results on DDPG. DDPG is a baseline actor-critic algorithm with a deterministic actor [15]. Com-
pared to TD3, DDPG does not adopt a double-critic approach [27] and suffers from over-estimation
bias of the Q-function [30].

We present the baseline evaluation result of DDPG in Figure 4, where we show the results for a few
variants: DDPG with n-step update, n ∈ {1, 5}; DDPG with generalized SIL n = 5 and DDPG with
return-based SIL (n =∞). We see that the performance gains of DDPG with generalized SIL n = 5
are not as significant - indeed, overall DDPG with n = 5 has the best performance. We speculate that
this is partly due to the over-estimation bias of DDPG: the formulation of generalized SIL is motivated
by shifting the fixed point Qπ with an positive bias. The baseline algorithm benefits the most from
generalized SIL when indeed in practice Qθ ≈ Qπ. However, this is not the case for DDPG as the
algorithm already has high positive bias in that Qθ > Qπ, which reduces the potential gains that
come from generalized SIL.

16

	Proof of Theorem 1
	Proof of Theorem 2
	Additional theoretical results
	Experiment details
	Further implementation and hyper-parameter details
	Additional experiment results

