Supplement to Learning Deep Attribution Priors
Based On Prior Knowledge

1 Model Implementations and Hyperparameter Tuning

LASSO: In our experiments we used the scikit-learn [10] implementation of the LASSO algorithm
[12]. For each experiment we sampled « values from the range (0, 1], and we chose the value of «
with the smallest MSE on our validation set for evaluation on the test set.

MERGE: All linear models were implemented using PyTorch. We optimized these models using
ADAM. To choose learning rates for our prediction and prior models, we performed grid searches
over the range 10~° to 1072 for both parameters.

Neural Networks: All neural network models were implemented using the PyTorch framework [9].
We used an Nvidia GTX 1080 Ti GPU for training.

For the noisy two moons task, all neural networks consisted of two hidden layers, with the number
of hidden units varying depending on the dimensionality of the experiment. For a given number of
hidden layers p, our first hidden layer had |p/2| units, and the second had |p/4] units. All prediction
networks were trained using Adam optimizers [S]] to minimize the cross entropy loss plus an L
penalty on feature attribution differences as described in the main text.

For our experiments on biological datasets, all neural network models used for prediction consisted
of two hidden layers with 512 and 256 hidden units respectively. When constructing our learned
attribution prior networks, we experimented with multiple architectures. In our experiments we found
that a network with a single hidden layer of 4 units worked best for the AD prediction task, while a
network with two hidden layers of 5 and 3 units respectively performed best for the AML prediction
task. All prediction models were trained using Adam optimizers to minimize MSE loss plus the
L1 penalty on feature attribution differences as described in the main text. The number of training
epochs for each network was determined by early stopping. In our experiments we used a patience
parameter of 20. Our learning rates were selected by tuning from the range 10~ to 10~2 based on
performance on our validation set. For our baseline MLPs trained with L1/L.2 regularization on their
weights, we considered values of \ (i.e., regularization strength) between 5 - 1073 and 5 - 1075,

We found that setting the DAPr regularization strength A to 1/m, where m is the size of a minibatch,
resulted in a good balance between the terms in our loss function across our datasets. As such, we
used this value for all experiments.

2 Choice of Attribution Method

As discussed in the main text, one of the hyperparameter choices required when using the DAPr
framework is the specific attribution method ®. For our experiments we ended up using Expected
Gradients (EG) [2]], due to both its computational efficiency as well as its performance.

EG is an extension of Integrated Gradients (IG) [11]] designed to avoid hyperparameter choices
required by IG. IG computes feature attributions by comparing a model’s prediction with the prediction
that would be made given some baseline input that represents a lack of information. For example, in
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image classification tasks an image of all black pixels is often taken as a baseline. However, in many
other domains it is unclear what a zero-information baseline would be.

EG avoids this issue by integrating over the dataset to find a baseline value for a feature, rather than
specifying the baseline by hand. For a given model f, the IG value for the i-th input feature is defined
as

1 / /
IG;(x) := (z; — ;) x /azo O (i + Oé; (z— ))da,

where z is a target input and 2’ is a baseline input. EG avoids specifying 2’ by taking a second
integral over the dataset, giving the equation
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where D is the distribution of our dataset. Computing such an integral directly is computationally
intractable. However, this equation can be rewritten in terms of expectations giving

! o
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This expectation can be approximated by sampling (2, &) pairs from D and U (0, 1), computing the
value inside the expectation for each pair, and then averaging over samples. In Erion et al. [2] the
authors found that, for neural network models trained using some form of batch gradient descent,
sampling only one (z’, ) pair per mini-batch during model training was sufficient to regularize
a model’s attributions using EG. As such, using EG we can compute ® using only one additional
gradient call per batch.

We also found that EG led to the best performance for models trained using the DAPr framework. We
report results from earlier exploratory experiments on both the Alzheimer’s and AML datasets below.

Table 1: Performance (MSE =+ SE) of MLPs trained with DAPr using different attribution methods ®.

Model | AD Biomarker Prediction | AML Drug Response
Input Gradients 0.779 £0.134 0.946 + 0.090
Input * Gradients 0.772 £ 0.142 0.898 +0.103
Integrated Gradients 0.786 = 0.159 0.844 + 0.080
Expected Gradients 0.67 +0.13 0.787 4+ 0.0655

On both our biological datasets, EG led to the best performance using the DAPr framework.

3 Two Moons with Nuisance Features
3.1 Final Hyperparameter Values
MLP (no prior):
e Learning rate: 5-107*
MLP (with prior):

o Learning rate: 5 - 10~4
e Prior learning rate: 1- 1073



4 AML Drug Response Experiments
4.1 Final Hyperparameter Values
LASSO:
o a:0.54
MERGE:

e Learning rate: 5-107°
e Prior learning rate: 5 - 107°

MLP (no prior):
e Learning rate: 1- 1073
MLP (noise prior):

e Learning rate: 1-1073
e Prior learning rate: 5 - 107°

MLP (AML driver prior):

e Learning rate: 1-1073
e Prior learning rate: 5 - 107°

MLP with meta-features (naive)
e Learning rate: 1-1073
MLP (L1 regularization)

e Learning rate: 1- 1073

e ) (L1 regularization strength): 1-10~4
MLP (L2 regularization)

e Learning rate: 1- 1073
e ) (L2 regularization strength): 5 - 1074

4.2 Data Preprocessing

Due to the potential for noise and batch effects, it is necessary to preprocess RNA-seq gene expression
data in order to ensure a quality signal. For our AML drug response dataset, we preprocessed our

RNA-seq data as follows

1. Raw transcript counts were converted to fragments per kilobase of exon model per million
mapped reads (FPKM). FPKM normalizes the counts for different RNA lengths and for the
total number of reads, and as such is more reflective of the molar amount of a transcript in
the original sample than raw counts [8]. FPKM is calculated using the following formula

FPKM =

Where X is the raw count for a transcript, I; is the effective length of the transcript, and N

is the total number of counts.

2. Non-protein coding transcripts were removed from the dataset.



3. Transcripts not meaningfully observed in the dataset (> 70% measurements equal to 0)
were removed.

4. The data was log, transformed.

5. Each transcript was standardized across all samples, so that the mean for the transcript was
equal to 0 and the variance was equal to one. Le.,

X — i

i

K3

We also scaled Dasatinib IC50 values to have zero mean and unit variance.

4.3 Gene Meta-Features

We downloaded the MERGE (Mutation, Expression hubness, Regulator, Genomic copy number
variation, and mEthylation) prior feature data from the Supplement of [6]]. Here we provide a brief
description of how each of the prior features were originally calculated.

o FExpression hubness: SPARROW (SPARse selected expRessiOn regulators identified With
penalized regression), is a computational method for estimating a gene’s hubness purely
based on expression data from cancer patients. SPARROW employs a sparse statistical
model in which each gene’s expression level is modeled as a linear combination of a small
set of other genes (i.e., a sparse basis). A gene’s hubness is determined based on how
often the gene is chosen in the sparse basis for any other gene. To use gene hubness as a
MERGE feature, the the R data object (.rda) containing the SPARROW results for AML
from http://sparrow-35leelab.cs.washington.edu/datal was downloaded. The
sparrowl scores (the number of downstream genes) from the basesFreg|object were then
used as the expression hubness feature.

e Mutation: Significance measures of mutation frequencies for each gene measured in the Mut-
Sig2CV Analysis of the AML study from TCGA (http://firebrowse.org/7cohort=
LAML) were obtained. A p-value was assigned to each gene measuring the statistical signifi-
cance that the gene had mutated more often than expected by chance. — log; (p-value) was
used as the feature value.

o Genomic copy number variation: CNV measures (gdac.broadinstitute.org_
LAML-10TB.CopyNumber_Gistic2.Level_4.2015082100.0.0.tar.gz) were down-
loaded from http://gdac.broadinstitute.org/runs/analyses__2015_08_21/
data/LAML/20150821/. The file all_data_by_genes.txt found in the tar.gz file was
then used to assign 1 (CNV) or 0 (no CNV) to each gene. The CNV feature of a gene was
set to 1 if the gene was amplified or deleted by at least .05 in at least 20 of 191 patients
(~10%), and to O otherwise.

e Regulator: It is likely that genes known to regulate other genes are more reliable molecular
markers for therapeutic response than those that are not. As such, list of genes known
to have regulatory roles, including transcription factors, chromatin remodelers and signal
transduction genes, was constructed based on gene annotation databases [3]]. Based on this
list, a binary feature for each gene was generated by assigning 1 if the gene was on the list
and 0 otherwise.

o Methylation: DNA methylation measures (gdac.broadinstitute.org_LAML|
Methylation_Preprocess.Level_3.2015110100.0.0.tar.gz) were obtained
from http://gdac.broadinstitute.org/runs/stddata__2015_11_01/data/
LAML/20151101/. The file LAML .meth.by_mean.data. txt|in this tar.gz was then used
to obtain the average methylation levels for each gene across all patients.

5 Alzheimer’s Disease Experiments

5.1 Data Access

MSBB neuropathology data was obtained from the AMP-AD Knowledge Portal of Sage Bionetworks
through https://www.synapse.org/ with Synapse ID syn6101474. ROSMAP RNA-Seq data and
MSBB RNA-Seq were similarly obtained via Synapse IDs syn3505732 and syn7391833, respectively.
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5.2 Final Hyperparamter Values

LASSO:

a: 0.36

MERGE:

Learning rate: 5 - 10~°
Prior learning rate: 5 - 10~°

MLP (no prior):

Learning rate: 1-107°

MLP (noise prior):

Learning rate: 1-107°
Prior learning rate: 1-10~*

MLP (AD driver prior):

Learning rate: 1-107°
Prior learning rate: 1-10~*

MLP with meta-features (naive)

Learning rate: 1-107°

MLP (L1 regularization)

Learning rate: 1-107°
A (L1 regularization strength): 1- 1073

MLP (L2 regularization)

Learning rate: 1-107°
A (L2 regularization strength): 1- 1073

5.3 Data Preprocessing

RNA-seq values were preprocessed using the same procedure as in our AML experiments as described
in Section We also scaled our amyloid-/3 values to have zero mean and unit variance.

5.4 Gene Meta-Features

Genomic copy number variation: Values for CNV were reused from the AML driver feature
set as described in Section[4.3]

Regulator: Known regulator values were reused from the AML driver feature set as described
in Section

Methylation: DNA methylation measures (GSE80970_family.soft.gz) were obtained
from ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE80nnn/GSE80970/soft/.
The file HumanMethylation450_15017482_v1-2.csv was then used to obtain average
methylation levels for each gene across all patients.

Strength: For a weighted graph, Barrat et. al define in Barrat et al. [1] the strength of the
i-th node as the sum of the weights of all edges attached to the node. For the genes in
our AD RNA-seq data, we compute their strength using the edges in the HumanBase [4]]
brain tissue graph available at https://hb.flatironinstitute.org/download. For
our experiment we chose the “top edges” version of the graph.


GSE80970_family.soft.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE80nnn/GSE80970/soft/
HumanMethylation450_15017482_v1-2.csv
https://hb.flatironinstitute.org/download

6 Partial Dependence Plots

As discussed in the main text, we produced partial dependence plots to understand our DAPr model’s
behavior for the AML prediction task. We produced plots for three out of the five features (hubness,
mutation, and methylation); the other two (copy number variation, known regulator) were binary
variables and so we did not feel it appropriate to apply PDPs to analyze them.
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Figure 1: PDP for expression hubness

The first plot we produce (also seen in the main text) is for expression hubness (Figure [T). The
nonlinear trend seen here matches with prior biological knowledge [6]; after an initial buildup,
increases in expression hubness are consistently associated with higher feature importance. Our
PDP for mutation (Figure 2] left) reveals a similar trend that again agrees with prior knowledge. For
methylation (Figure [2] right) we see a different nonlinear trend. Rather than seeing an increase in
predicted importance after an intial buildup, we instead see a decrease. This trend also agrees with
prior knowledge. It is well-known that methylation inhibits gene expression [7], so we would expect
that expression values for genes with higher methylation values are less informative for our prediction
task.
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Figure 2: PDP for mutation (left) and methylation (right)
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