
Supplementary Information
In this section we expand on the arguments in the main text. Note that, for completeness,

some portions of the main text are repeated here.
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S1 Theoretical framework underlying noise-prune

We consider the N ×N coupling matrix of the linear system

dx

dt
= Ax+ b(t), (1)

and describe how to construct a sparse matrix Asparse whose spectrum (and hence dynamics)
are similar to A.

To measure the similarity of A and Asparse, we adopt the notion of spectral similarity
[1, 2] from the field of graph sparsification and require that for some small ε > 0,

|xT (Asparse − A)x| ≤ ε|xTAx| ∀x ∈ RN . (2)

The primary theoretical insights of this section are that (a) results on the sparsification
of graph Laplacians [1, 2] can be applied, with slight generalization, to pruning signed
symmetric diagonally-dominant linear neural networks and (b) that the covariance matrix
of the network when driven by noise provides appropriate pruning probabilities. We also
discuss what properties of the original network are preserved after sparsifying the matrix A,
as well as how these maintained properties are affected when the sampling probabilities are
changed.

S1.1 Sparsification of symmetric, diagonally-dominant networks

In this section we show how to construct spectral sparsifiers of A. We follow the proof of [1],
with some adaptation.

Let A be the coupling matrix of a linear system, as in Eq. 1. Note that in order for
the linear system to be stable, all the eigenvalues of A must have negative real part (and
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hence the matrix must be invertible). A non-invertible coupling matrix would correspond to
a network with an unrealistically long (i.e., infinite) time-constant.

We impose the further restrictions that A be a symmetric, diagonally-dominant matrix;
that is, Aij = Aji and |Aii| ≥

∑
j 6=i |Aij|. In the main text, we focused on the case where

this inequality was saturated (i.e., |Aii| =
∑

j 6=i |Aij|). Here, we expand the proof to include
a strictly diagonally-dominant A, thus satisfying |Aij| >

∑
j 6=i |Aij| (note that the argument

is essentially the same and also that both the original and matched diagonal cases of noise-
prune simply preserve any excess weight along the diagonal). The diagonal entries of A
reflect the intrinsic leak of activity and are negative. Combined with the strict diagonal-
dominance requirement, the negative diagonal also implies that the eigenvalues of A are
negative, as can be seen from, e.g., a Gershgorin disk argument. Note that the diagonal
dominance condition is stronger than the requirement of negative eigenvalues. In the event
that A satisfies |Aii| =

∑
j 6=i |Aij| as in the main text, invertibility is no longer guaranteed

by the Gershgorin disk argument but we assume invertibility based on the stability of the
equivalent linear system. We can also relax the invertibility condition by considering the
pseudoinverse of A and working in the subspace orthogonal to the nullspace of A (as done
for graph Laplacians [1]). To sum up, A is negative definite since it is symmetric with
negative eigenvalues.

For notational convenience, set B = −A (and note that B is positive definite). The non-
zero off-diagonal entries bij = −aij = −wij correspond to the connections in the network
(note that throughout wij refers to the weight in A, i.e., −bij; the argument can be rewritten
without introducing B at the cost of extra minus signs).

Edge decomposition For each of these undirected connections (i, j) with i > j, we
define the edge matrix X(i,j) by

X
(i,j)
k` =


|wij| if (k, l) = (i, i) or (j, j)

−wij if (k, l) = (i, j) or (j, i)

0 otherwise.

(3)

Note that there is no restriction on the sign of wij. Also notice that X(i,j) can be written
as vijv

T
ij where vij ∈ RN has ith entry

√
|wij| and jth entry − sgn(wij)

√
|wij|. Thus X(i,j)

a rank-1 matrix. Moreover, since the non-zero eigenvalue is positive, the matrix is positive
semidefinite. Also note that specifying i > j above is simply a manner of convention to not
double-count connections in the symmetric matrix.

We also define the matrix X(i,i) for all i to have only a single non-zero entry X
(i,i)
ii =

Bii −
∑

j 6=i |wij|. Because B is diagonally-dominant with positive diagonal, the single non-

zero entry of X(i,i) is positive, again implying that X(i,i) is rank-1 positive semidefinite. We
include these diagonal pieces in the sampling argument for completeness but will usually
simply treat them as fixed.

The original matrix B is the sum of these edge matrices, B =
∑

i≥j X
(i,j) (where the

notation
∑

i≥j sums over all existing edge pairs where i ≥ j).

Sampling edges Now, for i ≥ j, define the random matrix X̃ ij as

X̃ ij =

{
X(i,j)/pij with probability pij

0 otherwise,
(4)
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where 0 < pij ≤ 1 is some probability we will determine below. Observe that, regardless
of the choice of the pij’s, E[X̃ ij] = pijX

(i,j)/pij = X(i,j). Correspondingly, for any set of
probabilities, p, we can define the matrix Bsparse,p =

∑
i≥j X̃

ij and we have E[Bsparse,p] = B
(note that Bsparse,p will only be sparse if the pij are small).

Transformation to identity Analogous to Spielman & Srivastava (2011), we implement
their argument in our framework by first transforming B into the identity matrix I and
finding an appropriate approximation Ĩ, with the goal of transforming back and arriving
at our desired sparsifier Bsparse. This step is crucial for preserving the entire spectrum (as
required by Eq. 2), rather than only the largest eigenvalue (and leads to the diff-cov term
in the probabilities).

First observe that I = B−1/2BB−1/2, where B−1/2 is the matrix whose square is B−1

(B−1/2 exists since B is invertible and diagonalizable and moreover is real-valued since B is
positive definite).a Then, defining Y (i,j) = B−1/2X(i,j)B−1/2, we have

I = B−1/2BB−1/2 =
∑
i≥j

B−1/2X(i,j)B−1/2 =
∑
i≥j

Y (i,j). (5)

This gives motivation to define the random matrices Ỹ ij = B−1/2X̃ ijB−1/2 and Ĩ =
∑

i≥j Ỹ
ij.

Note that E(Ĩ) = I.
Now, for given 0 < ε < 1, our goal will be to choose pij in order to guarantee that

yT (1− ε)Iy ≤ yT Ĩy ≤ yT (1 + ε)Iy ∀y ∈ RN , (6)

with high probability (w.h.p.). If we can do so, then for a given x ∈ RN , we can set
y = B1/2x in order to arrive at, w.h.p.,

xT (1− ε)Bx ≤ xTBsparsex ≤ xT (1 + ε)Bx ∀x ∈ RN , (7)

where Bsparse = B−1/2ĨB−1/2 =
∑

i≥j X̃
ij, which provides the desired approximation.

Probabilities from matrix Chernoff bound We want our pij to be as small as possible
while still maintaining the inequalities Eq. 6, 7. To derive good choices for the pij’s, we
apply the matrix Chernoff bound [3–6] to bound the fluctuations of Ĩ =

∑
i≥j Ỹ

ij around its

expectation value, I. Let M be an upper bound on the Ỹ ij’s, so that 0 ≤ ||Ỹ ij||2 ≤M . Let
λmin and λmax indicate minimum and maximum eigenvalues. The bound then guarantees
that

P

[
λmin

(∑
i≥j

Ỹ ij

)
≤ (1− ε)

]
≤ N

(
e−ε

(1− ε)(1−ε)

)1/M

≤ Ne−ε
2/2M for 0 < ε < 1,

P

[
λmax

(∑
i≥j

Ỹ ij

)
≥ (1 + ε)

]
≤ N

(
eε

(1 + ε)(1+ε)

)1/M

≤ Ne−ε
2/3M for 0 < ε (8)

aIf the eigenvector decomposition of B is UDU−1 then B−1/2 can be constructed as UD−1/2U−1, where
the entries of D−1/2 are the inverse square roots of the corresponding entries of D).
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The hypothesis of the bound requires the spectral norm of the Ỹ ij’s to be uniformly
bounded across all edges; i.e., ||Ỹ ij|| ≤ M . Moreover ||Ỹ ij|| depends on 1/pij, so smaller
probabilities lead to a larger bound M . Thus we choose the pij in order to minimize M .

Since ||Ỹ ij|| is either 1
pij

∥∥Y (i,j)
∥∥ or 0, choose pij to equalize the upper bound on ||Ỹ ij||

across all i ≥ j:
pij = Kdeg

∥∥Y (i,j)
∥∥ = Kdeg||B−1/2X(i,j)B−1/2|| (9)

where Kdeg is some constant. This guarantees that ||Ỹ ij|| ≤ M = 1/Kdeg. Thus, if we take
Kdeg ≥ 4 log(N)/ε2, the probabilities in Eq. 8 are guaranteed to be smaller than 1/N and
1/N1/3, respectively. Consequently, this choice of probabilities guarantees that Eqs. 6, 7 are
satisfied w.h.p., as desired.

Note that the constant 4 is chosen somewhat arbitrarily here, with a larger constant
corresponding to faster-decaying probabilities in Eq. 8 but also a larger number of edges
expected to be sampled (since each Ỹ ij is less likely to take on the value of 0).

Bound on number of edges Since edge (i, j) is independently included with probability
pij, the expected number of edges in the network is 〈Nedges〉 =

∑
i>j pij (note the strict

inequality here, as i = j does not correspond to edges, but rather the leak in neuronal
activity).

We have ∑
i>j

pij ≤
∑
i≥j

pij = Kdeg

∑
i≥j

∥∥Y (i,j)
∥∥ = Kdeg

∑
i≥j

∥∥B−1/2X(i,j)B−1/2
∥∥ (10)

Note that Y (i,j) = uiju
T
ij, where uij = B−1/2vij and vij is the vector defined after Eq. 3.

Consequently, Y (i,j) is rank-1 with positive eigenvalue and
∥∥Y (i,j)

∥∥ = trY (i,j). This yields

∑
i≥j

∥∥Y (i,j)
∥∥ =

∑
i≥j

trY (i,j) = tr

(
B−1/2

∑
i≥j

X(i,j)B−1/2

)
= tr(B−1/2BB−1/2) = tr(I) = N.

(11)
Thus we have

〈Nedges〉 =
∑
i>j

pij =
∑
i>j

Kdeg

∥∥Y (i,j)
∥∥ ≤ NKdeg. (12)

Simple expression for probabilities Note that ||B−1/2X(i,j)B−1/2|| = tr
(
B−1/2X(i,j)B−1/2

)
=

tr
(
B−1X(i,j)

)
, again using the fact that the trace of a positive semi-definite rank-1 matrix

is its spectral norm, and that the trace is cyclic (and B−1/2B−1/2 = B−1 by definition). The
product B−1X(i,j) has only two non-zero diagonal terms: its ith diagonal element is given by
|wij|B−1

ii − wijB−1
ij and its jth diagonal element is given by −wijB−1

ji + |wij|B−1
jj . Using the

trivial decomposition wij = sgn (wij)|wij| and adding these two diagonal elements together,
we see that

pij = Kdeg tr
(
B−1X(i,j)

)
= Kdeg|wij|(B−1

ii +B−1
jj − sgn(wij)2B

−1
ij ), (13)

where we note that B−1
ij = B−1

ji , since the inverse of a symmetric matrix is symmetric.
Similarly, the pii are observed to be

pii = Kdeg||B−1/2X(i,i)B−1/2|| = Kdeg tr
(
B−1/2X(i,i)B−1/2

)
= Kdeg tr

(
B−1X(i,i)

)
(14)
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where we again use the cyclic property of the trace. Since the product B−1X(i,i) has only the
single non-zero diagonal element B−1

ii (Bii −
∑

j 6=i |wij|), we arrive at the simple expression

pii = KdegB
−1
ii

(
Bii −

∑
j 6=i |wij|

)
. Note that in practice we simply set this probability to 1,

but include it here for completeness.
Finally, recall that B = −A and note that Asparse = −Bsparse is the outcome of the

pruning applied to A. Substituting for B in terms of A, the sampling probabilities are

pij = −Kdeg|wij|(A−1
ii + A−1

jj − sign(wij)2A
−1
ij ) (15)

S1.2 Sampling probabilities from noise-driven covariance

The matrix inverse term −A−1 in Eq. 15 has a natural interpretation in terms of the
covariance matrix of the corresponding linear dynamical system when driven by white noise.
When the network is driven by noise, the dynamics are

dx

dt
= Ax+ σξ(t), (16)

where ξ is unit variance Gaussian white-noise at each neuron and σ is the standard deviation
of the noise (note that this is a stochastic differential equation).

The covariance matrix of the resulting dynamics is given as the solution to the Lyapunov
equation [7, 8]:

AC + CA∗ = −σ2I. (17)

Assume that A is normal, meaning that A∗A = AA∗, where A∗ is the conjugate transpose
of A. Note that all symmetric matrices are normal. Since A is normal it can be diagonalized
as A = UΛU∗, where Λ is a diagonal matrix of eigenvalues and U is unitary.

Substituting the decomposition of A into Eq. 17 we have

−σ2I = UΛU∗C + CUΛ∗U∗ (18)

so that multiplying this equation through by U∗ on the left and U on the right and defining
C̃ = U∗CU , we arrive at

−σ2I = ΛU∗CU + U∗CUΛ∗ = ΛC̃ + C̃Λ∗. (19)

Since Λ is diagonal, the equation can be solved for the entries of C̃. C̃ is diagonal, with
diagonal entries C̃ii = − σ2

λi+λ∗i
, where λi and λ∗i are the i-th diagonal entries of Λ and Λ∗

respectively (i.e., the i-th eigenvalue of A). By definition C = UC̃U∗ and thus C has the
same eigenvectors as A, with eigenvalues given by the diagonal entries of C̃.

Define the symmetric part of A to be Asymm = 1
2

(A+ A∗) and observe that this has

eigenvalues 1
2

(λi + λ∗i ). Thus, C = −σ2

2
A−1
symm. In particular, for the symmetric matrices

considered in the previous section, C = −σ2

2
A−1. Substituting into the theoretically-derived

form for the sampling rule and absorbing σ2

2
into the overall constant yields

pij = K|wij|(Cii + Cjj − sign(wij)2Cij) (20)
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S1.3 What is preserved

The notion of spectral sparsification that we adopt from the graph Laplacian literature [2, 1]
(see Eq. 2) is quite strong and here we briefly discuss some of the properties it entails.

Recall that, given 0 < ε < 1, Eq. 7 guarantees that

xT (1− ε)Bx ≤ xTBsparsex ≤ xT (1 + ε)Bx ∀x ∈ RN , (21)

so that substituting A = −B and rearranging yields the approximation from the main text

|xT (Asparse − A)x| ≤ ε|xTAx| ∀x ∈ RN , (22)

where we use the fact that A is negative definite to see that −xTAx = |xTAx|.
By definition, Eq. 22 approximately preserves A as a quadratic form and thus apart from

the eigenvalues and products described below, it also preserves properties of the dynamical
system that depend on A as a quadratic form, such as the resting state variances, the diagonal
elements of A and the differences-of-covariances (diff-covs).

Eigenvalues Let λ1 ≤ λ2 ≤ · · · ≤ λN and λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N be the eigenvalues of B
and Bsparse respectively.

Let S denote the collection of subspaces U ⊂ RN with dimU = k, and consider the
functions fB, fBsparse : S → R given by

fB(U) = max
x∈U
‖x‖=1

xTBx, fBsparse(U) = max
x∈U
‖x‖=1

xTBsparsex. (23)

Let U ∈ S be a given subspace of RN with dimension k. Since (1− ε)xTBx ≤ xTBsparsex ≤
(1 + ε)xTBx for all x ∈ RN , we can take the maximum over all x ∈ U ⊂ RN with unit norm
to see that

(1− ε)fB(U) ≤ fBsparse(U) ≤ (1 + ε)fB(U). (24)

Since this inequality holds for any subspace, taking a minimum over all subspaces in S still
preserves the inequality:

(1− ε) min
U∈S

fB(U) ≤ min
U∈S

fBsparse(U) ≤ (1 + ε) min
U∈S

fB(U). (25)

Thus, by the Courant-Fischer Theorem, we arrive at

(1− ε)λk ≤ λ̃k ≤ (1 + ε)λk, ∀1 ≤ k ≤ N (26)

Thus all eigenvalues are preserved within a multiplicative factor of ε.
Eigenvectors Here we show that the angle between eigenvectors is preserved up to a

factor depending on the arbitrarily small degree of spectral approximation ε. First, note
that a rearrangement of the Davis-Kahan theorem states√

1− 4||A− Asparse||2
δ2
i

≤ cos∠(vi, ṽi), for all i (27)

where vi and ṽi are the ith eigenvectors of A and Asparse respectively, and

δi = min
j:j 6=i
|λi(A)− λj(A)| > 0. (28)
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Fix γ > 0. Now, setting ε = γ
2λmax

and constructing the corresponding Asparse, we know

||A− Asparse|| = sup
||x||=1

|xT (A− Asparse)x| ≤ sup
||x||=1

ε|xTAx| = ελmax =
γ

2
(29)

where the first equality holds since A− Asparse is Hermitian. Thus, we have√
1− γ2

δ2
i

≤

√
1− 4||A− Asparse||2

δ2
i

≤ cos∠(vi, ṽi). (30)

Since γ > 0 was arbitrary, this quantity can be made arbitrarily close to 1. That is, we can
guarantee that corresponding eigenvectors of A and Asp point in nearly the same direction.

Preserved matrix-vector products First, note that there exist N linearly independent
vectors {w1, . . . ,wN} (i.e., a basis for RN) for which the matrix vector products are preserved
between B and Bsparse (or A and Asparse) to within ε. Let vk be an eigenvector of Ĩ with
eigenvalue 1 + δk (note that, from Eq. 26, |δk| ≤ ε). Define wk = B−1/2vk and note that
Bwk = B1/2vk. Now Bsparsewk = B1/2ĨB1/2wk = B1/2Ĩvk = (1+δk)B

1/2vk = (1+δk)Bwk.
Consequently, ||(B −Bsparse)wk|| ≤ ε||Bwk||.

Second, note that the eigenspaces of B and Bsparse are close, as we show empirically in
Fig. 2 of the main text, though precise bounds will depend on how close the corresponding
eigenvalue is to another eigenvalue in the spectrum.

Finally, scalar concentration of measure arguments suggests that a rule of the form in
Eq. 4 should preserve dense matrix-vector products, provided the entries in the matrix do
not grow too large (as for the matrix concentration of measure case). Note, however, that
the products of B and Bsparse with sparse vectors may be quite different (as will be true
for any sparse matrix approximation), because these products are determined by the sum of
only a few entries in B and Bsparse.

S1.4 Partial sampling and robustness to changing probabilities

Oversampling The Chernoff bound in Eq. 8 depends on the sampling probabilities only
through the upper bound on the norm of the edge matrices, requiring 0 ≤ ||Yij|| ≤ 1/Kdeg.
In particular, if the derived pij for an edge is < 1 then the same bound holds for any p̃ij ≥ pij
(see below for pij > 1). Consequently, the probabilities described in Eq. 9 above are a lower
bound, for a given desired degree of approximation (ε). If some of the edges are sampled
with a greater probability than the theoretical result derived, the approximation equation
Eq. 9 will still hold (though some of the terms in the sum of Eq. 5 will have norm less than
1/Kdeg).

The only consequence of over-sampling synapses is that the number of connections in
the pruned network will be greater, but the increase is as well behaved as could be desired,
corresponding exactly to the degree of over-sampling as 〈Nedges〉 =

∑
i>j pij. Furthermore,

there is no harm in setting all of the pii to 1, as these probabilities do not correspond to
edges, but rather the diagonal terms, which relate to the intrinsic leak in the activity of
neurons in Eq. 1.

Moreover, as long as the sampling probabilities are above the theoretically-derived bound,
they can be chosen completely independently at each synapse and do not need to compensate
for each other in any way.
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Misspecified probabilities Sampling-based sparsification is quite robust to misspecified
sampling probabilities [1]. Again, this robustness emerges because probabilities only affect
the Chernoff bound through their effect on the norm of the edge matrices. If some synapses
are under-sampled using probability p̂ij = αpij, with α < 1, the bound on the ||Ỹ ij||’s
inflates by a factor of 1/α and the degree of approximation becomes ε̂ = ε/

√
α while pre-

serving the same bound on the probabilities in Eq. 8 (thus maintaining the likelihood of our
approximation occuring w.h.p.). To see this, observe that

P [λmin ≤ (1− ε̂)] ≤ N
(
e−ε̂

2/2
)α/M

= N
(
e−ε

2/2
)1/M

, (31)

and similarly for the other inequality in Eq. 8. Note here that we could instead choose to
maintain our original degree of approximation ε, but this would correspond to the larger
upper bound

P [λmin ≤ (1− ε)] ≤ N
(
e−ε

2/2
)α/M

(32)

which means that Eq. 7 would occur with lower probability.

Fixed edges The sampling argument can be applied to only a subset of edges in several
ways. A particularly natural approach is to simply set the sampling probability for a fixed
edge p̃ij = 1 and note that, if pij < 1 the bound ||Ỹ ij|| ≤ M still holds and so do the
subsequent theoretical results.

A second way to apply the argument to a subset of edges is to write the matrix A
as Afixed + Asample, where Afixed is the submatrix of edges that are to be preserved and
Asample is the submatrix of edges to be either pruned or strengthened. The argument in
Section S1.1 can then be applied to Asample (note that Asample is diagonally dominant and
positive semidefinite). This formulation has the disadvantage that the predicted sampling
probabilities depend on the covariance matrix determined by Asample rather than A, but this
covariance matrix may be natural in certain contexts.

Furthermore, while the diagonal terms sampled with probability pii do not correspond to
edges, we can still fix them with no harm to our theoretical results (i.e., set pii = 1 as noted
earlier in the oversampling paragraph of this section).

Synapses with probabilities greater than 1 A calculated probability term for a synapse
pij that is > 1 can be handled in two ways. One solution is to convert each synaptic weight
into pieces with predicted probability < 1 and rewrite the sum in Eq. 5 as involving multiple
pieces corresponding to the edge (i, j) each sampled with probability 1. Note that this will
increase Kdeg slightly but does not change the actual form of the sampling rule (the edge is
just preserved). A second approach is to split the matrix into a deterministic and a sampled
piece, and apply the argument to the sampled piece (as in the argument for fixed edges
above). Again this has the drawback that the predicted sampling probabilities would not be
given by the covariance matrix of the entire network.
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S2 Extensions

S2.1 Near-diagonally-dominant networks

Let the matrix A be a (not necessarily diagonally-dominant) symmetric negative definite
matrix corresponding to the coupling matrix of a linear system such as in Eq. 1. We analyze
the effect of applying noise-prune to A in terms of its distance from a diagonally dominant
matrix.

As before, we let B = −A and analyze the effect of the rule on B. Note that the
noise-driven covariance matrix of the linear system C ∝ −A−1 = B−1, and that the sam-
pling probabilities yielded by noise-prune are pij = K|wij|(Cii + Cjj − 2 sgn(wij)Cij) =
Kdeg|wij|(B−1

ii + B−1
jj − 2 sgn(wij)B

−1
ij ) for i > j. We will also set any excess diagonal prob-

abilities pii = 1 (note that this is implicitly done in both the original and matched diagonal
settings of noise-prune in the main paper).

Set γ > 0 and define the matrix Bγ = B+γI. Let B have eigenvalues λk and eigenvectors
vk and observe that Bγ has eigenvalues λi+γ and the same eigenvectors as B. Moreover, note
that applying noise-prune to B with some set of probabilities to yield Bsparse is equivalent to
applying noise-prune to Bγ with the same set of probabilities to yield Bsparse

γ = Bsparse + γI
(though these are not the optimal probabilities for Bγ).

Now take γ large enough so that Bγ is diagonally dominant (the approximation described
below will be good if γ is small). The framework described in Section S1.1 can then be applied

to Bγ and the probabilities saturating the Chernoff bound are p
(γ)
ij = Kdeg|wij|([Bγ]

−1
ii +

[Bγ]
−1
jj − 2 sgn(wij)[Bγ]

−1
ij ).

In particular, note that

[Bγ]
−1
ij =

(∑
k

1

λk + γ
vkv

T
k

)
ij

=
∑
k

1

λk + γ

(
vkv

T
k

)
ij

=
∑
k

1

λk + γ
(vk)i(vk)j ∀i, j (33)

and similarly

B−1
ij =

(∑
k

1

λk
vkv

T
k

)
ij

=
∑
k

1

λk

(
vkv

T
k

)
ij

=
∑
k

1

λk
(vk)i(vk)j ∀i, j, (34)

where (vk)` denotes the `th entry of the kth eigenvector vk. Then we can see that, for i > j,

p
(γ)
ij = Kdeg|wij|

∑
k

1

λk + γ

(
(vk)

2
i + (vk)

2
j − 2 sgn(wij)(vk)i(vk)j

)
= Kdeg|wij|

∑
k

1

λk + γ
((vk)i − sgn(wij)(vk)j)

2

≤ Kdeg|wij|
∑
k

1

λk
((vk)i − sgn(wij)(vk)j)

2

= pij,

where the inequality follows from the fact that 1
λk+γ

≤ 1
λk

and the rest of the terms in the
expression are all nonnegative.
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Thus p
(γ)
ij ≤ pij for all i ≥ j and sparsifying Bγ using the probabilities pij yields Eq. 7

for at most the same degree of error ε we would get if we used the p
(γ)
ij ’s instead (see Section

S1.4 for more details on oversampling). That is,

(1− ε)xTBγx ≤ xT (Bγ)
sparsex ≤ (1 + ε)xTBγx ∀x ∈ RN . (35)

Now observing that (Bγ)
sparse = Bsparse + γI allows us to subtract xTγIx through our

inequality to arrive at

(1− ε)xTBx− εγxTx ≤ xTBsparsex ≤ (1 + ε)xTBx+ εγxTx ∀x ∈ RN . (36)

In other words, sparsifying B using the same probabilities we used for Bγ guarantees a result
similar to that of Eq. 7, but with an additional additive error of εγxTx. In particular, if x
has unit norm then the additive error is simply εγ.

S2.2 Rectified linear units

Define the rectified linear activation function [·]+ = max[0, ·] and consider the recurrent
neural network

dx

dt
= −Dx+ [Wx+ b(t)]+. (37)

As before, define A = −D + W , and let Asparse be the result of applying noise-prune to A
using the probabilities from the linear network defined by A (so that Eq. 7 holds for A and
Asparse).

Let Γ(t) = {i :
∑

jWijxj+bj(t) > 0} be the indices of neurons that receive suprathreshold
input at time t. Define AΓ(t) and AsparseΓ(t) to be the submatrices produced by removing the

rows and columns of A and Asparse corresponding to indices not in Γ(t). We will show that
the dynamics of the network in Eq. 37 are approximately determined by the set of linear
systems (indexed by t) with coupling matrices AΓ(t), A

sparse
Γ(t) . In other words, the dynamics

of a rectified linear network switch among the dynamics of a set of linear networks, with the
appropriate linear network at a moment in time determined by the subset of neurons that
receive suprathreshold input (see [9, 10] for more on this argument).

For convenience, let Γ(t)c be the complement of Γ(t); that is, Γ(t)c is the collection of
neurons that receive zero input. The neurons in Γ(t)c either have zero activity (and thus can
be ignored) or have nonzero activity but receive zero input (and thus contribute feedforward
input to the rest of the network that can be absorbed into the input vector). Define xΓ(t)

and bΓ(t) to be the vectors produced by removing the entries of x and b corresponding to
the indices in Γ(t)c, as well as xΓ(t)c to be the vector produced by removing the entries of x
corresponding to the indices in Γ(t). Lastly, define δbΓ(t) to be the feedforward contribution
of xΓ(t)c (more precisely, the ith entry of this vector is given by

∑
j∈Γ(t)c Wijxj with i ∈ Γ(t)

listed in increasing order) that we will absorb into the new input vector for our smaller
system in R|Γ(t)|, defined to be b̃Γ(t) = bΓ(t) + δbΓ(t).

Now the dynamics of the network in some small time interval around t are determined
by the linear system,

dxΓ(t)

dt
= AΓ(t)xΓ(t) + b̃Γ(t). (38)
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And the nodes in Γ(t)c either have 0 activity or are decaying to 0 with the leak time constant.
Note that Eq. 7 holds for AΓ(t), A

sparse
Γ(t) as well. Let Γ(t, j) be the index of the j-th

active neuron at time t. Given xΓ(t) ∈ R|Γ(t)|, consider the natural extension vector x ∈
RN whose entry in Γ(t, j) is the j entry of xΓ(t) and whose entries in Γ(t)c are 0. Then
xTΓ(t)A

sparse
Γ(t) xΓ(t) = xTAsparsex (and similarly, xTΓ(t)AΓ(t)xΓ(t) = xTAx), so the fact that Eq.

7 holds for A,Asparse implies that it holds for AΓ(t), A
sparse
Γ(t) (for all t). Thus, among other

quantities, the spectrum of AΓ(t) is approximately preserved (to within ε) by AsparseΓ(t) . Thus,
we see that noise-prune preserves the dynamics of linear systems described the submatrices
AΓ(t). Finally, b̃Γ(t) depends on the weights through δbΓ(t), which may be perturbed in the
sparse system, though it is preserved in expectation. However, perturbations are likely to be
small because this additional feedforward input comes from the small subset of low-activity
neurons in xΓ(t)c that receive sub-threshold input and are approaching zero activity but
have not completely decayed yet (which they do so with time-constant given by the leak).
In short, the dynamics of a rectified linear network are approximately preserved when its
coupling matrix is sparsified in the same manner as that of a linear network.
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