
Supplementary Materials: Neural FFTs for Universal
Texture Image Synthesis

Morteza Mardani, Guilin Liu, Aysegul Dundar, Edward Liu, Andrew Tao,
Bryan Catanzaro ∗

NVIDIA
{mmardani,adundar,guilinl,edliu,atao,bcatanzaro}@nvidia.com

In order to further evaluate our findings in the main paper, we provide additional supporting results
and details. Unless otherwise stated, the evaluation setup mimics the setup adopted in the main paper.
The list of contents is as follows:

• FFT derivations for texture synthesis (section 1)

• Further discussion about evaluation metrics (section 2)

• Additional evaluations and examples for 2x synthesis (section 3)

• Additional evaluations and examples for 4x synthesis (section 4)

• Examples of feature maps (section 5)

• Comparison with image quilting (section 6)

• Diversity (section 7)

1 Texture Syntheis as FFT Upsampling

1.1 FFT and IFFT definitions

For a 2D function x(n1, n2) defined over the grid points [N1] × [N2], discrete Fourier transform
(DFT) is defined as

X(k1, k2) :=
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2) exp[−2πj(k1n1/N + k2n2/N)] (1)

Note, fast Fourier transform (FFT) is an efficient implementation of DFT. To ease the exposition,
throughout the main paper and the supplementary document, we refer to Fourier transform as FFT.
Accordingly, Inverse FFT (IFFT) is also defined over the [N1]× [N2] grid as

x(n1, n2) :=
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

X(k1, k2) exp[2πj(k1n1/N + k2n2/N)] (2)

1.2 FFT downsampling

In order to derive the relation X(k1, k2) = Y (Lk1, Lk2) in equation (3) of the main paper, we begin
with the FFT definition for y as

Y (k1, k2) =
1

(LN)2

LN−1∑
n1=0

LN−1∑
n2=0

y(n1, n2) exp[−2πj(k1n1/LN + k2n2/LN)] (3)

∗The first two authors equally contributed.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Recall the periodic function y from equation (1) of the main paper as follows

y(n1, n2) =

L−1∑
l1=0

L−1∑
l2=0

x(n1 − l1N,n2 − l2N) (4)

Plugging (4) into (3), one arrives at

Y (k1, k2) =
1

(LN)2

LN−1∑
n1=0

LN−1∑
n2=0

L−1∑
l1=0

L−1∑
l2=0

x(n1 − lN, n2 − lN) exp[−2πj(k1n1/LN + k2n2/LN)]

After re-arranging the summation terms, and limiting their ranges to non-zero elements, we obtain

Y (k1, k2)

=
1

(LN)2

L−1∑
l1=0

L−1∑
l2=0

(l1+1)N−1∑
n1=l1N

(l2+1)N−1∑
n2=l2N

x(n1 − l1N,n2 − l2N) exp[−2πj(k1n1/LN + k2n2/LN)]

Now, defining the change of variable n′1 := n1 − l1N and n′2 := n2 − l2N yields

Y (k1, k2)

=
1

(LN)2

L−1∑
l1=0

L−1∑
l2=0

N−1∑
n′
1=0

N−1∑
n′
2=0

x(n′1, n
′
2) exp[−2πj(k1n′1/LN + k2n

′
2/LN + k1l1/L+ k2l2/L)]

Since exp(2πjk) = 1 for any integer k, it is easy to see that

Y (Lk1, Lk2) =
1

(LN)2

L−1∑
l1=0

L−1∑
l2=0

N−1∑
n′
1=0

N−1∑
n′
2=0

x(n′1, n
′
2) exp[−2πj(k1n′1/N + k2n

′
2/N)]

=
1

(LN)2
× L2 ×N2 ×X(k1, k2)

= X(k1, k2)

1.3 Additional examples for FFT upsampling

To further confirm the main idea in this paper about FFT upsampling, in addition to Fig. 1 (bottom)
in the main paper, we provide additional examples below.

Figure 1: . Gray-scale image, DFT magnitude (in log domain), and FFT phase from left to right. The target and
input images are shown on top and bottom parts.

2



2 Further discussion about evaluation metrics

There is no gold standard image quality metric, and most previous work on texture synthesis only
provide visual comparison. As pointed out in section 5 of the main paper, we however provide a
diverse array of eight metrics as each single metric could have its own bias. We included pair-wise
similarity metrics such as SSIM and LPIPS, but it is apparent that they are not the best metrics for
synthesis (where there are several good solutions), and thus we provided FID, c-FID, and c-LPIPS as
well to compare the distribution of input/ground-truth images with the synthesized images. In order to
compute the FID score, we measure the Frechet distance between the Inception-v3 statistics for a set
of 200 synthesized images (resolution: 256x256) and the corresponding set of original (ground-truth,
resolution: 256x256) images based on (3).

3 Additional 2× Synthesis Results

In this section we first report the quantitative quality metrics of our proposed neural FFT method for
a a large test dataset of 5,000 examples, and compare with some state-of-the-art methods. We then
illustrate representative texture synthesis outputs for our neural FFT method and compare with the
exisitng methods.

3.1 Quantitative quality scores for 5,000 test dataset

Table I below lists the average quality metrics for 5,000 test examples. We compare with self-tuning,
pix2pix, and WCT methods as representative state-of-the-art methods. We do not include other
methods, reported in Table I of the main paper with 200 examples, as they are slow and collecting
5,000 outputs becomes quite time consuming.

Table 1: Performance of different methods for 2x synthesis averaged over a test set with 5,000
examples.

GMS c-GMS SSIM FID c-FID LPIPS c-LPIPS
Self-tuning 0.0012 0.0015 0.308 32.55 0.514 0.36 0.29
pix2pix 0.00095 0.00154 0.32 26.71 0.578 0.338 0.2732
WCT 0.00145 0.0019 0.302 63.1 0.468 0.3655 0.2915
Ours 0.00094 0.0012 0.495 20.74 0.2449 0.2586 0.26

3.2 Synthesized images

In addition to Fig. 5 of the main paper for 128 × 128 → 256 × 256 synthesis, a few more texture
images are depicted in Fig. 2 to confirm the subjective quality of our neural FFT based synthesis.

A note about Texture CNN. It takes the ground truth as the input in the code provided by the
authors. It cannot directly take the small 128x128 texture patch as the input. In order to make a fair
comparison with our method we examined two scenarions: scenario 1) we replicated the input to
create a 256x256 input image as the style; scenario 2) we upsampled the input to reach the 256x256
resolution. However, in both cases texture CNN fails to synthesize reasonable quality textures. For
scenario 1, the synthesized texture looks tiled. For scenario 2, the synthesized texture also becomes
upscaled. Therefore, we present the results for the texture CNN scheme where the ground truth as the
input, and the synthesizer aims to reproduce a different texture image of the same size.

4 Additional 4× Synthesis Results

4.1 synthesized textures

In addition to Fig. 6 of the main paper for 128 × 128 → 512 × 512 synthesis, a few more texture
images are depicted in Fig. 3 to confirm the subjective quality of our neural FFT based synthesis.

3



5 Feature maps

As stated in the main paper, we perform FFT upsampling in the feature space as it tends to exhibit
a lower dynamic range, and be smoother. To further validate this idea, for a representative input
128x128 texture, the feature maps are depicted in Fig. 4. The bottom figure shows 256 encoded
feature maps of size 16×16. For each 16x16 feature map the FFT magnitude and phase are also
shown. The top row also shows the histogram of FFT coefficients (real and imaginary) parts for a few
representative 16x16 feature maps.

6 Comparison with image quilting

For the sake of completeness we compare with image quilting (1) as one of the early pioneering
methods for texture synthesis. Using the publicly available code 2, for two representative examples,
the synthesis results are shown in Fig. 5. As evident from Fig. 5, image quilting performs poorly in
synthesizing large-scale structures and multi-scale texture details. Similar observations have been
made by prior works e.g., in (4).

7 Diversity

Notice that the primary focus of this work is to maintain structural fidelity. Producing a diverse
collection of outputs from a single input, despite its importance, is not the central goal. Inspired by
random phase noise models (5; 2), one simple approach is to perturb the FFT phase of feature maps
(at different scales) prior to upsampling. Using variational training, one can then randomize phase in
a controllable manner to generate a variety of output textures. This needs a systematic study that we
leave for our future research.

References
[1] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In Proceedings

of the 28th annual conference on Computer graphics and interactive techniques, pages 341–346,
2001.

[2] B. Galerne, Y. Gousseau, and J.-M. Morel. Random phase textures: Theory and synthesis. IEEE
Transactions on image processing, 20(1):257–267, 2010.

[3] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local Nash equilibrium. In NIPS, 2017.

[4] A. Kaspar, B. Neubert, D. Lischinski, M. Pauly, and J. Kopf. Self tuning texture optimization. In
Computer Graphics Forum, volume 34, pages 349–359. Wiley Online Library, 2015.

[5] G.-S. Xia, S. Ferradans, G. Peyré, and J.-F. Aujol. Synthesizing and mixing stationary gaussian
texture models. SIAM Journal on Imaging Sciences, 7(1):476–508, 2014.

2https://github.com/rohitrango/Image-Quilting-for-Texture-Synthesis

4



input ours self-tuning Text. Mixer pix2pixHD sinGAN WCT Texture CNN∗ ground truth

Figure 2: Results of different approaches on 128×128 to 256×256 texture synthesis. Texture CNN∗
takes the exact-size ground truth for test images.

5



input ours self-tuning Text. Mixer pix2pixHD sinGAN WCT

Figure 3: Results of different approaches on (128× 128) −→ (512× 512) texture synthesis.

6



Figure 4: . Top: input texture and the histogram for some representative feature maps. Bottom: 256 feature
maps of size 16x16 along with their FFT magnitude and phase. FFT of feature maps looks smooth.

inputs ours image quilting ours image quilting
Figure 5: Representative examples for neural FFT versus image quilting.

7


	Texture Syntheis as FFT Upsampling
	FFT and IFFT definitions
	FFT downsampling
	Additional examples for FFT upsampling

	Further discussion about evaluation metrics
	Additional 2 Synthesis Results
	Quantitative quality scores for 5,000 test dataset
	Synthesized images

	Additional 4 Synthesis Results
	synthesized textures

	Feature maps
	Comparison with image quilting
	Diversity

