
Calibration of Shared Equilibria in General Sum
Partially Observable Markov Games - Supplementary

Nelson Vadori, Sumitra Ganesh, Prashant Reddy, Manuela Veloso
J.P. Morgan AI Research

{nelson.n.vadori, sumitra.ganesh, prashant.reddy, manuela.veloso}@jpmorgan.com

A Proofs

Lemma 2. Every extended transitive game with payoff f has at least one (f, ε)-self-play sequence
for every ε > 0, and every such sequence is finite.

Proof. First note that such a game has at least one (f, ε)-self-play sequence for every ε > 0 since
every (x, x) is a (f, ε)-self-play sequence of size 0 (cf. definition 2). Then, let (xn, yn) be a (f, ε)-
self-play sequence. By definition of the self-play sequence we have f(x2n+1, x2n) > f(x2n, x2n)+ε.
By extended transitivity (cf. assumption 1) this implies T (x2n+1) > T (x2n) + δε. But x2n+1 =
x2n+2 by definition of the self-play sequence, hence T (x2n+2) > T (x2n) + δε. By induction
T (x2n) > T (x0) + nδε for n ≥ 1. If the sequence is not finite and since δε > 0, one can take the
limit as n→∞ and get a contradiction, since T is bounded by extended transitivity assumption.

Theorem 2. An extended transitive game with payoff f has a symmetric pure strategy ε−Nash
equilibrium for every ε > 0, which further can be reached within a finite number of steps following a
(f, ε)-self-play sequence.

Proof. Let ε > 0. Take a (f, ε)-self-play sequence. By lemma 2, such a sequence exists and is finite,
hence one may take a (f, ε)-self-play sequence of maximal size, say 2Nε. Assume that its end point
(x, x) is not an ε−Nash equilibrium. Then ∃y: f(y, x) > f(x, x) + ε, which means that one can
extend the (f, ε)-self-play sequence to size 2Nε + 2 with entries (y, x) and (y, y), which violates the
fact that such a sequence was taken of maximal size.

Theorem 3. An extended transitive game with continuous payoff f and compact strategy set has a
symmetric pure strategy Nash equilibrium.

Proof. By theorem 2, take a sequence of εn-Nash equilibria with εn → 0 and corresponding
(f, εn)-self-play sequence endpoints (xn, xn). By compactness assumption, this sequence has a
converging subsequence (xmn

, xmn
), whose limit point (x∗, x∗) belongs to the strategy set. We have

by definition of εmn
-Nash equilibrium that f(xmn

, xmn
) ≥ supy f(y, xmn

)− εmn
. Taking the limit

as n→∞ and using continuity of f , we get f(x∗, x∗) ≥ supy f(y, x∗), which shows that (x∗, x∗)
is a symmetric pure strategy Nash equilibrium.

Theorem 1. Let Λ be a supertype profile. Assume that the symmetric 2-player game with pure
strategy set X and payoff V̂ is extended transitive. Then, there exists an ε−shared equilibrium for
every ε > 0, which further can be reached within a finite number of steps following a (V̂ , ε)-self-play
sequence. Further, if S ,A and Sλ are finite and the rewardsR are bounded, then there exists a shared
equilibrium. In particular, if (πθn)n≥0 is a sequence of policies obtained following the gradient
update (4) with V̂ (πθn+1

, πθn) > V̂ (πθn , πθn) + ε, then (πθn)n≥0 generates a finite (V̂ , ε)-self-play
sequence and its endpoint (πε, πε) is an ε−shared equilibrium.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Proof. The first part of the theorem follows from theorem 2. Then, we have by assumption that S , A,
Sλ are finite. Denote m := |S| · |A| · |Sλ|. In that case X is given by:

X = {(xs,λa) ∈ [0, 1]m : ∀s ∈ [1, |S|], λ ∈ [1, |Sλ|],
|A|∑
a=1

xs,λa = 1}

X is a closed and bounded subset of [0, 1]m, hence by Heine–Borel theorem it is compact. Note
that closedness comes from the fact that summation to 1 is preserved by passing to the limit. By
assumption, the rewards are bounded, so by lemma 1, VΛi

is continuous for all i, which yields
continuity of V̂ , hence we can apply theorem 3 to conclude.

Finally, if (πθn)n≥0 is a sequence of policies obtained following the gradient update (4) with
V̂ (πθn+1 , πθn) > V̂ (πθn , πθn) + ε, then the self-play sequence generated by (πθn)n≥0 is finite by
lemma 2, and its endpoint is necessarily a symmetric pure strategy ε-Nash equilibrium according to
the proof of theorem 2, hence an ε-shared equilibrium.

Lemma 1. Assume that the rewards R are bounded, and that S, A and Sλ are finite. Then VΛi
is

continuous on X × X for all i, where X is equipped with the total variation metric.

Proof. Since by assumption S, A and Sλ are finite, we will use interchangeably sum and integral
over these spaces. Let us denote the total variation metric for probability measures π1, π2 on X :

ρTV (π1, π2) :=
1

2
max
s,λ

∑
a∈A
|π1(a|s, λ)− π2(a|s, λ)|

and let us equip the product space X × X with the metric:
ρTV ((π1, π2), (π3, π4)) := ρTV (π1, π3) + ρTV (π2, π4).

Remember that z(i)
t := (s

(i)
t , a

(i)
t , λi). Let:

VΛi(π1, π2, s,λ) := E
a
(i)
t ∼π1(·|·,λi), a

(j)
t ∼π2(·|·,λj)

[∞∑
t=0

γtR(z
(i)
t , z

(−i)
t)|s0 = s

]
, j 6= i,

so that:

VΛi(π1, π2) =

∫
s

∫
λ

VΛi(π1, π2, s,λ) ·Πn
j=1[µ0

λj
(dsj)pΛj (dλj)]

Then we have:

VΛi
(π1, π2, s,λ) =

∫
a

R(z(i), z(−i))π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)

+ γ

∫
a

∫
s′
T (z, ds′)VΛi(π1, π2)(s′,λ)π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)

The goal is to compute |VΛi(π1, π2, s,λ) − VΛi(π3, π4, s,λ)| and show that the latter is small
provided that ρTV ((π1, π2), (π3, π4)) is small. Let us use the notation:

c1(π1, π2) :=

∫
a

R(z(i), z(−i))π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)

Since by assumption |R| is bounded, say byRmax we have:
|c1(π1, π2)− c1(π3, π4)|

≤ Rmax
∫
a

|π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)− π3(dai|si, λi)Πj 6=iπ4(daj |sj , λj)|

≤ Rmax
∫
ai

|π1(dai|si, λi)− π3(dai|si, λi)|

+Rmax
∫
a−i

|Πj 6=iπ2(daj |sj , λj)−Πj 6=iπ4(daj |sj , λj)|

≤ 2RmaxρTV (π1, π3) + 2Rmax(n− 1)ρTV (π2, π4) ≤ 2nRmaxρTV ((π1, π2), (π3, π4))

2

Now, let us use the notation:

c2(π1, π2) :=

∫
a

∫
s′
T (z, ds′)VΛi(π1, π2)(s′,λ)π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)

For the term |c2(π1, π2)− c2(π3, π4)|, we can split:

VΛi
(π1, π2)(s′,λ)π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)

− VΛi
(π3, π4)(s′,λ)π3(dai|si, λi)Πj 6=iπ4(daj |sj , λj)

= VΛi(π1, π2)(s′,λ)[π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)− π3(dai|si, λi)Πj 6=iπ4(daj |sj , λj)]
+π3(dai|si, λi)Πj 6=iπ4(daj |sj , λj)[VΛi

(π1, π2)(s′,λ)− VΛi
(π3, π4)(s′,λ)]

Since VΛi
is bounded byRmax(1− γ)−1, and noting that we have, as for c1, that:∫
a

|π1(dai|si, λi)Πj 6=iπ2(daj |sj , λj)− π3(dai|si, λi)Πj 6=iπ4(daj |sj , λj)|

≤ 2nρTV ((π1, π2), (π3, π4))

we then have:

|c2(π1, π2)− c2(π3, π4)| ≤ 2nRmax(1− γ)−1ρTV ((π1, π2), (π3, π4))

+ max
s,λ
|VΛi(π1, π2, s,λ)− VΛi(π3, π4, s,λ)|

We then have, collecting all terms together:

|VΛi
(π1, π2, s,λ)− VΛi

(π3, π4, s,λ)| ≤ 2nRmax(1 + γ(1− γ)−1)ρTV ((π1, π2), (π3, π4))

+ γmax
s,λ
|VΛi

(π1, π2, s,λ)− VΛi
(π3, π4, s,λ)|

Taking the maximum over s,λ on the left hand-side and rearranging terms finally yields:

|VΛi
(π1, π2)− VΛi

(π3, π4)| ≤ max
s,λ
|VΛi

(π1, π2, s,λ)− VΛi
(π3, π4, s,λ)|

≤ 2n(1− γ)−1Rmax(1 + γ(1− γ)−1)ρTV ((π1, π2), (π3, π4))

= 2n(1− γ)−2RmaxρTV ((π1, π2), (π3, π4))

which yields the desired continuity result.

B Experiments: details and complete set of results

B.1 Description of the n-player market setting and of the merchant agents on a shared
policy

We implemented a simulator of a market where merchant agents i offer prices p(i)
buy,t, p

(i)
sell,t to

customers at which they are willing to buy and sell a certain good, for example coffee, from/to them.
A given merchant i cannot observe the prices that his competitors j 6= i are offering to customers,
hence the partially observed setting.

There exists a reference facility that all merchants and customers can observe and can transact with
at buy/sell prices p∗buy,t, p

∗
sell,t publicly available at all times. Consequently, if a merchant offers

to a customer a price less attractive than the reference price, the customer will prefer to transact
with the reference facility instead. p∗buy,t, p

∗
sell,t are assumed to be of the form p∗buy,t = m∗t − δ∗t ,

p∗sell,t = m∗t + δ∗t , where bothm∗t , δ∗t have Gaussian increments over each timestep and δ∗t ≥ 0.

A merchant i’s inventory q(i)
t is the net quantity of good that remains in his hands as a result of all

transactions performed with customers and the reference facility up to time t. We assume that it is
permitted to sell on credit, so that inventory q(i)

t can be negative.

We have denoted the prices in bold letters since these prices are in fact functions of the quantity q
that is being transacted, for example p(i)

buy,t ≡ q → p
(i)
buy,t(q). In order to simplify the setting, we

3

assume that merchants’ actions a(i)
t only consist in i) specifying multiplicative buy/sell factors ε(i)t,b,

ε
(i)
t,s ∈ [−1, 1] on top of the reference curve to generate price curves: p(i)

buy,t := p∗buy,t(1 + ε
(i)
t,b),

p
(i)
sell,t := p∗sell,t(1 + ε

(i)
t,s) and ii) specifying a fraction h(i)

t ∈ [0, 1] of current inventory q(i)
t to

transact at the reference facility, so that a(i)
t = (ε

(i)
t,b, ε

(i)
t,s, h

(i)
t) ∈ [−1, 1]2 × [0, 1]. The merchant’s

state s(i)
t ∈ Rd with d ∼ 500 consist in the reference price and his recent transaction history with all

customers, in particular his inventory.

Merchants’ rewards depend on other merchant’s prices and consist in the profit made as a result of
i) transactions performed with customers and the reference facility and ii) the change in inventory’s
value due to possible fluctuations of the reference price.

Customers are assumed at every point in time t to either want to buy or sell with equal probability
a certain quantity. We split 500 customers into 10 customer clusters, cluster i ∈ [1, 10] being
associated to quantity i. For example, a customer belonging to cluster 5 will generate transactions of
quantity 5.

Types and supertypes. In our setting, merchants differ by 1) their connectivity to customers (they
can transact only with connected customers) and 2) their inventory tolerance factor ξi, which
penalizes holding a large inventory by adding a term −ξi|q(i)

t | to their reward. We define the
supertype Λi as a vector of size 12: 10 probabilities of being connected to customers belonging to
the 10 customer clusters, plus the mean and standard deviation of the normal distribution generating
the merchant’s inventory tolerance coefficient ξi 1. In a given episode, a merchant may be connected
differently to customers in the same cluster, however he has the same probability to be connected to
them. That means that the type λi sampled probabilistically at the beginning of each episode is a
vector of size 11: 10 entries in [0, 1] corresponding to the sampled fractions of connected customers
in each one of the 10 clusters, and 1 inventory tolerance factor. For example, if a merchant has in its
supertype a probability 30% to be connected to customers in cluster 5, then each one of the 50 binary
connections between the merchant and customers of cluster 5 will be sampled independently at the
beginning of the episode as a Bernoulli random number with associated probability 30%, and the
resulting fraction of connected customers is recorded in λi.

Calibration targets. We consider calibration targets of two different types. The market share of a
specific merchant i is defined as the fraction of the sum of all customers’ transaction quantities (over
an episode) that merchant i has obtained. Note that the sum of market share over merchant’s doesn’t
necessarily sum to 1 since customers can transact with the reference facility if the merchant’s prices
are not attractive enough. The transaction distribution is defined as percentiles of the distribution
- over an episode - of transaction quantities per timestep received by a merchant as a result of his
interactions with all customers.

B.2 RL calibrator agent

As described in section 3, the state of the RL calibrator is the current supertype profile Λ and its
action is a supertype profile increment δΛ. In section B.1, we described the supertype Λi for each
merchant as a vector of size 12, and in section 4 we mentioned that we conducted experiments using 2
distinct supertypes for the 5-10 merchant agents (see also section B.3 for a more detailed description).
As a result, both the calibrator’s state Λ and action δΛ consist of the 12 supertype entries for 2
distinct supertypes, i.e. 24 real numbers. In our experiments, we set the standard deviation of the
normal distribution associated to inventory tolerance of supertype 1 to be zero since supertype 1 is
associated to 1 merchant only, which reduces the size to 23 real numbers. The corresponding ranges
for the parameters (Λi(j))j=1..12 in the RL calibrator’s policy action and state spaces are reported in
table 1.

1in experiments of section B.3, we set the standard deviation of the normal distribution associated to inventory
tolerance of supertype 1 to be zero since supertype 1 is associated to 1 merchant only

4

Table 1: RL calibrator state and action spaces.

Supertype parameter flavor j state Λi(j) range action δΛi(j) range

customer cluster connectivity probability [0, 1] [−1, 1]
inventory tolerance Gaussian mean [0, 5] [−5, 5]
inventory tolerance Gaussian stDev [0, 2] [−2, 2]

As mentioned in section 3, the calibrator agent’s reward rcalb associated to an episode b is given by

rcalb =

K∑
k=1

wk

r
(k)
b︷ ︸︸ ︷

`−1
k (f

(k)
∗ − f (k)

cal ((zt,b)t≥0)) (1)

We give in table 3 a breakdown of these sub-objectives for each experiment (for each experiment,
all K sub-objectives are required to be achieved simultaneously, cf. equation (1) above). Table 3 is
associated with reward functions mentioned below, where we denote msuper1 = msuper1((zt)t≥0)
the market share of supertype 1 observed throughout an episode, mtotal the sum of all merchants’
marketshares, v̂superj (p) the observed (10p)th% percentile of supertype j’s transaction distribution
per timestep.

In experiment 1, r = (1 + r(1) + 0.2r(2))−1, with vsuper1 = [8, 8, 8, 9, 9, 9, 10, 10, 10], r(1) =
1
2 (max(0.15−msuper1 , 0) + max(0.8−mtotal, 0)), r(2) = 1

9

∑9
p=1 |vsuper1(p)− v̂super1(p)|.

In experiment 2/3, r = (1 + r(1) + 0.2r(2) + 0.2r(3))−1, with vsuper1 = [8, 8, 8, 9, 9, 9, 10, 10, 10],
vsuper2 = [2, 3, 3, 4, 5, 5, 6, 6, 7], r(1) = 1

2 (max(0.15 − msuper1 , 0) + max(0.8 − mtotal, 0)),
r(j+1) = 1

9

∑9
p=1 |vsuperj (p)− v̂superj (p)|, j ∈ {1, 2}.

In experiment 4, r = (1+r(1) +r(2))−1, with r(1) = |0.25−msuper1 |, r(2) = max(0.8−mtotal, 0).
In experiment 5, r = (1 + r(1) + r(2))−1, with r(1) = |0.4−msuper1 |, r(2) = |0.8−mtotal|.

B.3 Details on experiments

Experiments were conducted in the RLlib multi-agent framework [1], ran on AWS using a EC2 C5
24xlarge instance with 96 CPUs, resulting in a training time of approximately 1 day per experiment.

The 5 experiments we conducted are described in table 2, with a calibration target breakdown in table
3 (see section B.1 for a description of the market setting and merchant agents, and section B.2 for a
description of the RL calibrator agent’s state, actions and rewards). For example, according to table
3, in experiment 1, we calibrate 23 parameters altogether in order to achieve 11 calibration targets
simultaneously. As mentioned in section 4, in all experiments, merchant 1 was assigned supertype 1,
and all n− 1 other merchants were assigned supertype 2.

Shared Policy and calibrator’s policy. Both policies were trained jointly according to algorithm 1
using Proximal Policy Optimization [3], an extension of TRPO [2]. We used configuration parameters
in line with [3], that is a clip parameter of 0.3, an adaptive KL penalty with a KL target of 0.01
(so as to smoothly vary the supertype profile) and a learning rate of 10−4. We found that entropy
regularization was not specifically helpful in our case. Episodes were taken of length 60 time steps
with a discount factor of 1, using B = 90 parallel runs in between policy updates (for both policies).
As a result, each policy update was performed with a batch size of n · 60 · 90 timesteps for the shared
policy, and 3 · 90 timesteps for the calibrator’s policy, as we allowed the calibrator to take 3 actions
per episode (that is, updating the supertype profile Λ 3 times), together with 30 iterations of stochastic
gradient descent. We used for each policy a fully connected neural net with 2 hidden layers, 256
nodes per layer, and tanh activation. Since our action space is continuous, the outputs of the neural
net are the mean and stDev of a standard normal distribution, which is then used to sample actions
probabilistically (the covariance matrix across actions is chosen to be diagonal).

Bayesian optimization baseline. We used Bayesian optimization to suggest a next supertype profile
Λ to try next, every M training iterations of the shared policy. That is, every M training iterations, we

5

record the calibrator’s reward as in section B.2, and use Bayesian optimization to suggest the next best
Λ to try. We empirically noticed that if M was taken too low (M ∼ 10), the shared policy couldn’t
adapt as the supertype profile changes were too frequent (and potentially too drastic), thus leading to
degenerate behaviors (e.g. merchants not transacting at all). We tested values of M = 10, M = 50,
M = 100, M = 200, and opted for M = 100 as we found it was a good trade-off between doing
sufficiently frequent supertype profile updates and at the same time giving enough time to the shared
policy to adapt. We chose an acquisition function of upper confidence bound (UCB) type [4]. Given
the nature of our problem where agents on the shared policy need to be given sufficient time to adapt
to a new supertype profile choice Λ, we opted for a relatively low UCB exploration parameter of
κ = 0.5, which we empirically found yielded a good trade-off between exploration and exploitation
(taking high exploration coefficient can yield drastic changes in the supertype profile space, which
can prevent agents to learn correctly an equilibrium). In figure 1 we look - in the case of experiment 1
- at the impact of the choice of M in the EI (expected improvement) and UCB (exploration parameter
of κ = 1.5) cases and find that different choices of M and of the acquisition function yield similar
performance. We also look at the case "CALSHEQ_no_state" where the calibrator policy directly
samples supertype values (rather than increments) without any state information (i.e. the calibrator
policy’s action is conditioned on a constant), and find that it translates into a significant decrease in
performance. We further note that decreasing M has a cost, especially when Λ is high dimensional,
since the BO step will become more and more expensive with increasing observation history length.
For example, in the case of experiment 1, we observed with M = 1 that the training hadn’t reached
the 20M timestep budget after 2 days (for a calibrator reward in line with other values of M). The
covariance function of the Gaussian process was set to a Matern kernel with ν = 2.5.

Figure 1: Calibrator Reward during training for various number of BO frequencies M - Experiment 1
- (Left) BO Expected Improvement (EI) - (Right) BO UCB with exploration parameter κ = 1.5.

Table 2: Summary of experiment configuration.

Experiment # # Merchant
Agents

Budget # Training
Steps (106)

distinct
Supertypes

Supertype parameters
to be calibrated

Total #
Calibration Targets

1 5 40 2 20 11
2 5 40 2 20 20
3 10 20 2 20 20
4 10 20 2 23 2
5 5 40 2 23 2

B.4 Complete set of experimental results associated to section 4

In this section we display the complete set of results associated to figures shown in section 4. We
display in figure 2 the rewards of all agents during training (calibrator, merchant on supertype 1 and
n− 1 merchants on supertype 2) for experiments 1-5 previously described. In figures 3-7 we display
the calibration fits for all calibration targets described in table 3 (we reiterate that for each experiment,

6

Table 3: Calibration target breakdown

Experiment # # Calibration
Targets Calibration Target Type

1 9 transaction quantity distribution supertype 1
percentiles 10%− 90% target 8, 8, 8, 9, 9, 9, 10, 10, 10

2 market share supertype 1≥ 15% + total≥ 80%

2 18
transaction quantity distribution Supertypes 1+2

supertype 1 - percentiles 10%− 90% target 8, 8, 8, 9, 9, 9, 10, 10, 10
supertype 2 - percentiles 10%− 90% target 2, 3, 3, 4, 5, 5, 6, 6, 7

2 market share supertype 1≥ 15% + total≥ 80%

3 18
transaction quantity distribution Supertypes 1+2

supertype 1 - percentiles 10%− 90% target 8, 8, 8, 9, 9, 9, 10, 10, 10
supertype 2 - percentiles 10%− 90% target 2, 3, 3, 4, 5, 5, 6, 6, 7

2 market share supertype 1≥ 15% + total≥ 80%

4 1 market share supertype 1 = 25%

1 total market share≥ 80%

5 1 market share supertype 1 = 40%

1 total market share = 80%

all calibration targets are required to be achieved simultaneously). In figures 8-12 we display the
calibrated parameters associated to the calibration fits, that is the parameters in supertypes 1 and
2 (customer connectivity probability and inventory tolerance Gaussian mean and stDev) that allow
to reach the calibration targets. As discussed in section 4, CALSHEQ outperforms BO in terms of
efficiency, accuracy of the fit, and smoothness. The shaded areas correspond to 1 stDev, computed
according to the so-called range rule (max−min)

4 . In the case of CALSHEQ, we plot the mean of the
calibration targets and calibrated parameters over the B episodes.

7

Figure 2: Rewards during training, averaged over episodes B - Calibrator (Top), Supertypes 1/2
(Mid/Bottom) - experiments 1-2-3-4-5, respectively 5-5-10-10-5 agents. CALSHEQ (ours) and
baseline (Bayesian optimization). Shaded area represents ±1 stDev.

8

Figure 3: Experiment 1 - Calibration target fit for transaction quantity distribution percentile and
Market Share during training, averaged over episodes B. Dashed line target indicates that the
constraint was set to be greater than target (not equal to it). CALSHEQ (ours) and baseline (Bayesian
optimization).

9

Figure 4: Experiment 2 - Calibration target fit for transaction quantity distribution percentile and
Market Share during training, averaged over episodes B. Dashed line target indicates that the
constraint was set to be greater than target (not equal to it). CALSHEQ (ours) and baseline (Bayesian
optimization).

10

Figure 5: Experiment 3 - Calibration target fit for transaction quantity distribution percentile and
Market Share during training, averaged over episodes B. Dashed line target indicates that the
constraint was set to be greater than target (not equal to it). CALSHEQ (ours) and baseline (Bayesian
optimization).

11

Figure 6: Experiment 4 - Calibration target fit for Market Share during training, averaged over
episodes B. Dashed line target indicates that the constraint was set to be greater than target (not equal
to it). CALSHEQ (ours) and baseline (Bayesian optimization).

Figure 7: Experiment 5 - Calibration target fit for Market Share during training, averaged over
episodes B. CALSHEQ (ours) and baseline (Bayesian optimization).

12

Figure 8: Experiment 1 - Calibrated parameters, averaged over episodes B. CALSHEQ (ours) and
baseline (Bayesian optimization).

13

Figure 9: Experiment 2 - Calibrated parameters, averaged over episodes B. CALSHEQ (ours) and
baseline (Bayesian optimization).

14

Figure 10: Experiment 3 - Calibrated parameters, averaged over episodes B. CALSHEQ (ours) and
baseline (Bayesian optimization).

15

Figure 11: Experiment 4 - Calibrated parameters, averaged over episodes B. CALSHEQ (ours) and
baseline (Bayesian optimization).

16

Figure 12: Experiment 5 - Calibrated parameters, averaged over episodes B. CALSHEQ (ours) and
baseline (Bayesian optimization).

17

Disclaimer

This paper was prepared for information purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

References
[1] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan, and I. Stoica. RLlib:

Abstractions for distributed reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 3053–3062, 2018.

[2] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In F. Bach
and D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1889–1897, 2015.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization Algorithms.
https://arxiv.org/abs/1707.06347, 2017.

[4] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No
regret and experimental design. ICML, 2016.

18

	Proofs
	Experiments: details and complete set of results
	Description of the n-player market setting and of the merchant agents on a shared policy
	RL calibrator agent
	Details on experiments
	Complete set of experimental results associated to section 4

