Appendix

A Reminders about integral probability metrics

Let (X, X) be a measurable space. The integral probability metric associated with a class F of
(measurable) real-valued functions on X is defined as

= sup
feF

/ fdP — f dQ‘ sup
X

reF|X

E O] = EIFY)]

Y~Q

where P and () are probability measures on X'. We note the following special cases:

) BF={f:|lfllc <1}, then dr is the rotal variation distance
dr (P, Q) = Drv(P, Q) := sup [P(4) = Q(A)]
€

(i) If F is the set of 1-Lipschitz function w.r.t. to some cost function (metric) ¢ on X, then d»
is the 1-Wasserstein distance w.r.t. the same metric:

A (P.Q) = Wi(P.Q) = int [cw)dr(o)

where I'(P, Q) denotes the set of all couplings of P and Q, i.e. joint distributions on X2
which have marginals P and Q).

(i) ¥ F = {f : || fllx < 1} where H is a reproducing kernel Hilbert space with kernel &, then
dr is the maximum mean discrepancy:

dr(P,Q) = MMD(P, Q) := \/E[k(X, X")] — 2E[k(X,Y)] + E[k(Y,Y")]
where X, X' ~ PandY,Y' ~ Q.

In the context of Section 4.1, we have (at least) the following instantiations of Assumption 4.2:

(i) Assume the reward is bounded by 7yax. Then (since ||V |loo < Tf‘jj;

G

s,a)| < Iria;DTv(f(s,a),T(s,a))
This corresponds to ¢ = 22 and F = {f : [f[loc < 1}.
(i1) Assume V7 is L,-Lipschitz. Then
G535, a)] < LuWi(T(s,a), T(s, a))

This corresponds to ¢ = L, and F = {f : f is 1-Lipschitz}.
(iii) Assume ||V} || < v. Then

|GT(s, a)| < vMMD(T (s, a),T(s,a))
This corresponds to ¢ = v and F = {f : || f|ln < 1}.

B Proofs

We provide a proof for Lemma 4.1 for completeness. The proof is essentially the same as that for [44,
Lemma 4.3].

Proof. Let W; be the expected return when executing 7 on T for the first 7 steps, then switching to
T for the remainder. That is,

oo
t
Wi = E > 4r(se ar)
e I =
t<jise41~T(s¢,a¢)
t>j:se41~T(s¢,at)

15

Note that Wy = 1/ (7) and Weo = ng3(m), so

nip(m) = () =Y (Wigr — W5)
=0

Write

Wj=R;j+ E { E ['7‘7+1VJ\72(5J'+1)]}

sj,aj~m,T sj+1~T(s¢,at)

Wj+1 = Rj + E

sj,a;~m, T

B [vj“Vﬁ(Sm)]}

sj+1~T(st,a)
where R is the expected return of the first j time steps, which are taken with respect to T. Then

W1 —W; =+ E

sj,a;~m, T

=" E_[GT(s5.05)]

sj,aj~m, T

E [V - E [WZ(S’)]}

s’NT(sJ-,aj) s'~T(s5,a;)

Thus
7]7@(”) —nu(m) = Z(Wj+1 - Wj)
=0
=Y ¥ E _|O%(s0))]
=0 sj,a;~m, T
= E [Gl 5,a }
Y (s.arer ()
as claimed. O

Now we prove Theorem 4.2.

Proof. We first note that a two-sided bound follows from Lemma 4.1:

) —mi(m <7 B (GHeal<A B fusa]=da(m a2
Then we have, for any policy T,
na (7)) = ngp(7) (by (7))
> ng7(m) (by definition of 7)
= n37(m) — e ()
> N (m) — 2Xey () (by (12))
O

C MOPO Practical Algorithm Outline

We outline the practical MOPO algorithm in Algorithm 2.

D Ablation Study

To answer question (3), we conduct a thorough ablation study on MOPO. The main goal of the
ablation study is to understand how the choice of reward penalty affects performance. We denote
no ens. as a method without model ensembles, ens. pen. as a method that uses model ensemble
disagreement as the reward penalty, no pen. as a method without reward penalty, and true pen. as

16

Algorithm 2 MOPO instantiation with regularized probabilistic dynamics and ensemble uncertainty
Require: reward penalty coefficient A rollout horizon h, rollout batch size b.
1: Train on batch data Dey an ensemble of N probabilistic dynamics {T°(s’,r|s,a) =
N(p'(s,a), 2 (s, a))}ivzl
2: Initialize policy 7 and empty replay buffer Dimodel — <.
3: forepoch 1,2,... do > This for-loop is essentially one outer iteration of MBPO
for 1,2,...,b (in parallel) do
5 Sample state s1 from Deyy for the initialization of the rollout.
6 forj=1,2,...,hdo
7 Sample an action a; ~ 7(s;).
8: Randomly pick dynamics T from {T"}/_, and sample s;.41,7; ~ T(s;,a;).
9
0
1

N

Compute 7; = rj—Amaxi; || Z%(s;, a;)||¢.
Add sample (s, aj, 7, S;j+1) 0 Dmodel.
Drawing samples from Deny U Diogel, use SAC to update 7.

10:

Ju—

a method using the true model prediction error ||T(s,a) — T'(s,a)|| as the reward penalty. Note
that we include true pen. to indicate the upper bound of our approach. Also, note that no ens.
measures disagreement among the ensemble: precisely, if the models’ mean predictions are denoted

11, - - -, N, we compute the average i = 1/N vazl w; and then take max; ||u; — || as the ensemble
penalty.

The results of our study are shown in Table 3. For different reward penalty types, reward penalties
based on learned variance perform comparably to those based on ensemble disagreement in D4RL
environments while outperforming those based on ensemble disagreement in out-of-distribution
domains. Both reward penalties achieve significantly better performances than no reward penalty,
indicating that it is imperative to consider model uncertainty in batch model-based RL. Methods
that uses oracle uncertainty obtain slightly better performance than most of our methods. Note that
MOPO even attains the best results on halfcheetah- jump. Such results suggest that our uncertainty
quantification on states is empirically successful, since there is only a small gap. We believe future
work on improving uncertainty estimation may be able to bridge this gap further. Note that we do
not report the results of methods with oracle uncertainty on walker2d-mixed and ant-angle as
we are not able to get the true model error from the simulator based on the pre-recorded dataset.

In general, we find that performance differences are much larger for halfcheetah-jump and
ant-angle than the D4RL halfcheetah-mixed and walker2d-mixed datasets, likely because
halfcheetah-jump and ant-angle requires greater generalization and hence places more demands
on the accuracy of the model and uncertainty estimate.

Finally, we perform another ablation study on the choice of the reward penalty. We consider the
U™ (s, a) = % ZZ\LI 1% (5, a)|[r, the average standard deviation of the learned models in the
ensemble, as the reward penalty instead of the max standard deviation as used in MOPO. We denote
the variant of MOPO with the average learned standard deviation as MOPO, avg. var.. We compare
MOPO to MOPO, avg. var. in the halfcheetah-jump domain. MOPO achieves 4140.6188 average
return while MOPO, avg. var. achieves 4166.3+228.8 where the results are averaged over 3 random
seeds. The two methods did similarly, suggesting that using either mean variance or max variance
would be a reasonable choice for penalizing uncertainty.

E Empirical results on generalization capabilities

We conduct experiments in ant-angle to show the limit of MOPO’s generalization capabilties. As
shown in Table 4, we show that MOPO generalizes to Ant running at a 45° angle (achieving almost
buffer max score), beyond the 30° shown in the paper, while failing to generalize to a 60 and 90°
degree angle. This suggests that if the new task requires to explore states that are completely out of
the data support, i.e. the buffer max and buffer mean both fairly bad, MOPO is unable to generalize.

17

Method | halfcheetah-mixed | walker2d-mixed | halfcheetah-jump | ant-angle

MOPO 6405.8 £ 35 1916.4 £ 611 4016.6 £ 144 | 2530.9 £ 137
MOPO, ens. pen. 6448.7 £ 115 1923.6 £ 752 3577.3 £461 | 2256.0 288
MOPO, no pen. 6409.1 £ 429 1421.2 £+ 359 —980.8 £ 5625 18.6 =49
MBPO 5598.4 + 1285 1021.8 £ 586 2971.4 + 1262 13.6 &= 65
MBPO, no ens. 2247.2 £ 581 500.3 £ 34 —68.7+£ 1936 | —720.1 £728
MOPO, true pen. | 6984.0 £ 148 | N/A | 3818.6 £136 | N/A

Table 3: Ablation study on two D4RL tasks halfcheetah-mixed and walker2d-mixed and two out-of-
distribution tasks halfcheetah-jump and ant-angle. We use average returns where the results of MOPO
and its variants are averaged over 6 random seeds and MBPO results are averaged over 3 random seeds as in
Table 2. We observe that different reward penalties can all lead to substantial improvement of the performance
and reward penalty based on learned variance is a better choice than that based on ensemble disagreement in
out-of-distribution cases. Methods that use oracle uncertainty as the reward penalty achieve marginally better
performance than MOPO, implying that MOPO is effective at estimating the uncertainty.

Environment Buffer Max Buffer Mean MOPO

ant-angle-45 3168.7 1105.5 2571.3+598.1
ant-angle-60 1953.7 846.7 840.5+£1103.7
ant-angle-90 838.8 -901.6 -503.2+£803.4

Table 4: Limit of generalization on ant-angle.

F Experiments on HIV domains

Beyond continous control tasks in MuJoCo, we test MOPO on an HIV treatment simulator slightly
modified from the one in the whynot package. The task simulates the sequential decision making in
HIV treatment, which involves determining the amounts of two anti-HIV drugs to be administered to
the patient in order to maximize the immune response and minimize the amount of virus. The agent
observes both of those quantities as well as the (log) number of infected and uninfected T cells and
macrophages.

We evaluated MOPO with the data generated from the first 200k steps of training an online SAC agent
on this environment. We show results in Table 5, where MOPO outperforms BEAR and achieves
almost the buffer max score.

Buffer Max Buffer Mean SAC (online) BEAR MOPO
15986.2 6747.2 25716.3 £254.3 11709.1+£1292.1 13484.6 + 3900.7

Table 5: HIV treatment results, averaged over 3 random seeds.

G Experiment Details

G.1 Details of out-of-distribution environments

For halfcheetah- jump, the reward function that we use to train the behavioral policy is (s, a) =
max{v,,3} — 0.1 % ||a||3 where v, denotes the velocity along the x-axis. After collecting the offline
dataset, we relabel the reward function to (s, a) = max{v,,3} — 0.1 % [|a||3 + 15 * (z — init z)
where z denotes the z-position of the half-cheetah and init z denotes the initial z-position.

For ant-angle, the reward function that we use to train the behavioral policy is 7(s,a) = v, —
control cost. After collecting the offline dataset, we relabel the reward function to r(s,a) = v, -

cos § + vy - sin & — control cost where v,;, v, denote the velocity along the z, y-axis respectively.

For both out-of-distribution environments, instead of sampling actions from the learned policy during
the model rollout (line 10 in Algorithm 2), we sample random actions from Unif[—1, 1], which
achieves better performance empirically. One potential reason is that using random actions during
model rollouts leads to better exploration of the OOD states.

18

https://github.com/zykls/whynot

Dataset type | Environment | MOPO (h,\) | MBPO h

random halfcheetah 5,05 5
random hopper 5,1 5
random walker2d 1,1 5
medium halfcheetah 1,1 5
medium hopper 5,5 5
medium walker2d 55 5
mixed halfcheetah 5,1 5
mixed hopper 5,1 5
mixed walker2d 1,1 1
med-expert | halfcheetah 5,1 5
med-expert | hopper 5,1 5
med-expert walker2d 1,2 1

Table 6: Hyperparameters used in the D4RL datasets.

G.2 Hyperparameters

Here we list the hyperparameters used in the experiments.

For the D4RL datasets, the rollout length h and penalty coefficient A are given in Table 6. We
search over (h, \) € {1,5}2 and report the best final performance, averaged over 3 seeds. The only
exceptions are halfcheetah-random and walker2d-medium-expert, where other penalty coefficients
were found to work better.

For the out-of-generalization tasks, we use rollout length 5 for halfcheetah-jump and 25 for
ant-angle, and penalty coefficient 1 for halfcheetah-jump and 2 for ant-angle.

Across all domains, we train an ensemble of 7 models and pick the best 5 models based on their
prediction error on a hold-out set of 1000 transitions in the offline dataset. Each of the model in the
ensemble is parametrized as a 4-layer feedforward neural network with 200 hidden units and after the
last hidden layer, the model outputs the mean and variance using a two-head architecture. Spectral
normalization [45] is applied to all layers except the head that outputs the model variance.

For the SAC updates, we sample a batch of 256 transitions, 5% of them from D,y and the rest of
them from Dpode1. We also perform ablation studies on the percentage of the real data in a batch for
MOPO. For simplicity, we use MBPO, which essentially MOPO without reward penalty, for this
ablation study. We tried to train MBPO with data all sampled from Dy,oq4e; and no data from Depy
and compare the performance to MBPO with 5% of data from D,y on all 12 settings in the D4RL
benchmark. We find that the performances of both methods are not significantly distinct: no-real-data
MBPO outperforms 5%-real-data MBPO on 6 out of 12 tasks and lies within one SD of 5%-real-data
MBPO on 9 out of 12 tasks.

19

	Reminders about integral probability metrics
	Proofs
	MOPO Practical Algorithm Outline
	Ablation Study
	Empirical results on generalization capabilities
	Experiments on HIV domains
	Experiment Details
	Details of out-of-distribution environments
	Hyperparameters

